1
|
Hu H, Li J, Jiang W, Jiang Y, Wan Y, Wang Y, Xin F, Zhang W. Strategies for the biological synthesis of D-glucuronic acid and its derivatives. World J Microbiol Biotechnol 2024; 40:94. [PMID: 38349469 DOI: 10.1007/s11274-024-03900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
D-glucuronic acid is a kind of glucose derivative, which has excellent properties such as anti-oxidation, treatment of liver disease and hyperlipidemia, and has been widely used in medicine, cosmetics, food and other fields. The traditional production methods of D-glucuronic acid mainly include natural extraction and chemical synthesis, which can no longer meet the growing market demand. The production of D-glucuronic acid by biocatalysis has become a promising alternative method because of its high efficiency and environmental friendliness. This review describes different production methods of D-glucuronic acid, including single enzyme catalysis, multi-enzyme cascade, whole cell catalysis and co-culture, as well as the intervention of some special catalysts. In addition, some feasible enzyme engineering strategies are provided, including the application of enzyme immobilized scaffold, enzyme mutation and high-throughput screening, which provide good ideas for the research of D-glucuronic acid biocatalysis.
Collapse
Affiliation(s)
- Haibo Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yidong Wan
- Jiangsu Biochemical Chiral Engineering Technology Research Center, Changmao Biochemical Engineering Co., Ltd, Changzhou, 213034, People's Republic of China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu Biochemical Chiral Engineering Technology Research Center, Changmao Biochemical Engineering Co., Ltd, Changzhou, 213034, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu Biochemical Chiral Engineering Technology Research Center, Changmao Biochemical Engineering Co., Ltd, Changzhou, 213034, People's Republic of China.
| |
Collapse
|
2
|
Venugopal A, Ruiz-Perez L, Swamynathan K, Kulkarni C, Calò A, Kumar M. Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angew Chem Int Ed Engl 2023; 62:e202208681. [PMID: 36469792 DOI: 10.1002/anie.202208681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.
Collapse
Affiliation(s)
- Akhil Venugopal
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Lorena Ruiz-Perez
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - K Swamynathan
- Soft Condensed Matter, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore-560080, India.,Department of Chemistry, NITTE Meenakshi Institute of Technology, Yelahanka, Bengaluru 560064, India
| | - Chidambar Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Mohit Kumar
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Microwave Spectroscopic Detection of Human Hsp70 Protein on Annealed Gold Nanostructures on ITO Glass Strips. BIOSENSORS 2018; 8:bios8040118. [PMID: 30486339 PMCID: PMC6316379 DOI: 10.3390/bios8040118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/10/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.
Collapse
|
4
|
Yeow N, Tabor RF, Garnier G. Atomic force microscopy: From red blood cells to immunohaematology. Adv Colloid Interface Sci 2017; 249:149-162. [PMID: 28515013 DOI: 10.1016/j.cis.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Atomic force microscopy (AFM) offers complementary imaging modes that can provide morphological and structural details of red blood cells (RBCs), and characterize interactions between specific biomolecules and RBC surface antigen. This review describes the applications of AFM in determining RBC health by the observation of cell morphology, elasticity and surface roughness. Measurement of interaction forces between plasma proteins and antibodies against RBC surface antigen using the AFM also brought new information to the immunohaematology field. With constant improvisation of the AFM in resolution and imaging time, the reaction of RBC to changes in the physico-chemistry of its environment and the presence of RBC surface antigen specific-biomolecules is achievable.
Collapse
|
5
|
Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T. Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 2016; 160:182-196. [DOI: 10.1016/j.ultramic.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
|
6
|
Makishi S, Shibata T, Okazaki M, Dohno C, Nakatani K. Modulation of binding properties of amphiphilic DNA containing multiple dodecyl phosphotriester linkages to lipid bilayer membrane. Bioorg Med Chem Lett 2014; 24:3578-81. [DOI: 10.1016/j.bmcl.2014.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
7
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
8
|
Rajendran A, Endo M, Sugiyama H. State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chem Rev 2013; 114:1493-520. [DOI: 10.1021/cr300253x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Arivazhagan Rajendran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho
Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho,
Sakyo-ku, Kyoto 606-8501, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Hottin J, Moreau J, Bellemain A, Canva M. Biochip data normalization using multifunctional probes. Analyst 2012; 137:3119-25. [PMID: 22617161 DOI: 10.1039/c2an35120j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using a biochip with stable probe functionalization and a detection system capable of real time measurements, it is demonstrated that acquired probe-target interaction data are more reproducible in time--on a given probe spot using sequential target runs--than in space, using many probe spot replicates on the biochip in one single parallel target run. To increase the biochip data precision, a normalization method that quantifies and corrects the surface inhomogeneity without the use of complex data post-processing has been developed. This simple and effective method is based on adding a common reactive group to all probes and quantifying the biochip response to a calibration target, thus quantifying the spatial heterogeneity in the biosensor responsiveness. The usefulness of such methodology, which can be easily generalized, is demonstrated in the model case of DNA:DNA interactions, using a surface plasmon resonance imaging system as the dynamical reader. The biochips are based on streptavidin biochemically functionalized gold films onto which biotinylated ssDNA probe sequences, related to cystic fibrosis genotyping, are spotted. This normalization method provides high gain in data precision and allows, in this example, unambiguous genotyping of SNP, including discrimination of the heterozygote case from the two homozygote cases.
Collapse
Affiliation(s)
- Jérôme Hottin
- Biophotonic Team, Laboratoire Charles Fabry, Institut d'Optique-Graduate School, Palaiseau, France
| | | | | | | |
Collapse
|