1
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Bil M, Jurczyk-Kowalska M, Kopeć K, Heljak M. Study of Correlation between Structure and Shape-Memory Effect/Drug-Release Profile of Polyurethane/Hydroxyapatite Composites for Antibacterial Implants. Polymers (Basel) 2023; 15:polym15040938. [PMID: 36850222 PMCID: PMC9962404 DOI: 10.3390/polym15040938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The effectiveness of multifunctional composites that combine a shape-memory polyurethane (PU) matrix with hydroxyapatite (HA) as a bioactive agent and antibiotics molecules results from a specific composite structure. In this study, structure-function correlations of PU-based composites consisting of 3, 5, and 10 (wt%) of HA and (5 wt%) of gentamicin sulfate (GeS) as a model drug were investigated. The performed analysis revealed that increasing HA content up to 5 wt% enhanced hydrogen-bonding interaction within the soft segments of the PU. Differential-scanning-calorimetry (DSC) analysis confirmed the semi-crystalline structure of the composites. Hydroxyapatite enhanced thermal stability was confirmed by thermogravimetric analysis (TGA), and the water contact angle evaluated hydrophilicity. The shape-recovery coefficient (Rr) measured in water, decreased from 94% for the PU to 86% for the PU/GeS sample and to 88-91% for the PU/HA/GeS composites. These values were positively correlated with hydrogen-bond interactions evaluated using the Fourier-transform-infrared (FTIR) spectroscopy. Additionally, it was found that the shape-recovery process initiates drug release. After shape recovery, the drug concentration in water was 17 μg/mL for the PU/GeS sample and 33-47 μg/mL for the PU HA GeS composites. Antibacterial properties of developed composites were confirmed by the agar-diffusion test against Escherichia coli and Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Monika Bil
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19 Street, 02-822 Warsaw, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
- Correspondence:
| | - Magdalena Jurczyk-Kowalska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Kamil Kopeć
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| |
Collapse
|
3
|
Delaey J, Parmentier L, Pyl L, Brancart J, Adriaensens P, Dobos A, Dubruel P, Van Vlierberghe S. Solid-State Crosslinkable, Shape-Memory Polyesters Serving Tissue Engineering. Macromol Rapid Commun 2023; 44:e2200955. [PMID: 36755500 DOI: 10.1002/marc.202200955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Acrylate-endcapped urethane-based precursors constituting a poly(D,L-lactide)/poly(ε-caprolactone) (PDLLA/PCL) random copolymer backbone are synthesized with linear and star-shaped architectures and various molar masses. It is shown that the glass transition and thus the actuation temperature could be tuned by varying the monomer content (0-8 wt% ε-caprolactone, Tg,crosslinked = 10-42 °C) in the polymers. The resulting polymers are analyzed for their physico-chemical properties and viscoelastic behavior (G'max = 9.6-750 kPa). The obtained polymers are subsequently crosslinked and their shape-memory properties are found to be excellent (Rr = 88-100%, Rf = 78-99.5%). Moreover, their potential toward processing via various additive manufacturing techniques (digital light processing, two-photon polymerization and direct powder extrusion) is evidenced with retention of their shape-memory effect. Additionally, all polymers are found to be biocompatible in direct contact in vitro cell assays using primary human foreskin fibroblasts (HFFs) through MTS assay (up to ≈100% metabolic activity relative to TCP) and live/dead staining (>70% viability).
Collapse
Affiliation(s)
- Jasper Delaey
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Laurens Parmentier
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions (MeMC), Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek, 3590, Belgium
| | - Agnes Dobos
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium.,BIO INX BV, Tech Lane 66, Zwijnaarde, 9052, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium.,BIO INX BV, Tech Lane 66, Zwijnaarde, 9052, Belgium
| |
Collapse
|
4
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
5
|
Babaie A, Rezaei M, Razzaghi D, Roghani‐Mamaqani H. Synthesis of
dual‐stimuli‐responsive
polyurethane shape memory nanocomposites incorporating
isocyanate‐functionalized Fe
3
O
4
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amin Babaie
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Donya Razzaghi
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
| |
Collapse
|
6
|
Zhao B, Mei H, Hang G, Li L, Zheng S. Polyurethanes Reinforced with Polyethylene Nanocrystals: Synthesis, Triple Shape Memory, and Reprocessing Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Honggang Mei
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohua Hang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Li
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
8
|
Bai J, Shi Z, Ma X, Yin J, Jiang X. Wavelength-Selective Photocycloadditions of Styryl-Anthracene. Macromol Rapid Commun 2022; 43:e2200055. [PMID: 35338541 DOI: 10.1002/marc.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/16/2022] [Indexed: 11/08/2022]
Abstract
Light-tunable covalent chemistry is highly urgent in the fields of chemistry, biology and material especially for the smart materials and surface, due to the spatiotemporal control and feasible operation. Here, we report a new type of wavelength-selective photo-cycloaddition of styryl-anthracene carboxylic acid (SACA). Upon the irradiation of 450 nm visible light or 365 nm UV light, SACA can undergo [2+2] or [2+4] photocycloaddition, respectively. Furthermore, the [2+2] photocycloaddition induced by vis-light of 450 nm is reversible and can be disrupted by 365 nm UV light to form dimer-24 which cannot be photo-cleavable. Owing to the feasibility and spatiotemporal characteristics of UV-Vis light-controlled photocycloaddition, the SACA possesses potential applications in various areas such as self-assembly, dynamic wrinkle and fluorescence patterns, which is also explored and exhibited in this work. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
9
|
Saed M, Gablier A, Terentjev EM. Exchangeable Liquid Crystalline Elastomers and Their Applications. Chem Rev 2022; 122:4927-4945. [PMID: 33596647 PMCID: PMC8915166 DOI: 10.1021/acs.chemrev.0c01057] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/30/2022]
Abstract
This Review presents and discusses the current state of the art in "exchangeable liquid crystalline elastomers", that is, LCE materials utilizing dynamically cross-linked networks capable of reprocessing, reprogramming, and recycling. The focus here is on the chemistry and the specific reaction mechanisms that enable the dynamic bond exchange, of which there is a variety. We compare and contrast these different chemical mechanisms and the key properties of their resulting elastomers. In the conclusion, we discuss the most promising applications that are enabled by dynamic cross-linking and present a summary table: a library of currently available materials and their main characteristics.
Collapse
Affiliation(s)
- Mohand
O. Saed
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Alexandra Gablier
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eugene M. Terentjev
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
10
|
Shape memory function of trans-1,4-polyisoprene prepared by radiation crosslinking with a supercritical CO2 foaming. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S, Salehi MH, Goodarzi V, Wurm FR, Jafari SH. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Bratasyuk NA, Zuev VV. The effect molecular weight of polyol components on shape memory effect of epoxy‐polyurethane composites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nikita A. Bratasyuk
- Department of Bioengineering ITMO University Sankt Petersburg Russian Federation
| | - Vjacheslav V. Zuev
- Department of Bioengineering ITMO University Sankt Petersburg Russian Federation
- Department of Polymer Spectroscopy Institute of Macromolecular Compounds of the Russian Academy of Sciences Sankt Petersburg Russian Federation
| |
Collapse
|
13
|
Shi G, Huang C, Cao X, Liu M, Zhang J, Zheng K, Ma Y. Triple shape memory effect of ethylene-vinyl acetate copolymer/poly(propylene carbonate) blends with broad composite ratios and phase morphologies. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Yang L, Lou J, Yuan J, Deng J. A review of shape memory polymers based on the intrinsic structures of their responsive switches. RSC Adv 2021; 11:28838-28850. [PMID: 35478574 PMCID: PMC9038180 DOI: 10.1039/d1ra04434f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Shape memory polymers (SMPs), as stimuli-responsive materials, have attracted worldwide attention. Based on the history and development of SMPs, a variety of reports about SMPs in recent years are summarized in this paper. The responsive switches are analyzed and divided into two kinds according to their intrinsic structures: physical switch and chemical one. Then, detailed classification and comprehensive discussion of SMPs are further elaborated, based on the intrinsic structures of responsive switches and stimulation types. Finally, the development and prospect of SMPs are objectively predicted and forecasted.
Collapse
Affiliation(s)
- Lide Yang
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jiankun Lou
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jianmin Yuan
- College of Materials Science and Engineering, Hunan University Changsha 410082 P. R. China
| | - Jianru Deng
- College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
15
|
Karasu F, Weder C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple‐shape memory polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.49935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Feyza Karasu
- Adolphe Merkle Institute University of Fribourg Fribourg Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute University of Fribourg Fribourg Switzerland
| |
Collapse
|
16
|
Xia Y, He Y, Zhang F, Liu Y, Leng J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000713. [PMID: 32969090 DOI: 10.1002/adma.202000713] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.
Collapse
Affiliation(s)
- Yuliang Xia
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Fenghua Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
17
|
Hu J, Feng Z, Xu X, Gao W, Ning N, Yu B, Zhang L, Tian M. UV Reconfigurable Shape Memory Polyurethane with a High Recovery Ratio under Large Deformation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanbin Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Xiaowei Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weisheng Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Xiang Z, Chu C, Xie H, Xiang T, Zhou S. Multifunctional Thermoplastic Polyurea Based on the Synergy of Dynamic Disulfide Bonds and Hydrogen Bond Cross-Links. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1463-1473. [PMID: 33382585 DOI: 10.1021/acsami.0c18396] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integrating the self-healing property with the shape-memory effect is a strategy that extends the service lifetime of shape-memory materials. However, this strategy is inadequate to reshape and recycle through the self-healing property or liquid-state remoldability. For more types of damage, solid-state plasticity is needed as a complementary mechanism to broaden the reprocessing channels of smart materials. In this study, multifunctional thermoplastic polyureas cross-linked by urea hydrogen bonds are prepared, which possess the multipathway remodeling property. The shape transition can be triggered after heating above 65 °C. The synergistic effect of dynamic disulfide bonds and hydrogen bonds causes the thermoplastic polyureas to possess characteristics similar to those of associative covalent adaptable networks. Thus, the polyureas can repair the damage or reconfigure the shape at 75 °C in 15 min by solid-state plasticity, instead of going into a viscous flow state. Soft grippers with various shapes are prepared by integration of solid-state plasticity, and the structure and function of the grippers can be repaired. The integration of solid-state plasticity and the self-healing property broadens the paths of shape-memory polymers in recyclability and reshapability.
Collapse
Affiliation(s)
- Zhen Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chengzhen Chu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
19
|
Shape Memory Biomaterials and Their Clinical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Sarvari R, Keyhanvar P, Agbolaghi S, Gholami Farashah MS, Sadrhaghighi A, Nouri M, Roshangar L. Shape-memory materials and their clinical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1833010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
23
|
Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. ACTUATORS 2020. [DOI: 10.3390/act9010010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shape memory polymers (SMPs) are smart materials capable of changing their shapes in a predefined manner under a proper applied stimulus and have gained considerable interest in several application fields. Particularly, two-way and multiple-way SMPs offer unique opportunities to realize untethered soft robots with programmable morphology and/or properties, repeatable actuation, and advanced multi-functionalities. This review presents the recent progress of soft robots based on two-way and multiple-way thermo-responsive SMPs. All the building blocks important for the design of such robots, i.e., the base materials, manufacturing processes, working mechanisms, and modeling and simulation tools, are covered. Moreover, examples of real-world applications of soft robots and related actuators, challenges, and future directions are discussed.
Collapse
|
24
|
Wang C, Zhang Y, Li J, Yang Z, Wang Q, Wang T, Li S, Chen S, Zhang X. Shape memory properties of interpenetrating polymer networks (IPNs) based on hyperbranched polyurethane (HBPU). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109393] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
Advances in polymer actuators containing covalent adaptable networks (CANs) are summarized and discussed in this review.
Collapse
Affiliation(s)
- Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
26
|
Zou S, Lv R, Tong Z, Na B, Fu K, Liu H. In situ hydrogen-bonding complex mediated shape memory behavior of PAA/PEO blends. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Liu H, Mohsin N, Kim S, Chung H. Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hailing Liu
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Nuverah Mohsin
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Sundol Kim
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Hoyong Chung
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| |
Collapse
|
28
|
|
29
|
Wang C, Wang H, Zou F, Chen S, Wang Y. Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds. Polymers (Basel) 2019; 11:E1030. [PMID: 31212611 PMCID: PMC6631955 DOI: 10.3390/polym11061030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we report the synthesis of a novel bio-based material from polyhydroxyalkanoate (PHA) with good shape-memory effect (SME) and rapid recovery. In this PHA-based polyurethane (PHP), telechelic-hydroxylated polyhydroxyalkanoate (PHA-diols) and polyethylene glycol (PEG) were used as soft segments, providing thermo-responsive domains and water-responsive regions, respectively. Thus, PHP possesses good thermal-responsive SME, such as high shape fixing (>99%) and shape recovery ratio (>90%). Upon immersing in water, the storage modulus of PHP decreased considerably owing to disruption of hydrogen bonds in the PHP matrix. Their water-responsive SME is also suitable for rapid shape recovery (less than 10 s). Furthermore, these outstanding properties can trigger shape-morphing, enabling self-folding and self-expansion of shapes into three-dimensional (3D) scaffolds for potential biomedical applications.
Collapse
Affiliation(s)
- Cai Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Faxing Zou
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
30
|
Fang Y, Du X, Yang S, Wang H, Cheng X, Du Z. Sustainable and tough polyurethane films with self-healability and flame retardance enabled by reversible chemistry and cyclotriphosphazene. Polym Chem 2019. [DOI: 10.1039/c9py00680j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-healable, flame-retardant, recyclable, and robust polyurethane films were enabled by thermally driven Diels–Alder chemistry and cyclotriphosphazene.
Collapse
Affiliation(s)
- Yuanlai Fang
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| | - Xiaosheng Du
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| | - Shiwen Yang
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| | - Haibo Wang
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| | - Xu Cheng
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| | - Zongliang Du
- College of Biomass Science and Engineering; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- PR China
| |
Collapse
|
31
|
Yan R, Jin B, Luo Y, Li X. Optically healable polyurethanes with tunable mechanical properties. Polym Chem 2019. [DOI: 10.1039/c9py00261h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanical properties of polyurethanes can be nicely tuned by UV irradiation in a reversible way, endowing the polyurethanes with optical healing properties.
Collapse
Affiliation(s)
- Rui Yan
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bixin Jin
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yunjun Luo
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory of High Energy Density Materials
| | - Xiaoyu Li
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory of High Energy Density Materials
| |
Collapse
|
32
|
Zhang F, Xia Y, Wang L, Liu L, Liu Y, Leng J. Conductive Shape Memory Microfiber Membranes with Core-Shell Structures and Electroactive Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35526-35532. [PMID: 30248257 DOI: 10.1021/acsami.8b12743] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conductive shape memory polymers as a class of functional materials play a significant role in sensors and actuators. A high conductivity and a high response speed are needed in practical applications. In this work, a conductive shape memory polylactic acid (PLA) microfiber membrane was synthesized by combining electrospinning with chemical vapor polymerization. The shape memory PLA was electrospun into microfibers with different diameters, and a conductive polypyrrole (PPy) coating was applied to the PLA microfiber membranes using vapor polymerization. The conductivity of the microfiber membrane was investigated as a function of different experimental parameters: FeCl3 concentration, PPy evaporation time, and PPy temperature. The maximum conductivity of the membrane prepared in a sub-zero environment is 0.5 S/cm, which can sustain a heat-generating electric current sufficient to trigger the electro-actuated behaviors of the membrane within 2 s at 30 V. Thermographic imaging was used to assess the uniformity of the temperature distribution during the shape recovery process. The low surface temperature is compatible with potential applications in many fields.
Collapse
Affiliation(s)
- Fenghua Zhang
- Centre for Composite Materials and Structures , Harbin Institute of Technology (HIT) , P.O. Box 3011, No. 2 Yikuang Street , Harbin 150080 , People's Republic of China
| | - Yuliang Xia
- Centre for Composite Materials and Structures , Harbin Institute of Technology (HIT) , P.O. Box 3011, No. 2 Yikuang Street , Harbin 150080 , People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures , Harbin Institute of Technology (HIT) , P.O. Box 3011, No. 2 Yikuang Street , Harbin 150080 , People's Republic of China
| | - Liwu Liu
- Department of Astronautic Science and Mechanics , Harbin Institute of Technology (HIT) , P.O. Box 301, No. 92 West Dazhi Street , Harbin 150001 , People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics , Harbin Institute of Technology (HIT) , P.O. Box 301, No. 92 West Dazhi Street , Harbin 150001 , People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures , Harbin Institute of Technology (HIT) , P.O. Box 3011, No. 2 Yikuang Street , Harbin 150080 , People's Republic of China
| |
Collapse
|
33
|
Xu H, Budhlall BM. Gold nanorods or nanospheres? Role of particle shape on tuning the shape memory effect of semicrystalline poly(ε-caprolactone) networks. RSC Adv 2018; 8:29283-29294. [PMID: 35547987 PMCID: PMC9084440 DOI: 10.1039/c8ra06715e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, modified poly(ε-caprolactone) (PCL) tri-block copolymers were successfully synthesized through ring opening polymerization. The nanocomposite films containing either colloidal gold nanorods (AuNRs) or gold nanospheres (AuNSs) in the polymer matrix were fabricated without chemical modification to realize light-responsive shape memory behaviors. The localized surface plasmon resonance of AuNPs was utilized by irradiating the selective wavelength of light to create a photothermal effect. The polymer microstructures were investigated by NMR, and the thermal properties of the polymer networks were studied by TGA and DSC. The addition of AuNPs did not change the melting temperature, (T m) of the SMP. The AuNRs were fairly well dispersed within the PCL matrix as observed using SEM-EDAX analysis and as indicated from the uniform shape memory transitions of the SMP/AuNR nanocomposites. The shape memory behavior was quantitatively analyzed by cyclic thermomechanical tests using DMA. The laser-triggered shape memory properties of the nanocomposites were analyzed and the shape recovery process from a rectangular shaped film to a helical coil was demonstrated. The speed of SMP recovery was found to be dependent on the geometry and concentration of the AuNPs in the nanocomposite, as well as on the laser wavelength and intensity.
Collapse
Affiliation(s)
- Haikun Xu
- Department of Plastics Engineering and Nanomanufacturing Center, University of Massachusetts Lowell MA 01854 USA
| | - Bridgette Maria Budhlall
- Department of Plastics Engineering and Nanomanufacturing Center, University of Massachusetts Lowell MA 01854 USA
| |
Collapse
|
34
|
Biswas A, Singh AP, Rana D, Aswal VK, Maiti P. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications. NANOSCALE 2018; 10:9917-9934. [PMID: 29770422 DOI: 10.1039/c8nr01438h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.
Collapse
Affiliation(s)
- Arpan Biswas
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India.
| | | | | | | | | |
Collapse
|
35
|
Wang Z, Ma Y, Wang Y, Liu Y, Chen K, Wu Z, Yu S, Yuan Y, Liu C. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater 2018; 71:279-292. [PMID: 29549052 DOI: 10.1016/j.actbio.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
Poly (glycerol sebacate) (PGS), a tough elastomer, has been widely explored in tissue engineering due to the desirable mechanical properties and biocompatibility. However, the complex curing procedure (high temperature and vacuum) and limited hydrophilicity (∼90° of wetting angle) greatly impede its functionalities. To address these challenges, a urethane-based low-temperature setting, PEGylated PGS bioelastomer was developed with and without solvent. By simultaneously tailoring PEG and hexamethylene diisocyanate (HDI) contents, the elastomers X-P-mUs (X referred to the PEG content and m referred to HDI content) with a broad ranging mechanical properties and customized hydrophilicity were constructed. The X-P-mUs synthesized exhibited adjustable tensile Young's modulus, ultimate tensile strength and elongation at break in the range of 1.0 MPa-14.2 MPa, 0.3 MPa-7.6 MPa and 53.6%-272.8%, with the water contact angle varying from 28.6° to 71.5°, respectively. Accordingly, these elastomers showed favorable biocompatibility in vitro and mild host response in vivo. Furthermore, the potential applications of X-P-mU elastomers prepared with solvent-base and solvent-free techniques in biomedical fields were investigated. The results showed that these X-P-mU elastomers with high molding capacity at mild temperature could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity, demonstrating that the X-P-mU elastomers could be tailored as potential building blocks for diverse applications in biomedical research. STATEMENT OF SIGNIFICANCE Poly(glycerol sebacate) (PGS), a tough biodegradable elastomer, has received great attentions in biomedical field. But the complex curing procedure and limited hydrophilicity greatly hamper its functionality. Herein, a urethane-based low-temperature setting, PEGylated PGS (PEGS-U) bioelastomer with highly-customized mechanical properties, hydrophilicity and biodegradability was first explored. The synthesized PEGS-U showed favorable biocompatibility both in vitro and in vivo. Furthermore, the PEGS-U elastomer could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity. This versatile, user-tunable bioelastomers should be a promising biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YanXiang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kai Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
36
|
Abstract
This article reviews stimuli-responsive and biostable polyurethanes (PUs) and discusses biomedical applications of smart PUs with a particular focus on long-term implantable PU biomaterials such as PU generated artificial blood vessels, artificial intervertebral discs (IVDs), and intravaginal rings (IVRs). Recently, smart PUs have been actively researched to enhance bioactivity, biocompatibility, and reduce drug side effects. Although biodegradability is important in regenerative medicine, biostability of PU plays a key role for long-term implantable biomaterials. This article reviews recent publications of research and inventions of stimuli-responsive and biostable PUs. Applications of smart PUs in long-term implantable biomaterials are discussed and linked to the future outlook of smart biostable PU biomaterials.
Collapse
Affiliation(s)
- Seungil Kim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Song Liu
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Medical Microbiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
37
|
Recent Progress in Shape Memory Polymers for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2118-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Yano S, Iwase T, Teramoto N, Shimasaki T, Shibata M. Synthesis, thermal properties and cell-compatibility of photocrosslinked cinnamoyl-modified hydroxypropyl cellulose. Carbohydr Polym 2018; 184:418-426. [PMID: 29352937 DOI: 10.1016/j.carbpol.2017.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Biocompatibility of cinnamoyl-modified carbohydrate materials is not well-known, while they are attracting attention as a photoreactive material. In order to investigate biocompatible properties of cinnamoyl-modified carbohydrate, hydroxypropyl cellulose (HPC) was reacted with cinnamoyl chloride to yield cinnamoyl-modified HPC (HPC-C) for a cell proliferation test. HPC-Cs with three different degrees of substitution (DS) were prepared by changing a feed ratio of cinnamoyl chloride to HPC. The DS of the products ranged from 1.3 to 3.0 per one hydroxylpropyl anhydroglucose unit. Thermal analysis using DSC and TGA showed that the HPC-C with higher DS has a glass transition temperature and higher thermal stability. Ultraviolet (UV) light was irradiated on the HPC-C thin films, and changes in the UV-vis spectrum of the films were examined. In the course of UV irradiation, the absorbance at 280 nm was reduced. Fibroblast cells were cultured on the photocrosslinked HPC-C films, and cell growth was examined. The cell proliferation test revealed that the photocrosslinked HPC-C films have good compatibility with fibroblast cells.
Collapse
Affiliation(s)
- Shinya Yano
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Takumi Iwase
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.
| | - Toshiaki Shimasaki
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Mitsuhiro Shibata
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
39
|
Fu W, Dong L, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polym Chem 2018. [DOI: 10.1039/c8py01336e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel multicomponent spiropolymerization was developed by using diisocyanide, alkyne and CO2, and 1,6-dioxospiro[4,4]nonane-3,8-diene was instantly formed.
Collapse
Affiliation(s)
- Weiqiang Fu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lichao Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
40
|
Zheng Y, Ji X, Wang Q, Shen J, Guo S. Structural design of polyurethane/poly(butylene succinate)/polycaprolactone compounds via a multilayer-assembled strategy: achieving tunable triple-shape memory performances. RSC Adv 2018; 8:42337-42345. [PMID: 35558404 PMCID: PMC9092254 DOI: 10.1039/c8ra08119k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022] Open
Abstract
Novel strategy for structural design of multicomponent systems via layer-multiplying co-extrusion: achieving tunable triple-shape memory performances of polyurethane/poly(butylene succinate)/polycaprolactone compounds.
Collapse
Affiliation(s)
- Yu Zheng
- Polymer Research Institute of Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- P. R. China
| | - Xiaoying Ji
- Polymer Research Institute of Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- P. R. China
| | - Qingwen Wang
- Polymer Research Institute of Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- P. R. China
| | - Jiabin Shen
- Polymer Research Institute of Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- P. R. China
| | - Shaoyun Guo
- Polymer Research Institute of Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- P. R. China
| |
Collapse
|
41
|
Zheng Y, Ji X, Yin M, Shen J, Guo S. Strategy for Fabricating Multiple-Shape-Memory Polymeric Materials via the Multilayer Assembly of Co-Continuous Blends. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32270-32279. [PMID: 28840724 DOI: 10.1021/acsami.7b10345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Shape-memory polymeric materials containing alternating layers of thermoplastic polyurethane (TPU) and co-continuous poly(butylene succinate) (PBS)/polycaprolactone (PCL) blends (denoted SLBs) were fabricated through layer-multiplying coextrusion. Because there were two well-separated phase transitions caused by the melt of PCL and PBS, both the dual- and triple-shape-memory effects were discussed. Compared with the blending specimen with the same components, the TPU/SLB multilayer system with a multicontinuous structure and a plenty of layer interfaces was demonstrated to have higher shape fixity and recovery ability. When the number of layers reached 128, both the shape fixity and recovery ratios were beyond 95 and 85% in dual- and triple-shape-memory processes, respectively, which were difficult to be achieved through conventional melt-processing methods. On the basis of the classic viscoelastic theory, the parallel-assembled TPU and SLB layers capable of maintaining the same strain along the deforming direction were regarded to possess the maximum ability to fix temporary shapes and trigger them to recover back to original ones through the interfacial shearing effect. Accordingly, the present approach provided an efficient strategy for fabricating outstanding multiple-shape-memory polymers, which may exhibit a promising application in the fields of biomedical devices, sensors and actuators, and so forth.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiaoying Ji
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Min Yin
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Jiabin Shen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
42
|
Wang K, Strandman S, Zhu XX. A mini review: Shape memory polymers for biomedical applications. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1632-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Schimpf V, Heck B, Reiter G, Mülhaupt R. Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00500] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vitalij Schimpf
- Freiburg Materials Research Center (FMF) and Institute
for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 21 and 31, 79104 Freiburg, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center (FMF) and Institute
for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 21 and 31, 79104 Freiburg, Germany
| |
Collapse
|
44
|
Yang P, Zhu G, Xu S, Zhang X, Shen X, Cui X, Gao Y, Nie J. A novel shape memory poly(ε-caprolactone) network via UV-triggered thiol-ene reaction. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengfei Yang
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Guangming Zhu
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Shuogui Xu
- Emergency Medicine Department & Trauma Emergency Center; Changhai Hospital, Second Military Medical University; 168 Changhai Road Shanghai 200433 China
| | - Xiaoyan Zhang
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Xuelin Shen
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Xiaoping Cui
- Equipment and Engineering College; University of CAPF; 1 Shuangyong Road Xi'an 710024 People's Republic of China
| | - Yuliang Gao
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Jing Nie
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| |
Collapse
|
45
|
Fan W, Li W, Zhang Y, Wang W, Zhang X, Song L, Liu X. Cooperative self-healing performance of shape memory polyurethane and Alodine-containing microcapsules. RSC Adv 2017. [DOI: 10.1039/c7ra09017j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a method to prepare self-healing coatings by incorporating Alodine-containing microcapsules as fillers in Shape Memory Polyurethane (SMPU) was presented.
Collapse
Affiliation(s)
- Weijie Fan
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
- University of Chinese Academy of Sciences
| | - Weihua Li
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
| | - Yong Zhang
- Qingdao Branch of Naval Aeronautical University
- Qingdao 266041
- P. R. China
| | - Wei Wang
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
| | - Xiaoying Zhang
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
| | - Liying Song
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
| | - Xiaojie Liu
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- P. R. China
| |
Collapse
|
46
|
Pilate F, Toncheva A, Dubois P, Raquez JM. Shape-memory polymers for multiple applications in the materials world. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Xie H, Cheng CY, Du L, Fan CJ, Deng XY, Yang KK, Wang YZ. A Facile Strategy To Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00382] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hui Xie
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Ying Cheng
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lan Du
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cheng-Jie Fan
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Ying Deng
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center for Degradable and
Flame-Retardant Polymeric Materials (ERCEPM-MoE), State Key Laboratory
of Polymer Materials Engineering, National Engineering Laboratory
of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
48
|
Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ. Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10070-10087. [PMID: 27018814 DOI: 10.1021/acsami.6b01295] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.
Collapse
Affiliation(s)
- Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Sylvester Jun Wen Heng
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- School of Science, Monash University Malaysia , Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|
49
|
Kashif M, Chang YW. Supramolecular semicrystalline polyolefin elastomer blends with triple-shape memory effects. POLYM INT 2016. [DOI: 10.1002/pi.5097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Muhammad Kashif
- Department of Fusion Chemical Engineering; Hanyang University; Ansan Gyeonggi Repulic of Korea
| | - Young-Wook Chang
- Department of Fusion Chemical Engineering; Hanyang University; Ansan Gyeonggi Repulic of Korea
- Department of Chemical Engineering; Hanyang University; Ansan Gyeonggi Republic of Korea
| |
Collapse
|
50
|
Chen W, Zhou Y, Li Y, Sun J, Pan X, Yu Q, Zhou N, Zhang Z, Zhu X. Shape-memory and self-healing polyurethanes based on cyclic poly(ε-caprolactone). Polym Chem 2016. [DOI: 10.1039/c6py01638c] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides an unprecedented example for the exploration of the cyclic topology effects on the shape memory performance of bulk polyurethane materials, providing a novel angle to elucidate the structure–property relationship of polymeric materials.
Collapse
Affiliation(s)
- Wei Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yanyan Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ying Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jun Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|