1
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Zheng Z, Pan X, Xu J, Wu Z, Zhang Y, Wang K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol 2020; 163:1403-1420. [DOI: 10.1016/j.ijbiomac.2020.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
|
3
|
Li B, Liu XJ, Li L, Zhang SH, Li Y, Li DD, Zhen YS. A tumor-targeting dextran–apoprotein conjugate integrated with enediyne chromophore shows highly potent antitumor efficacy. Polym Chem 2014. [DOI: 10.1039/c4py00532e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel dextran–apoprotein conjugate that could selectively stay in tumor tissues for a prolonged time was prepared. After integrating with enediyne chromophore, this conjugate showed highly potent antitumor efficacy.
Collapse
Affiliation(s)
- Bin Li
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Xiu-jun Liu
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Liang Li
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Sheng-hua Zhang
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Dian-dong Li
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| | - Yong-su Zhen
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050, China
| |
Collapse
|
4
|
|
5
|
Besheer A, Hertel TC, Kressler J, Mäder K, Pietzsch M. Enzymatically catalyzed HES conjugation using microbial transglutaminase: Proof of feasibility. J Pharm Sci 2009; 98:4420-8. [DOI: 10.1002/jps.21675] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 2007; 35:186-208. [PMID: 17846765 DOI: 10.1007/s00259-007-0560-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.
Collapse
Affiliation(s)
- Weibo Cai
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, 1201 Welch Rd, P095, Stanford, CA 94305-5484, USA.
| | | | | |
Collapse
|
7
|
Carlsson J, Ren ZP, Wester K, Sundberg AL, Heldin NE, Hesselager G, Persson M, Gedda L, Tolmachev V, Lundqvist H, Blomquist E, Nistér M. Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression. J Neurooncol 2006; 77:33-45. [PMID: 16200342 DOI: 10.1007/s11060-005-7410-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeting with radionuclide labelled substances that bind specifically to the epidermal growth factor receptor, EGFR, is considered for intracavitary therapy of EGFR-positive glioblastoma multiforme, GBM. Relevant literature is reviewed and examples of EGFR expression in GBM are given. The therapeutical efforts made so far using intracavitary anti-tenascin radionuclide therapy of GBM have given limited effects, probably due to low radiation doses to the migrating glioma cells in the brain. Low radiation doses might be due to limited penetration of the targeting agents or heterogeneity in the expression of the target structure. In this article we focus on the possibilities to target EGFR on the tumour cells instead of an extracellular matrix component. There seems to be a lack of knowledge on the degree of intratumoral variation of EGFR expression in GBM, although the expression seemed rather homogeneous over large areas in most of the examples (n=16) presented from our laboratory. The observed homogeneity was surprising considering the genomic instability and heterogeneity that generally characterises highly malignant tumours. However, overexpression of EGFR is, at least in primary GBMs, one of the steps in the development of malignancy, and tumour cells that lose or downregulate EGFR will probably be outgrown in an expanding tumour cell population. Thus, loss of EGFR expression might not be the critical factor for successful intracavitary radionuclide therapy. Instead, it is likely that the penetration properties of the targeting agents are critical, and detailed studies on this are urgent.
Collapse
Affiliation(s)
- J Carlsson
- Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Muangsiri W, Kirsch LE. The protein-binding and drug release properties of macromolecular conjugates containing daptomycin and dextran. Int J Pharm 2006; 315:30-43. [PMID: 16546333 DOI: 10.1016/j.ijpharm.2006.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Prototype daptomycin-dextran macromolecular conjugates were prepared in an attempt to modify the biodistribution and protein-binding properties of daptomycin. Synthesis of daptomycin macromolecular conjugates involved dextran activation, daptomycin-dextran coupling, and purification. The reaction mixtures were separated on a Sephadex G-100 column using 10% acetronitrile in water as a mobile phase. UV and fluorescence characteristics of high molecular weight fractions demonstrated imine product formation while the lower molecular weight fractions contained free daptomycin, imine, and anilide products. Daptomycin macromolecular conjugates were characterized by drug loading, drug release, and binding affinity for fibrinogen using HPLC analysis and surface plasmon resonance. Drug loading was calculated to be 160mg of daptomycin per gram of macromolecule. Approximately 9% of the conjugated daptomycin was released from the macromolecular conjugates in aqueous media in the pH range of 1-7.4. The conjugates possessed higher affinity for fibrinogen than that of daptomycin.
Collapse
Affiliation(s)
- Walaisiri Muangsiri
- Division of Pharmaceutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
9
|
Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L. Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 2003; 30:303-15. [PMID: 12745022 DOI: 10.1016/s0969-8051(02)00421-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Targeting of tumor cells with radiolabeled biomolecules is a possible approach to inactivate disseminated tumor cells. However, rapid degradation of the biomolecules after cellular internalization and subsequent excretion of the radioactivity is a problem. We studied the possibility of using dextran as a carrier of radionuclides to improve the intracellular retention. An EGF-dextran conjugate, aimed for targeting of tumor cells overexpressing the EGF-receptor, was used as model. Retention tests were performed with (125)I on different parts: [(125)I]-EGF-dextran-[(125)I], [(125)I]-EGF-dextran and EGF-dextran-[(125)I]. Comparisons were made with [(125)I]-EGF. The radiolabeled compounds were incubated with cultured glioma cells for different times. The cellular retention of radioactivity was then measured for up to 24 h. Expected radiation doses at the cellular level were calculated assuming that (131)I, instead of (125)I, was coupled to EGF and EGF-dextran. The results indicated that the EGF-part of the conjugate was degraded and the EGF-attached radioactivity was rapidly excreted, whereas radioactivity on dextran was retained intracellularly to a high degree, i.e. 70-80% of the radioactivity bound to dextran was still cell-associated after 24 h. The retention after 24 h was significantly higher (p < 0.001) when the radioactivity was on the dextran instead of the EGF-part. The radiolabeled EGF-dextran had a notably high specific radioactivity; up to 11 MBq/microg. There was potential for at least hundred times increased radiation dose per receptor interaction when the radioactivity was on the dextran part. The advantage with radioactivity on the dextran part was the high cellular retention and the high specific radioactivity (higher than previously reported for other residualizing labels) without severe loss of receptor specific binding. Thus, dextran seems suitable as a carrier of radionuclides aimed for therapy and gives potential for a highly increased radiation dose.
Collapse
Affiliation(s)
- Asa Liljegren Sundberg
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
10
|
Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, Gazit A, Levitzki A, Mishani E. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol 2001; 28:359-74. [PMID: 11395308 DOI: 10.1016/s0969-8051(01)00200-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As PET candidate tracers for EGFr-TK, five 4-(anilino)quinazoline derivatives, each fluorinated in the aniline moiety, were prepared. Each was tested in vitro for inhibition of EGFr autophosphorylation in A431 cell line. The leading compounds were then radiolabeled with (18)F and cell binding experiments, biodistribution and PET studies in A431 tumor-bearing mice were performed. Metabolic studies were carried out in a mice control group. From our results, we concluded that while in vitro experiments indicates efficacy of 4-(anilino)quinazoline compounds, kinetic factors and rapid blood clearance make them unsuitable as tracers for nuclear medicine imaging of EGFr-TK.
Collapse
Affiliation(s)
- T A Bonasera
- Hebrew University, Hadassah University Hospital Campus, Department of Medical Biophysics and Nuclear Medicine, IL-91120, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gariépy J, Kawamura K. Vectorial delivery of macromolecules into cells using peptide-based vehicles. Trends Biotechnol 2001; 19:21-8. [PMID: 11146099 DOI: 10.1016/s0167-7799(00)01520-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to direct the import of therapeutic agents into cells and target them to specific organelles would greatly enhance their functional efficacy. The available spectrum of peptide-based import signals and intracellular routing signals might provide practical solutions towards achieving a guided or vectorial delivery of molecules. Multiple cell-targeting signals and routing domains can be efficiently displayed on branched peptides. These constructs are typically nonimmunogenic in the absence of adjuvant and can be easily assembled using solid phase synthesis. The vectorial delivery of larger complexes, however, will necessitate the development of alternate templates that favor the optimal presentation of all functional signals.
Collapse
Affiliation(s)
- J Gariépy
- Dept of Medical Biophysics, University of Toronto, 610 University Ave, Toronto M5G 2M9, Canada.
| | | |
Collapse
|
12
|
Orlova A, Bruskin A, Sjöström A, Lundqvist H, Gedda L, Tolmachev V. Cellular processing of (125)I- and (111)in-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 2000; 27:827-35. [PMID: 11150717 DOI: 10.1016/s0969-8051(00)00148-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low molecular weight of epidermal growth factor (EGF) enables better intratumoral penetration in comparison with larger targeting proteins, but the cellular retention of EGF-associated radioactivity is poor for directly iodinated EGF. An attempt was made to improve intracellular retention by the use of metal-diethylenetriaminepentaacetic acid or nonphenolic linker (N-succinimidyl-para-iodobenzoate) as labeling agents. The use of nonphenolic linker did not improve retention of the radioactivity in A431 carcinoma cell line. The use of the radiometal label provided an appreciable prolongation of radioactivity residence inside the cell.
Collapse
Affiliation(s)
- A Orlova
- Department of Biomedical Radiation Sciences, Rudbecklaboratoriet, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|