1
|
Fairley LH, Lai KO, Grimm A, Eckert A, Barron AM. The mitochondrial translocator protein (TSPO) in Alzheimer's disease: Therapeutic and immunomodulatory functions. Biochimie 2024; 224:120-131. [PMID: 38971458 DOI: 10.1016/j.biochi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The translocator protein (TSPO) has been widely investigated as a PET-imaging biomarker of neuroinflammation and, more recently, as a therapeutic target for the treatment of neurodegenerative disease. TSPO ligands have been shown to exert neuroprotective effects in vivo and in vitro models of Alzheimer's disease (AD), by reducing toxic beta amyloid peptides, and attenuating brain atrophy. Recent transcriptomic and proteomic analyses, and the generation of TSPO-KO mice, have enabled new insights into the mechanistic function of TSPO in AD. Using a multi-omics approach in both TSPO-KO- and TSPO ligand-treated mice, we have demonstrated a key role for TSPO in microglial respiratory metabolism and phagocytosis in AD. In this review, we discuss emerging evidence for therapeutic and immunomodulatory functions of TSPO in AD, and new tools for studying TSPO in the brain.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore.
| |
Collapse
|
2
|
Simple and efficient PET and AIEE mechanism-based fluorescent probes for sensing Tabun mimic DCNP. Anal Chim Acta 2023; 1239:340727. [PMID: 36628772 DOI: 10.1016/j.aca.2022.340727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The highly sensitive, selective, easy-to-prepare, aqueous media based on two novel probes 2-(pyren-1-yl)imidazo[1,2-a]pyridine (IMP-Py) and (2-(pyren-1-yl)imidazo[1,2-a]pyridin-3-yl)methanol (IMP-Py-OH) are synthesized for the detection of toxic chemical warfare nerve agent mimic diethylcyanochlorophosphonate (DCNP). Both probes are found effective in the detection of DCNP but comparatively, IMP-Py shows better properties in terms of instantaneous response, specificity, selectivity and a low detection limit of 16.9 nM. A significant enhancement of fluorescence intensity of IMP-Py due to aggregation-induced emission enhancement (AIEE) and photoinduced electron transfer (PET) phenomenon was inhibited due to phosphorylation of the hydroxy group of IMP-Py-OH in presence of DCNP has been observed. Taking the advantages of good sensitivity and fast response, probe IMP-Py has been fabricated into a viable paper strips portable product, tested for its potential for the detection of DCNP in tap water as well as with its vapor and response is visible under a UV lamp of 365 nm wavelength.
Collapse
|
3
|
Chaudhran PA, Sharma A. Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications. Crit Rev Anal Chem 2022; 54:2148-2165. [PMID: 36562726 DOI: 10.1080/10408347.2022.2158720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different classes of Imidazopyridine i.e., Imidazo[1,2-a]pyridine, Imidazo[1,5-a] pyridine, Imidazo[4,5-b]pyridine, have shown versatile applications in various fields. In this review, we have concisely presented the usefulness of the fluorescent property of imidazopyridine in different fields such as imaging tools, optoelectronics, metal ion detection, etc. Fluorescence mechanisms such as excited state intramolecular proton transfer, photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, etc. are incorporated in the designed fluorophore to make it for fluorescent applications. It has been widely employed for metal ion detection, where selective metal ion detection is possible with triazole-attached imidazopyridine, β-carboline imidazopyridine hybrid, quinoline conjugated imidazopyridine, and many more. Also, other popular applications involve organic light emitting diodes and cell imaging. This review shed a light on recent development in this area especially focusing on the optical properties of the molecules with their usage which would be helpful in designing application-based new imidazopyridine derivatives.
Collapse
Affiliation(s)
- Preeti AshokKumar Chaudhran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| |
Collapse
|
4
|
Thakur A, Sharma A. Imidazo[1,2-a]pyridine based small organic fluorescent molecules for selective detection of nerve agents simulants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121633. [PMID: 35932602 DOI: 10.1016/j.saa.2022.121633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A fused heterocyclic ESIPT imidazo[1,2-a]pyridine-based probes for colorimetric and fluorometric detection of nerve agents simulant sarin (DCP) and tabun (DCNP) are reported. The probes (5b, 6a & 6b) were found to be highly sensitive and selective for the detection of DCNP and DCP at a micromolar concentration within seconds with no observed interference from other various types of analytes. The LOD for 6b towards DCP was found to be 0.6 µM with a linear range from 0 to 8 µM. The low-cost portable cellulose paper strip fabricated with probe 6b for real-time detection of DCP in the gas phase and spiked water has been developed. The paper strip product was found effective in detecting the presence of DCP in water and vapor state with substantial color changes which could be easily observed by the naked eye and under a handheld UV lamp at a wavelength of 365 nm.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
5
|
KOBAK RZ, AKKURT B. Formation and Uses of Imidazo[1,2-a]pyrimidines and Related Compounds: A Review Comprising Years 2000-2021. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This work covers the selected synthetic papers of imidazo[1,2-a]pyrimidine and its derivatives between the years 2000 and 2021. Synthesis of the heterocyclic moiety, application of this scaffold to biological activities, and secondary applications like corrosion inhibition are provided. The authors hope that readers will find the treatise useful.
Collapse
|
6
|
Ullah F, Ullah S, Khan MFA, Mustaqeem M, Paracha RN, Rehman MFU, Kanwal F, Hassan SSU, Bungau S. Fluorescent and Phosphorescent Nitrogen-Containing Heterocycles and Crown Ethers: Biological and Pharmaceutical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196631. [PMID: 36235167 PMCID: PMC9573242 DOI: 10.3390/molecules27196631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Fluorescent molecules absorb photons of specific wavelengths and emit a longer wavelength photon within nanoseconds. Recently, fluorescent materials have been widely used in the life and material sciences. Fluorescently labelled heterocyclic compounds are useful in bioanalytical applications, including in vivo imaging, high throughput screening, diagnostics, and light-emitting diodes. These compounds have various therapeutic properties, including antifungal, antitumor, antimalarial, anti-inflammatory, and analgesic activities. Different neutral fluorescent markers containing nitrogen heterocycles (quinolones, azafluoranthenes, pyrazoloquinolines, etc.) have several electrochemical, biological, and nonlinear optic applications. Photodynamic therapy (PDT), which destroys tumors and keeps normal tissues safe, works in the presence of molecular oxygen with light and a photosensitizing drugs (dye) to obtain a therapeutic effect. These compounds can potentially be effective templates for producing devices used in biological research. Blending crown compounds with fluorescent residues to create sensors has been frequently investigated. Florescent heterocyclic compounds (crown ether) increase metal solubility in non-aqueous fluids, broadening the application window. Fluorescent supramolecular polymers have widespread use in fluorescent materials, fluorescence probing, data storage, bio-imaging, drug administration, reproduction, biocatalysis, and cancer treatment. The employment of fluorophores, including organic chromophores and crown ethers, which have high selectivity, sensitivity, and stability constants, opens up new avenues for research. Fluorescent organic compounds are gaining importance in the biological world daily because of their diverse functionality with remarkable structural features and positive properties in the fields of medicine, photochemistry, and spectroscopy.
Collapse
Affiliation(s)
- Faiz Ullah
- Department of Chemistry, Quaid I Azam University, Islamabad 45320, Pakistan
- Correspondence: (F.U.); (S.S.u.H.); (S.B.)
| | - Sami Ullah
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Farhan Ali Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad Expressway, Islamabad 44000, Pakistan
| | - Muhammad Mustaqeem
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Rizwan Nasir Paracha
- Department of Chemistry, Sub Campus, University of Sargodha, Bhakkar 30000, Pakistan
| | | | - Fariha Kanwal
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (F.U.); (S.S.u.H.); (S.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (F.U.); (S.S.u.H.); (S.B.)
| |
Collapse
|
7
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|
8
|
Panda J, Raiguru BP, Mishra M, Mohapatra S, Nayak S. Recent Advances in the Synthesis of Imidazo[1,2‐
a
]pyridines: A Brief Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
9
|
Wongso H, Yamasaki T, Kumata K, Ono M, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Design, Synthesis, and Biological Evaluation of Novel Fluorescent Probes Targeting the 18-kDa Translocator Protein. ChemMedChem 2021; 16:1902-1916. [PMID: 33631047 DOI: 10.1002/cmdc.202000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Indexed: 12/20/2022]
Abstract
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11 C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki ) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Bandung, 40132, Indonesia
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
10
|
Ma S, Wang L, Ouyang B, Fan M, Qi J, Yao L. Design, synthesis and biological evaluation of 4-aryl-5-aminoalkyl-thiazole-2-amines derivatives as ROCK II inhibitors. Bioorg Med Chem 2020; 28:115683. [PMID: 32912437 DOI: 10.1016/j.bmc.2020.115683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 01/21/2023]
Abstract
A series of 4-aryl-5-aminoalkyl-thiazole-2-amines were designed and synthesized, and their inhibitory activity on ROCK II was screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives had certain ROCK II inhibitory activities. Compound 10l showed ROCK II inhibitory activity with IC50 value of 20 nM.
Collapse
Affiliation(s)
- Shuchao Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Linan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Ben Ouyang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Meixia Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Junhui Qi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264003, China
| |
Collapse
|
11
|
Ogawa F, Karuo Y, Yamazawa R, Miyanaga K, Hori K, Tani K, Yamada K, Saito Y, Funabiki K, Tarui A, Sato K, Ito K, Kawai K, Omote M. Synthesis of Small Fluorescent Molecules and Evaluation of Photophysical Properties. J Org Chem 2020; 85:1253-1258. [PMID: 31851516 DOI: 10.1021/acs.joc.9b02857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of aniline-based fluorophores were newly synthesized. To increase their fluorescence quantum yields, it was particularly important to substitute 3,3,3-trifluoroprop-1-enyl (TFPE) groups next to the amino group to benefit from an extended π-electron delocalization. Among these, 5-CN-2-TFPE-aniline was found to behave as an excellent fluorophore with a reasonable fluorescence quantum yield of 0.89 even in aqueous solution. l-Alanine peptide, a nonfluorescent analogue of 5-CN-2-TFPE-aniline, was synthesized and successfully employed as an enzyme probe to detect aminopeptidase N activity.
Collapse
Affiliation(s)
- Futa Ogawa
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Yukiko Karuo
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Ryuji Yamazawa
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kanae Miyanaga
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Kazushige Hori
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Keita Tani
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Kengo Yamada
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Yuki Saito
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| |
Collapse
|
12
|
Semwal R, Joshi A, Kumar R, Adimurthy S. Annulation of imidazo[1,2- a]pyridines under metal-free conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj04521g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Synthesis of benzo[a]imidazo[5,1,2-cd]indolizines from 2-arylimidazo[1,2-a]pyridines and benzyne precursors under metal-free conditions has been described.
Collapse
Affiliation(s)
- Rashmi Semwal
- Academy of Scientific & Innovative Research
- Ghaziabad
- India
- CSIR – Central Salt & Marine Chemicals Research Institute
- G. B. Marg
| | - Abhisek Joshi
- Academy of Scientific & Innovative Research
- Ghaziabad
- India
- CSIR – Central Salt & Marine Chemicals Research Institute
- G. B. Marg
| | - Rahul Kumar
- Academy of Scientific & Innovative Research
- Ghaziabad
- India
- CSIR – Central Salt & Marine Chemicals Research Institute
- G. B. Marg
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research
- Ghaziabad
- India
- CSIR – Central Salt & Marine Chemicals Research Institute
- G. B. Marg
| |
Collapse
|
13
|
Serykh VY, Ushakov IA, Borodina TN, Smirnov VI, Rozentsveig IB. New Approach to the Synthesis of 2‐Sulfonylaminosubstituted Imidazo[1,2‐ a]pyridines via the Cascade Reaction of N‐(1‐aryl‐2,2,2‐trichloroethyl)sulfonamides with 2‐Aminopyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201902838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valery Yu. Serykh
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
| | - Igor A. Ushakov
- Irkutsk National Research Technical University Irkutsk 664074 Russia
| | - Tatyana N. Borodina
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
| | - Vladimir I. Smirnov
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
| | - Igor B. Rozentsveig
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
- Irkutsk State University Karl Marx Str., 1 Irkutsk 664003 Russia
| |
Collapse
|
14
|
Jadhav SD, Ramasami P, Sekar N. Substituent effects on linear and nonlinear optical properties of fluorescent (E)-2-(4-halophenyl)-7-arlstyrylimidazo[1,2-A]pyridine: spectroscopic and computational methods. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Effects of alkylamino and bromo substituents on imidazo[1,2-a]pyridines containing donor-π-acceptor type groups were comprehensively investigated for their linear and nonlinear optical properties by solvatochromic and DFT (CAM-B3LYP and BHandHLYP) methods. The difference between the ground and excited dipole moments as well as their ratios obtained by solvatochromic analysis indicate that the excited state is more polar than the ground state for both the bromo and diethyl amino derivative. More than twofold enhancement in the excited state dipole moments was observed as revealed by the difference and ratio of dipole moment upon the introduction of alkylamino donor group and these suggest large intramolecular charge transfer in the dyes. Stabilization energy above 20 kJ/mol was observed for large number of electron donor–acceptor interactions in Natural Bonding Orbital (NBO) analysis. Bond length alternation (BLA) and Bond order alternation (BOA) values tend to zero suggesting a high degree of polarization in the dyes. Enhancement in mean polarizability (α0), first hyperpolarizability (β0) and second static hyperpolarizabilities (
$\bar \gamma$) were observed by the introduction of alkylamino and bromo group in place of chloro in spite of the fact that Hammett constant of chloro and bromo are the same. The dyes have fundamental and intrinsic properties within the Hamiltonian limits. The two-photon absorption cross section value (≈100 GM) is comparable with LDS-698, a commercial TPA dye. This investigation is important for understanding the electronic structure of imidazo[1,2-a]pyridine with active functional groups and extending the potential for optical applications.
Collapse
|
15
|
Schramm S, Weiß D. Fluorescent heterocycles: Recent trends and new developments. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Li J, Smith JA, Dawson ES, Fu A, Nickels ML, Schulte ML, Manning HC. Optimized Translocator Protein Ligand for Optical Molecular Imaging and Screening. Bioconjug Chem 2017; 28:1016-1023. [PMID: 28156095 PMCID: PMC12097374 DOI: 10.1021/acs.bioconjchem.6b00711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocator protein (TSPO) is a validated target for molecular imaging of a variety of human diseases and disorders. Given its involvement in cholesterol metabolism, TSPO expression is commonly elevated in solid tumors, including glioma, colorectal cancer, and breast cancer. TSPO ligands capable of detection by optical imaging are useful molecular tracers for a variety of purposes that range from quantitative biology to drug discovery. Leveraging our prior optimization of the pyrazolopyrimidine TSPO ligand scaffold for cancer imaging, we report herein a new generation of TSPO tracers with superior binding affinity and suitability for optical imaging and screening. In total, seven candidate TSPO tracers were synthesized and vetted in this study; the most promising tracer identified (29, Kd = 0.19 nM) was the result of conjugating a high-affinity TSPO ligand to a fluorophore used routinely in biological sciences (FITC) via a functional carbon linker of optimal length. Computational modeling suggested that an n-alkyl linker of eight carbons in length allows for positioning of the bulky fluorophore distal to the ligand binding domain and toward the solvent interface, minimizing potential ligand-protein interference. Probe 29 was found to be highly suitable for in vitro imaging of live TSPO-expressing cells and could be deployed as a ligand screening and discovery tool. Competitive inhibition of probe 29 quantified by fluorescence and 3H-PK11195 quantified by traditional radiometric detection resulted in equivalent affinity data for two previously reported TSPO ligands. This study introduces the utility of TSPO ligand 29 for in vitro imaging and screening and provides a structural basis for the development of future TSPO imaging ligands bearing bulky signaling moieties.
Collapse
Affiliation(s)
- Jun Li
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jarrod A. Smith
- Vanderbilt University Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric S. Dawson
- Vanderbilt University Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Allie Fu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Michael L. Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Michael L. Schulte
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - H. Charles Manning
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV) Derivative Having a TSPO Ligand in the Axial Position. Int J Mol Sci 2016; 17:ijms17071010. [PMID: 27347942 PMCID: PMC4964386 DOI: 10.3390/ijms17071010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
The first Pt(IV) derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein) has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV) complex, cis,trans,cis-[Pt(ethanedioato)Cl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino)-2-oxoethyl)imidazo[1,2-a]pyridin-2-yl)phenoxy)acetate)-ethanolato}(1R,2R-DACH)] (DACH = diaminocyclohexane), has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM), cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment), and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 μM after 72 h treatment).
Collapse
|
18
|
Fanizza E, Iacobazzi RM, Laquintana V, Valente G, Caliandro G, Striccoli M, Agostiano A, Cutrignelli A, Lopedota A, Curri ML, Franco M, Depalo N, Denora N. Highly selective luminescent nanostructures for mitochondrial imaging and targeting. NANOSCALE 2016; 8:3350-3361. [PMID: 26763470 DOI: 10.1039/c5nr08139d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a]pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Sub-cellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents.
Collapse
Affiliation(s)
- E Fanizza
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Novel PET Imaging Probe for the Detection and Monitoring of Translocator Protein 18 kDa Expression in Pathological Disorders. Sci Rep 2016; 6:20422. [PMID: 26853260 PMCID: PMC4745082 DOI: 10.1038/srep20422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
A new fluorine-substituted ligand, compound 1 (CB251), with a very high affinity (Ki = 0.27 ± 0.09 nM) and selectivity for the 18-kDa translocator protein (TSPO), is presented as an attractive biomarker for the diagnosis of neuroinflammation, neurodegeneration and tumour progression. To test compound 1 as a TSPO PET imaging agent in vivo, 2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-6,8-dichloroimidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide ([18F]1; [18F]CB251) was synthesized by nucleophilic aliphatic substitution in a single-step radiolabelling procedure with a 11.1 ± 3.5% (n = 14, decay corrected) radiochemical yield and over 99% radiochemical purity. In animal PET imaging studies, [18F]CB251 provided a clearly visible image of the inflammatory lesion with the binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND 1.83 ± 0.18), in a neuroinflammation rat model based on the unilateral stereotaxic injection of lipopolysaccharide (LPS), comparable to that of [11C]PBR28 (BPND 1.55 ± 0.41). [18F]CB251 showed moderate tumour uptake (1.96 ± 0.11%ID/g at 1 h post injection) in human glioblastoma U87-MG xenografts. These results suggest that [18F]CB251 is a promising TSPO PET imaging agent for neuroinflammation and TSPO-rich cancers.
Collapse
|
20
|
Roslan II, Ng KH, Chuah GK, Jaenicke S. 2-Aminopyridines as an α-Bromination Shuttle in a Transition Metal-Free One-Pot Synthesis of Imidazo[1,2-a
]pyridines. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Yan H, Wang Y, Pan C, Zhang H, Yang S, Ren X, Li J, Huang G. Iron(III)-Catalyzed Denitration Reaction: One-Pot Three-Component Synthesis of Imidazo[1,2-a]pyridine Derivatives. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301658] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Laquintana V, Denora N, Lopalco A, Lopedota A, Cutrignelli A, Lasorsa FM, Agostino G, Franco M. Translocator Protein Ligand–PLGA Conjugated Nanoparticles for 5-Fluorouracil Delivery to Glioma Cancer Cells. Mol Pharm 2014; 11:859-71. [DOI: 10.1021/mp400536z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Valentino Laquintana
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Angela Lopedota
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | | | - Giulia Agostino
- Dipartimento
di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Massimo Franco
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
23
|
Tajbakhsh M, Farhang M, Hosseinzadeh R, Sarrafi Y. Nano Fe3O4 supported biimidazole Cu(i) complex as a retrievable catalyst for the synthesis of imidazo[1,2-a]pyridines in aqueous medium. RSC Adv 2014. [DOI: 10.1039/c4ra03333g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Denora N, Laquintana V, Lopalco A, Iacobazzi RM, Lopedota A, Cutrignelli A, Iacobellis G, Annese C, Cascione M, Leporatti S, Franco M. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer. J Control Release 2013; 172:1111-25. [DOI: 10.1016/j.jconrel.2013.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/15/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023]
|
25
|
Gao Y, Yin M, Wu W, Huang H, Jiang H. Copper-Catalyzed Intermolecular Oxidative Cyclization of Halo- alkynes: Synthesis of 2-Halo-substituted Imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrazines and Imidazo[1,2-a]pyrimidines. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300157] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Trapani A, Palazzo C, de Candia M, Lasorsa FM, Trapani G. Targeting of the Translocator Protein 18 kDa (TSPO): A Valuable Approach for Nuclear and Optical Imaging of Activated Microglia. Bioconjug Chem 2013; 24:1415-28. [DOI: 10.1021/bc300666f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | - Claudio Palazzo
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | - Modesto de Candia
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| | | | - Giuseppe Trapani
- Department of Pharmacy and Drug
Sciences, University of Bari, Bari, 70125,
Italy
| |
Collapse
|
27
|
Rozentsveig IB, Serykh VY, Chernysheva GN, Chernyshev KA, Kondrashov EV, Tretyakov EV, Romanenko GV. One-Pot Synthesis ofN-(Imidazo[1,2-a]pyridin-3-yl)- andN-(Imidazo[2,1-b][1,3]thiazol-5-yl)sulfonamides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Shao N, Pang GX, Yan CX, Shi GF, Cheng Y. Reaction of β-Lactam Carbenes with 2-Pyridyl Isonitriles: A One-Pot Synthesis of 2-Carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines Useful as Fluorescent Probes for Mercury Ion. J Org Chem 2011; 76:7458-65. [DOI: 10.1021/jo201273p] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Shao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guang-Xian Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cai-Xia Yan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Gao-Feng Shi
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Denora N, Laquintana V, Trapani A, Suzuki H, Sawada M, Trapani G. New fluorescent probes targeting the mitochondrial-located translocator protein 18 kDa (TSPO) as activated microglia imaging agents. Pharm Res 2011; 28:2820-32. [PMID: 21818711 DOI: 10.1007/s11095-011-0552-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/28/2011] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the utility of new Translocator protein 18 kDa (TSPO)-targeted fluorescent probes for in vivo molecular imaging of activated microglia. METHODS Compounds 2-4 were synthesized; their stability and affinity for TSPO were determined. Compounds 2-4 were incubated both with Ra2 cells in the presence of LPS, a potent activator of microglia, and with tissue sections of normal and chemically injured brains. Compounds 2-4 were injected into carotid artery or directly in striatum of mice. Cells and tissue sections from these in vitro and in vivo studies were observed by fluorescence microscopy after histochemical treatments. RESULTS Compounds 2-4 are stable in both buffer and physiological medium and showed high affinity for TSPO and were found to stain live Ra2 microglial cells effectively. Double staining with Mito Tracker Red suggested that binding sites of compounds 2 and 3 may exist on mitochondria. In vivo studies showed that compounds 2-4 may penetrate in part into brain; moreover, cells in mouse striatum were stained with compounds 2-4 and microglial marker CD11b. CONCLUSION Compounds 2-4 can fluorescently label activated microglia in vitro and in vivo.
Collapse
Affiliation(s)
- Nunzio Denora
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Pike VW, Taliani S, Lohith TG, Owen DR, Pugliesi I, Da Pozzo E, Hong J, Zoghbi SS, Gunn RN, Parker CA, Rabiner EA, Fujita M, Innis RB, Martini C, Da Settimo F. Evaluation of novel N1-methyl-2-phenylindol-3-ylglyoxylamides as a new chemotype of 18 kDa translocator protein-selective ligand suitable for the development of positron emission tomography radioligands. J Med Chem 2011; 54:366-73. [PMID: 21133364 PMCID: PMC3135721 DOI: 10.1021/jm101230g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of N(1)-methyl-(2-phenylindol-3-yl)glyoxylamides, 19-31, designed in accordance with our previously reported pharmacophore/topological model, showed high affinity for the 18 kDa translocator protein (TSPO) and paved the way for developing a new radiolabeled probe. Thus ligand 31, N,N-di-n-propyl-(N(1)-methyl-2-(4'-nitrophenyl)indol-3-yl)glyoxylamide, featuring the best combination of affinity and lipophilicity, was labeled with carbon-11 for evaluation with positron emission tomography (PET) in monkey. After intravenous injection, [(11)C]31 entered brain to give a high proportion of TSPO-specific binding. These findings augur well for the future application of [(11)C]31 in humans. Consequently, the binding of 31 to human TSPO was tested on samples of brain membranes from deceased subjects who through ethically approved in vitro study had previously been established to be high-affinity binders (HABs), mixed-affinity binders (MABs), or low-affinity binders (LABs) for the known TSPO ligand, PBR28 (2). 31 showed high affinity for HABs, MABs, and LABs. In conclusion, [(11)C]31 represents a promising new chemotype for developing novel TSPO radioligands as biomarkers of neuroinflammation.
Collapse
Affiliation(s)
- Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sabrina Taliani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Talakad G. Lohith
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - David R.J. Owen
- Department of Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, UK
| | - Isabella Pugliesi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Roger N. Gunn
- Clinical Imaging Centre, GlaxoSmithKline, London, UK
| | | | - Eugenii A. Rabiner
- Department of Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, UK
- Clinical Imaging Centre, GlaxoSmithKline, London, UK
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Claudia Martini
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
31
|
Ma L, Wang X, Yu W, Han B. TBAI-catalyzed oxidative coupling of aminopyridines with β-keto esters and 1,3-diones—synthesis of imidazo[1,2-a]pyridines. Chem Commun (Camb) 2011; 47:11333-5. [DOI: 10.1039/c1cc13568f] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Chernyak N, Gevorgyan V. General and efficient copper-catalyzed three-component coupling reaction towards imidazoheterocycles: one-pot synthesis of alpidem and zolpidem. Angew Chem Int Ed Engl 2010; 49:2743-6. [PMID: 20213787 PMCID: PMC3516864 DOI: 10.1002/anie.200907291] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Chernyak
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA)
| |
Collapse
|
33
|
Chernyak N, Gevorgyan V. General and Efficient Copper-Catalyzed Three-Component Coupling Reaction towards Imidazoheterocycles: One-Pot Synthesis of Alpidem and Zolpidem. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907291] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
CALISKAN A, KARADENIZ H, MERIC A, ERDEM A. Electrochemical Investigation of Interactions between Potential DNA Targeted Compounds, 2,4-Di- and 2,3,4-Trisubstituted Benzimidazo[1,2-a]pyrimidines and Nucleic Acid. ANAL SCI 2010; 26:117-20. [DOI: 10.2116/analsci.26.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ayfer CALISKAN
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University
| | - Hakan KARADENIZ
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University
| | - Asiye MERIC
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University
| | - Arzum ERDEM
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University
| |
Collapse
|
35
|
Tuccinardi T, Taliani S, Bellandi M, Da Settimo F, Da Pozzo E, Martini C, Martinelli A. A Virtual Screening Study of the 18 kDa Translocator Protein using Pharmacophore Models Combined with 3D-QSAR Studies. ChemMedChem 2009; 4:1686-94. [DOI: 10.1002/cmdc.200900254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Laquintana V, Denora N, Musacchio T, Lasorsa M, Latrofa A, Trapani G. Peripheral benzodiazepine receptor ligand-PLGA polymer conjugates potentially useful as delivery systems of apoptotic agents. J Control Release 2009; 137:185-95. [PMID: 19374931 DOI: 10.1016/j.jconrel.2009.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Poly(d,l-lactic-co-glycolic acid) (PLGA) polymers having different average molecular weights were chemically conjugated to two imidazopyridinacetamides (1 and 2), chosen as model Peripheral Benzodiazepine Receptor (PBR) ligands, via an ester or amide linkage. It is in order to evaluate these conjugates as delivery systems of PBR ligands endowed with apoptosis inducing activity. Various coupling reaction conditions were tested to optimize the conjugation process. After purification by extensive dialysis procedures, the macromolecular conjugates were characterized by FT-IR, UV, (1)H NMR spectroscopy, DSC and the average molecular weights of synthesized conjugates were determined by GPC. PBR ligand released from these conjugates occurred in human serum and in 0.1 N HCl solution at a faster rate than that observed in phosphate buffer, pH 7.4. Moreover, the macromolecular conjugates displayed high affinity and selectivity for PBR. Cytotoxicity studies demonstrated that PBR ligand-PLGA polymer conjugates induce survival inhibition in rat C6 glioma cell line. Fluorescence microscopy studies evidenced the cellular uptake of FITC-conjugated probes 10 and 11 and moreover, the mitochondrial morphology modification induced by compounds 1 and 4a. Therefore, this study demonstrates that this PBR ligand-PLGA combination may provide a new mitochondrial targeted approach useful for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Valentino Laquintana
- Pharmaco-Chemistry Department, Faculty of Pharmacy, University of Bari, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Liu H, Wang J, Sekiyama A, Tabira T. Juzen-taiho-to, an Herbal Medicine, Activates and Enhances Phagocytosis in Microglia/Macrophages. TOHOKU J EXP MED 2008; 215:43-54. [DOI: 10.1620/tjem.215.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Huayan Liu
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
- Department of Neurology, First Affiliated Hospital, China Medical University
| | - Jun Wang
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
- Department of Neurology, First Affiliated Hospital, China Medical University
| | - Atsuo Sekiyama
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
| | - Takeshi Tabira
- Department of Vascular Dementia Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology
| |
Collapse
|