1
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Buyana B, Naki T, Alven S, Aderibigbe BA. Nanoparticles Loaded with Platinum Drugs for Colorectal Cancer Therapy. Int J Mol Sci 2022; 23:11261. [PMID: 36232561 PMCID: PMC9569963 DOI: 10.3390/ijms231911261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a common cancer in both men and women. Numerous studies on the therapeutic effectiveness of nanoparticles against colorectal cancer have been reported. Platinum treatments as well as other medications comprising of nanoparticles have been utilized. Drug resistance restricts the use of platinum medicines, despite their considerable efficacy against a variety of cancers. This review reports clinically licensed platinum medicines (cisplatin, carboplatin, and oxaliplatin) combined with various nanoparticles that have been evaluated for their therapeutic efficacy in the treatment of colorectal cancer, including their mechanism of action, resistance, and limitations.
Collapse
Affiliation(s)
| | | | | | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape Province, South Africa
| |
Collapse
|
3
|
|
4
|
Synthesis and characterization of fluorescent PAMAM dendrimer modified with 1,8-naphthalimide units and its Cu(II) complex designed for specific biomedical application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Xie P, Wang Y, Wei D, Zhang L, Zhang B, Xiao H, Song H, Mao X. Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. J Mater Chem B 2021; 9:5173-5194. [PMID: 34116565 DOI: 10.1039/d1tb00753j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum drugs are commonly used in cancer therapy, but their therapeutic outcomes have been significantly compromised by the drug resistance of cancer cells. To this end, intensive efforts have been made to develop nanoparticle-based drug delivery systems for platinum drugs, due to their multifunctionality in delivering drugs, in modulating the tumor microenvironment, and in integrating additional genes, proteins, and small molecules to overcome chemoresistance in cancers. To facilitate the clinical application of these promising nanoparticle-based platinum drug delivery systems, this paper summarizes the common mechanisms for chemoresistance towards platinum drugs, the advantages of nanoparticles in drug delivery, and recent strategies of nanoparticle-based platinum drug delivery. Furthermore, we discuss how to design delivery platforms more effectively to overcome chemoresistance in cancers, thereby improving the efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bin Zhang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Sun T, Lv T, Wu J, Zhu M, Fei Y, Zhu J, Zhang Y, Huang Z. General Strategy for Integrated Bioorthogonal Prodrugs: Pt(II)-Triggered Depropargylation Enables Controllable Drug Activation In Vivo. J Med Chem 2020; 63:13899-13912. [PMID: 33141588 DOI: 10.1021/acs.jmedchem.0c01435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal decaging reactions for controllable drug activation within complex biological systems are highly desirable yet extremely challenging. Herein, we find a new class of Pt(II)-triggered bioorthogonal cleavage reactions in which Pt(II) but not Pt(IV) complexes effectively trigger the cleavage of O/N-propargyl in a variety of ranges of caged molecules under biocompatible conditions. Based on these findings, we propose a general strategy for integrated bioorthogonal prodrugs and accordingly design a prodrug 16, in which a Pt(IV) moiety is covalently connected with an O2-propargyl diazeniumdiolate moiety. It is found that 16 can be specifically reduced by cytoplasmic reductants in human ovarian cancer cells to liberate cisplatin, which subsequently stimulates the cleavage of O2-propargyl to release large amounts of NO in situ, thus generating synergistic and potent tumor suppression activity in vivo. Therefore, Pt(II)-triggered depropargylation and the integration concept might provide a general strategy for broad applicability of bioorthogonal cleavage chemistry in vivo.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Fei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Baecker D, Kapp T, Schumacher P, Gust R, Kircher B. Cell death-inducing properties of selected dendrimers against different breast cancer and leukemia cell lines. Arch Pharm (Weinheim) 2020; 353:e2000209. [PMID: 32780524 DOI: 10.1002/ardp.202000209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022]
Abstract
Dendrimers represent an opportunity for targeted drug delivery into tumor cells. This is facilitated, for example, by loading of dendrimers with anticancer compounds. However, to assess the effects caused by such conjugates, knowledge of the cytotoxicity of the dendrimers themselves is necessary. The poly(amido amine)-derived dendrimers G1 (Phe)6 , G1 (Dan)3 , and G2 were selected due to their different numbers of free amino groups and the poly(propylene imine) (PPI) dendrimer PPI-G3 served as a reference. The compounds were evaluated for cell-death induction using breast cancer (MCF-7, MDA-MB-231) and leukemia (LAMA-84, K562, SD-1, SUP-B15) cell lines. The compounds exhibited concentration-dependent effects in the low micromolar range against the mammary carcinoma cells. A dependency on the generation, and particularly on the type of dendrimer, was deduced while the quantity of the free amino groups was subsidiary. G2 revealed to be most cytotoxic, also against all tested leukemia cell lines. The cell line SD-1, however, was susceptible to all dendrimers. The mode of cell death was mainly determined by necrosis, especially at higher concentrations, while apoptosis played a subordinate role. The other dendrimers exerted no antimetabolic effects against LAMA-84, K562, and SUP-B15 cells. Therefore, these dendrimers are generally suitable as nontoxic drug carriers for leukemia cells.
Collapse
Affiliation(s)
- Daniel Baecker
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Timo Kapp
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - Petra Schumacher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - Brigitte Kircher
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
8
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
9
|
Sanz del Olmo N, Carloni R, Ortega P, García-Gallego S, de la Mata FJ. Metallodendrimers as a promising tool in the biomedical field: An overview. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Baecker D, Ma BN, Sagasser J, Schultz L, Hörschläger C, Weinreich M, Steiner L, Kircher B, Gust R. Amide and ester derivatives of chlorido[4-carboxy-1,2-disalicylideneaminobenzene]iron(iii) as necroptosis and ferroptosis inducers. Dalton Trans 2020; 49:6842-6853. [DOI: 10.1039/d0dt00168f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amide and ester derivatives of chlorido[4-carboxy-1,2-disalicylideneaminobenzene]iron(iii) were synthesized and characterized as necroptosis and ferroptosis inducers using the acute myeloid leukemia cell line HL-60.
Collapse
Affiliation(s)
- Daniel Baecker
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Benjamin N. Ma
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Jessica Sagasser
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Lukas Schultz
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Carina Hörschläger
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Maria Weinreich
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Lucy Steiner
- Immunobiology and Stem Cell Laboratory
- Department of Internal Medicine V (Hematology and Oncology)
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory
- Department of Internal Medicine V (Hematology and Oncology)
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| |
Collapse
|
11
|
Štarha P, Vančo J, Trávníček Z. Platinum iodido complexes: A comprehensive overview of anticancer activity and mechanisms of action. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Dzhardimalieva GI, E. Uflyand I. Polymer Complexes Based on Metal Chelate Monomers. SPRINGER SERIES IN MATERIALS SCIENCE 2018:367-501. [DOI: 10.1007/978-3-319-56024-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Mignani SM, El Brahmi N, El Kazzouli S, Laurent R, Ladeira S, Caminade AM, Pedziwiatr-Werbicka E, Szewczyk EM, Bryszewska M, Bousmina MM, Cresteil T, Majoral JP. Original Multivalent Gold(III) and Dual Gold(III)-Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. Mol Pharm 2017; 14:4087-4097. [PMID: 28960997 DOI: 10.1021/acs.molpharmaceut.7b00771] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Original metallophosphorus dendrimers (generation 3, 48 terminal groups) have been prepared via the complexation of phosphorus dendrimers bearing imino-pyridino end groups with Au(III) or with both Au(III) and Cu(II). The complexation of the dendrimer with Au(III), leading to 1G3-[Au48][AuCl4]48, strongly increased the antiproliferative activities against both KB and HL-60 tumoral cell lines, showing IC50s in the low nanomolar range. It can be noticed also that this gold conjugated phosphorus dendrimer displayed low activity on the quiescent cell line EPC versus its potent antiproliferative activity against actively dividing cells. In order to evaluate the potential synergistic effect between Au(III) and Cu(II) and the influence of the number of Au(III) moieties on the surface of dendrimer against the proliferative activities, nine other original dendrimers with several surface modifications have been prepared. Whatever the number of Au(III) moieties introduced on the surface of dendrimers, all the dendrimers prepared displayed similar potency (nanomolar range) to 1G3-[Au48][AuCl4]48 against KB and HL60. In marked contrast synergistic effects on the antimicrobial activity of some of these phosphorus dendrimers are observed when both Au(III) and Cu(II) are present on the dendritic structure.
Collapse
Affiliation(s)
- Serge M Mignani
- PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Université Paris Descartes , 45, rue des Saints Pères, 75006 Paris, France
| | - Nabil El Brahmi
- EuroMed Research Institute, Euro-Mediterranean University of Fes , Route de Meknes, 30000 Fès, Morocco
| | - Saïd El Kazzouli
- EuroMed Research Institute, Euro-Mediterranean University of Fes , Route de Meknes, 30000 Fès, Morocco
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne, 31077 Toulouse Cedex 4, France.,UPS, INPT, Université de Toulouse , Toulouse, France
| | - Sonia Ladeira
- Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne, 31077 Toulouse Cedex 4, France.,UPS, INPT, Université de Toulouse , Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne, 31077 Toulouse Cedex 4, France.,UPS, INPT, Université de Toulouse , Toulouse, France
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz , 137 Pomorska Street, 90-235 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Mosto M Bousmina
- EuroMed Research Institute, Euro-Mediterranean University of Fes , Route de Meknes, 30000 Fès, Morocco
| | - Thierry Cresteil
- IPSIT, Faculté de Pharmacie, Université Paris Sud , 92290 Chatenay-Malabry, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne, 31077 Toulouse Cedex 4, France.,UPS, INPT, Université de Toulouse , Toulouse, France
| |
Collapse
|
15
|
Zhu Z, Su M. Polydopamine Nanoparticles for Combined Chemo- and Photothermal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E160. [PMID: 28661423 PMCID: PMC5535226 DOI: 10.3390/nano7070160] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Cancer therapy with two different modalities can enhance treatment efficacy and reduce side effects. This paper describes a new method for combined chemo- and photothermal therapy of cancer using poly dopamine nanoparticles (PDA-NPs), where PDA-NPs serve not only as a photothermal agent with strong near infrared absorbance and high energy conversion efficiency, but also as a carrier to deliver cisplatin via interaction between cisplatin and catechol groups on PDA-NPs. Polyethylene glycol (PEG) was introduced through Michael addition reaction to improve the stability of PDA-NPs in physiological condition. A remarkable synergistic therapeutic effect has been achieved compared with respective single treatments. This work suggests that the PDA-based nanoplatform can be a universal scaffold for combined chemo- and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Chinese Academy of Science, Wenzhou 325001, China.
| |
Collapse
|
16
|
|
17
|
Direct Correlation Between Zeta Potential and Cellular Uptake of Poly(methacrylic acid) Post‐Modified with Guanidinium Functionalities. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Li Y, Li Y, Zhang X, Xu X, Zhang Z, Hu C, He Y, Gu Z. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging. Theranostics 2016; 6:1293-305. [PMID: 27375780 PMCID: PMC4924500 DOI: 10.7150/thno.15081] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/10/2023] Open
Abstract
Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms.
Collapse
Affiliation(s)
| | | | | | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | | | | | | | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
19
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Campos BB, Oliva MM, Contreras-Cáceres R, Rodriguez-Castellón E, Jiménez-Jiménez J, da Silva JCE, Algarra M. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 2016; 465:165-73. [DOI: 10.1016/j.jcis.2015.11.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
|
21
|
Han X, Sun J, Wang Y, He Z. Recent Advances in Platinum (IV) Complex-Based Delivery Systems to Improve Platinum (II) Anticancer Therapy. Med Res Rev 2015; 35:1268-99. [PMID: 26280923 DOI: 10.1002/med.21360] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cisplatin and its platinum (Pt) (II) derivatives play a key role in the fight against various human cancers such as testicular, ovarian, head and neck, lung tumors. However, their application in clinic is limited due to dose- dependent toxicities and acquired drug resistances, which have prompted extensive research effort toward the development of more effective Pt (II) delivery strategies. The synthesis of Pt (IV) complex is one such an area of intense research fields, which involves their in vivo conversion into active Pt (II) molecules under the reducing intracellular environment, and has demonstrated encouraging preclinical and clinical outcomes. Compared with Pt (II) complexes, Pt (IV) complexes not only exhibit an increased stability and reduced side effects, but also facilitate the intravenous-to-oral switch in cancer chemotherapy. The overview briefly analyzes statuses of Pt (II) complex that are in clinical use, and then focuses on the development of Pt (IV) complexes. Finally, recent advances in Pt (IV) complexes in combination with nanocarriers are highlighted, addressing the shortcomings of Pt (IV) complexes, such as their instability in blood and irreversibly binding to plasma proteins and nonspecific distribution, and taking advantage of passive and active targeting effect to improve Pt (II) anticancer therapy.
Collapse
Affiliation(s)
- Xiaopeng Han
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China.,Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
22
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Alessio M, Arnesano F, Galliani A, Natile G, Osella D. Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J Inorg Biochem 2015; 150:1-8. [PMID: 26042542 DOI: 10.1016/j.jinorgbio.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/25/2023]
Abstract
A series of Pt(IV) anticancer prodrug candidates, having the equatorial arrangement of cisplatin and bearing two aliphatic carboxylato axial ligands, has been investigated to prove the relationship between lipophilicity, cellular accumulation, DNA platination and antiproliferative activity on the cisplatin-sensitive A2780 ovarian cancer cell line. Unlike cisplatin, no facilitated influx/efflux mechanism appears to operate in the case of the Pt(IV) complexes under investigation, thus indicating that they enter by passive diffusion. While Pt(IV) complexes having lipophilicity comparable to that of cisplatin (negative values of log Po/w) exhibit a cellular accumulation similar to that of cisplatin, the most lipophilic complexes of the series show much higher cellular accumulation (stemming from enhanced passive diffusion), accompanied by greater DNA platination and cell growth inhibition. Even if the Pt(IV) complexes are removed from the culture medium in the recovery process, the level of DNA platination remains very high and persistent in time, indicating efficient storing of the complexes and poor detoxification efficiency.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Bonarrigo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Manuela Alessio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Fabio Arnesano
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Angela Galliani
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
23
|
Dag A, Jiang Y, Karim KJA, Hart-Smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015; 36:890-897. [DOI: 10.1002/marc.201400576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Bezmialem Vakif University; 34093 Fatih Istanbul Turkey
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia (UTM); 81310 UTM Skudai Johor Malaysia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney 2052 Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
24
|
Aderibigbe BA. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 2014; 35:10080-92. [DOI: 10.1016/j.biomaterials.2014.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022]
|
26
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Proetto MT, Liu W, Molchanov A, Sheldrick WS, Hagenbach A, Abram U, Gust R. Synthesis, Characterization, and in vitro Antiproliferative Activity of [Salophene]platinum(II) Complexes. ChemMedChem 2014; 9:1176-87. [DOI: 10.1002/cmdc.201402123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 11/11/2022]
|
28
|
A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). Anal Bioanal Chem 2014; 406:3431-42. [DOI: 10.1007/s00216-014-7780-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
29
|
Singh SK, Pandey DS. Multifaceted half-sandwich arene–ruthenium complexes: interactions with biomolecules, photoactivation, and multinuclearity approach. RSC Adv 2014. [DOI: 10.1039/c3ra44131h] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Abd Karim KJ, Utama RH, Lu H, Stenzel MH. Enhanced drug toxicity by conjugation of platinum drugs to polymers with guanidine containing zwitterionic functional groups that mimic cell-penetrating peptides. Polym Chem 2014. [DOI: 10.1039/c4py00802b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inspired by the Ringsdorf model, statistical copolymers with solubility enhancers, platinum drugs and groove binders were compared.
Collapse
Affiliation(s)
- Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
- Department of Chemistry
| | - Robert H. Utama
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney 2052, Australia
| |
Collapse
|
31
|
Li M, Tang Z, Zhang Y, Lv S, Yu H, Zhang D, Hong H, Chen X. LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. J Mater Chem B 2014; 2:3490-3499. [DOI: 10.1039/c4tb00077c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 2013; 65:1667-85. [PMID: 24113520 PMCID: PMC4197009 DOI: 10.1016/j.addr.2013.09.014] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum-polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs.
Collapse
Affiliation(s)
- Hardeep S. Oberoi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia V. Nukolova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Russian State Medical University, Department of Medical Nanobiotechnology, Ostrovityanova 1, Moscow 117997, Russia
| | - Alexander V. Kabanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Cafeo G, Carbotti G, Cuzzola A, Fabbi M, Ferrini S, Kohnke FH, Papanikolaou G, Plutino MR, Rosano C, White AJP. Drug delivery with a calixpyrrole--trans-Pt(II) complex. J Am Chem Soc 2013; 135:2544-51. [PMID: 23350677 DOI: 10.1021/ja307791j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A meso-p-nitroaniline-calix[4]pyrrole derivative trans-coordinated to a Pt(II) center was synthesized and its structure solved by X-ray analysis. Adenosine monophosphate (AMP) was used as a model compound to evaluate the potential for the assisted delivery of the metal to the DNA nucleobases via the phosphate anion-binding properties of the calix[4]pyrrole unit. An NMR investigation of the kinetics of AMP complexation in the absence of an H-bonding competing solvent (dry CD(3)CN) was consistent with this hypothesis, but we could not detect the interaction of the calix[4]pyrrole with phosphate in the presence of water. However, in vitro tests of the new trans-calixpyrrole-Pt(II) complex on different cancer cell lines indicate a cytotoxic activity that is unquestionably derived from the coexistence of both the trans-Pt(II) fragment and the calix[4]pyrrole unit.
Collapse
Affiliation(s)
- Grazia Cafeo
- Dipartimento di Scienze Chimiche, Università di Messina, viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abd Karim KJ, Binauld S, Scarano W, Stenzel MH. Macromolecular platinum-drugs based on statistical and block copolymer structures and their DNA binding ability. Polym Chem 2013; 4:5542. [DOI: 10.1039/c3py00606a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Binauld S, Scarano W, Stenzel MH. pH-Triggered Release of Platinum Drugs Conjugated to Micelles via an Acid-Cleavable Linker. Macromolecules 2012. [DOI: 10.1021/ma3012812] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sandra Binauld
- Centre for Advanced Macromolecular
Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular
Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design (CAMD), University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Govender P, Therrien B, Smith GS. Bio-Metallodendrimers - Emerging Strategies in Metal-Based Drug Design. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200161] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
A complex of cyclohexane-1,2-diaminoplatinum with an amphiphilic biodegradable polymer with pendant carboxyl groups. Acta Biomater 2012; 8:1859-68. [PMID: 22281944 DOI: 10.1016/j.actbio.2012.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 11/24/2022]
Abstract
A biodegradable and amphiphilic copolymer, MPEG-b-P(LA-co-MCC), which contains pendant carboxyl groups, was chosen as a drug carrier for the active anticancer part (DACH-Pt) of oxaliplatin to form an MPEG-b-P(LA-co-MCC/Pt) complex. It was able to self-assemble into micelles with a mean diameter of 30-40 nm, and a surface potential near -10 mV. The typical platinum content was 10 wt.%. The micelles showed acid-responsive drug release kinetics, which is beneficial for drug release in the intracellular environment. The Pt(II) species were released mainly in the form of DACH-Pt-Cl(2) in 150 mM NaCl solution and DACH-Pt(2+)-(H(2)O)(2) in pure water according to the results obtained by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. In vitro evaluation showed that the micelles displayed the same or higher cytotoxicities against SKOV-3, HeLa, and EC-109 cancer cells compared with oxaliplatin. The enhanced cytotoxicity against SKOV-3 cells is attributed to effective internalization of the micelles by the cells via endocytosis and the sensitivity of SKOV-3 cells to platinum drugs. This novel biodegradable and amphiphilic copolymer-based platinum drug will have great potential application in clinical use.
Collapse
|
38
|
Polgári Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Réti A, Budai B, Kralovánszky J, Szoboszlai N, Záray G. Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells. Talanta 2011; 85:1959-65. [DOI: 10.1016/j.talanta.2011.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|
39
|
Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 2011; 105:1115-22. [PMID: 21704583 DOI: 10.1016/j.jinorgbio.2011.05.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/04/2023]
Abstract
Aquated cisplatin was added to half-generation PAMAM dendrimers and the resultant complexes were purified by centrifuge. The drug-dendrimer complexes were then characterised by 1-D and diffusion (1)H NMR and ICP-AES. The amount of drug bound was found to increase in proportion with dendrimer size: G3.5, 22 cis-{Pt(NH(3))(2)} molecules per dendrimer; G4.5, 37; G5.5, 54; and G6.5, 94, which represent only a fraction of the available binding sites on each dendrimer (68, 58, 42 and 37%, respectively). Drug release studies showed that some drug remains bound to the dendrimer even after prolonged incubation with 5'-GMP at temperatures of 60°C for over a week (percentage of drug released 18, 30, 35 and 63%, respectively). Attachment of the drug was found to decrease the radius of the dendrimers. Finally, the effect of the dendrimer on drug cytotoxicity was determined using in vitro assays with the A2780, A2780cis and A2780cp ovarian cancer cell lines. The free dendrimers display no cytotoxicity whilst the drug-dendrimer complexes showed moderate activity. In vivo activity was examined using an A2780 tumour xenograft. Cisplatin, at its maximum tolerated dose of 6 mg/kg, reduced tumour size by 33% compared to an untreated control group. The G6.5 cisplatin-dendrimer complex was administered at two doses (6 and 8 mg/kg equivalent of cisplatin). Both were well tolerated by the mice. The lower dose displayed comparable activity to cisplatin with a tumour volume reduction of 32%, but the higher dose was significantly more active than free cisplatin with a tumour reduction of 45%.
Collapse
Affiliation(s)
- Gordon J Kirkpatrick
- Strathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Scutaru AM, Wenzel M, Gust R. Bivalent bendamustine and melphalan derivatives as anticancer agents. Eur J Med Chem 2011; 46:1604-15. [DOI: 10.1016/j.ejmech.2011.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/15/2022]
|
41
|
Zhou Z, Shen Y, Tang J, Jin E, Ma X, Sun Q, Zhang B, Van Kirk EA, Murdoch WJ. Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13576g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Scutaru AM, Wenzel M, Scheffler H, Wolber G, Gust R. Optimization of the N-Lost Drugs Melphalan and Bendamustine: Synthesis and Cytotoxicity of a New Set of Dendrimer−Drug Conjugates as Tumor Therapeutic Agents. Bioconjug Chem 2010; 21:1728-43. [DOI: 10.1021/bc900453f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Maria Scutaru
- Institute für Pharmazie, Freie Universität Berlin, Königin Luise Str. 2 + 4, 14195 Berlin, Germany, and Institut für Pharmazie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Maxi Wenzel
- Institute für Pharmazie, Freie Universität Berlin, Königin Luise Str. 2 + 4, 14195 Berlin, Germany, and Institut für Pharmazie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Heike Scheffler
- Institute für Pharmazie, Freie Universität Berlin, Königin Luise Str. 2 + 4, 14195 Berlin, Germany, and Institut für Pharmazie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Gerhard Wolber
- Institute für Pharmazie, Freie Universität Berlin, Königin Luise Str. 2 + 4, 14195 Berlin, Germany, and Institut für Pharmazie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Ronald Gust
- Institute für Pharmazie, Freie Universität Berlin, Königin Luise Str. 2 + 4, 14195 Berlin, Germany, and Institut für Pharmazie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| |
Collapse
|
43
|
Hille A, Gust R. Influence of methoxy groups on the antiproliferative effects of [Fe(III)(salophene-OMe)Cl] complexes. Eur J Med Chem 2010; 45:5486-92. [PMID: 20828884 DOI: 10.1016/j.ejmech.2010.08.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/30/2010] [Accepted: 08/13/2010] [Indexed: 11/17/2022]
Abstract
We synthesized methoxy-substituted iron(III)-salophene complexes ([Fe(III)(OMe-salophene)Cl] with salophene = N,N'-bis(salicylidene)-1,2-phenylenediamine) and analyzed their biological activity in MCF-7 and MDA-MB-231 breast cancer as well as in HT-29 colon carcinoma cells. The results obtained in a time-dependent chemosensitivity test clearly demonstrated the correlation between the cytotoxicity of the complexes and the position of methoxy substituents in the salicylidene moieties: 3-OCH(3) (4) < 5-OCH(3) (8) < H (2) < 4-OCH(3) (6) = 6-OCH(3) (10). Compounds 6 and 10 caused cytocidal effects already at a concentration of 0.5 μM. Both lead compound 2 and complex 8 showed similar time response curves, however, with a 5-fold lower activity compared to 6 and 10, respectively. Referring to [Fe(III)(salophene)Cl] (2), methoxy substitution was accompanied with the loss of tumor cell selectivity. Moreover, the free ligands (1, 3, 5, 7, and 9) were inactive.
Collapse
Affiliation(s)
- Annegret Hille
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, D-14195 Berlin, Germany
| | | |
Collapse
|
44
|
Affiliation(s)
- George R. Newkome
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| | - Carol Shreiner
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| |
Collapse
|