1
|
Varela MF, Ortiz-Alegria A, Lekshmi M, Stephen J, Kumar S. Functional Roles of the Conserved Amino Acid Sequence Motif C, the Antiporter Motif, in Membrane Transporters of the Major Facilitator Superfamily. BIOLOGY 2023; 12:1336. [PMID: 37887046 PMCID: PMC10604125 DOI: 10.3390/biology12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The biological membrane surrounding all living cells forms a hydrophobic barrier to the passage of biologically important molecules. Integral membrane proteins called transporters circumvent the cellular barrier and transport molecules across the cell membrane. These molecular transporters enable the uptake and exit of molecules for cell growth and homeostasis. One important collection of related transporters is the major facilitator superfamily (MFS). This large group of proteins harbors passive and secondary active transporters. The transporters of the MFS consist of uniporters, symporters, and antiporters, which share similarities in structures, predicted mechanism of transport, and highly conserved amino acid sequence motifs. In particular, the antiporter motif, called motif C, is found primarily in antiporters of the MFS. The antiporter motif's molecular elements mediate conformational changes and other molecular physiological roles during substrate transport across the membrane. This review article traces the history of the antiporter motif. It summarizes the physiological evidence reported that supports these biological roles.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| |
Collapse
|
2
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
3
|
Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation. Proc Natl Acad Sci U S A 2013; 110:8876-81. [PMID: 23671103 DOI: 10.1073/pnas.1306849110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trp replacements for conserved Gly-Gly pairs between the N- and C-terminal six-helix bundles on the periplasmic side of lactose permease (LacY) cause complete loss of transport activity with little or no effect on sugar binding. Moreover, the detergent-solubilized mutants exhibit much greater thermal stability than WT LacY. A Cys replacement for Asn245, which is inaccessible/unreactive in WT LacY, alkylates readily in the Gly→Trp mutants, indicating that the periplasmic cavity is patent. Stopped-flow kinetic measurements of sugar binding with the Gly→Trp mutants in detergent reveal linear dependence of binding rates on sugar concentration, as observed with WT or the C154G mutant of LacY, and are compatible with free access to the sugar-binding site in the middle of the molecule. Remarkably, after reconstitution of the Gly→Trp mutants into proteoliposomes, the concentration dependence of sugar-binding rates increases sharply with even faster rates than measured in detergent. Such behavior is strikingly different from that observed for reconstituted WT LacY, in which sugar-binding rates are independent of sugar concentration because opening of the periplasmic cavity is limiting for sugar binding. The observations clearly indicate that Gly→Trp replacements, which introduce bulky residues into tight Gly-Gly interdomain interactions on the periplasmic side of LacY, prevent closure of the periplasmic cavity and, as a result, shift the distribution of LacY toward an outward-open conformation.
Collapse
|
4
|
Nachliel E, Gutman M. Probing of the substrate binding domain of lactose permease by a proton pulse. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:33-50. [PMID: 11513803 DOI: 10.1016/s0005-2736(01)00361-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The lactose permease of Escherichia coli coupled proton transfer across the bacterial inner membrane with the uptake of beta-galactosides. In the present study we have used the cysteine-less C148 mutant that was selectively labeled by fluorescein maleimide on the C148 residue, which is an active component of the substrate transporting cavity. Measurements of the protonation dynamics of the bound pH indicator in the time resolved domain allowed us to probe the binding site by a free diffusing proton. The measured signal was reconstructed by numeric integration of differential rate equations that comply with the detailed balance principle and account for all proton transfer reactions taking place in the reaction mixture. This analysis yields the rate constants and pK values of all residues participating in the fast proton transfer reaction between the bulk and the protein's surface, revealing the exposed residues that react with free protons in a diffusion controlled reaction and how they transfer protons among themselves. The magnitudes of these rate constants were finally evaluated by comparison with the rate predicted by the Debye-Smoluchowski equation. The analysis of the kinetic and pK values indicated that the protein-fluorescein adduct assumes two conformation states. One is dominant above pH 7.4, while the other exists only below 7.1. In the high pH range, the enzyme assumes a constrained configuration and the rate constant of the reaction of a free diffusing proton with the bound dye is 10 times slower than a diffusion controlled reaction. In this state, the carboxylate moiety of residue E126 is in close proximity to the dye and exchanges a proton with it at a very fast rate. Below pH 7.1, the substrate binding domain is in a relaxed configuration and freely accessed by bulk protons, and the rate of proton exchange between the dye and E126 is 100,000 times slower. The relevance of these observations to the catalytic cycle is discussed.
Collapse
Affiliation(s)
- E Nachliel
- Laser Laboratory for Fast Reaction in Biology, Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
5
|
Tamura N, Konishi S, Iwaki S, Kimura-Someya T, Nada S, Yamaguchi A. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem 2001; 276:20330-9. [PMID: 11278375 DOI: 10.1074/jbc.m007993200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial Tn10-encoded metal-tetracycline/H(+) antiporter was the first found drug exporter and has been studied as a paradigm of antiporter-type major facilitator superfamily transporters. Here the 400 amino acid residues of this protein were individually replaced by cysteine except for the initial methionine. As a result, we could obtain a complete map of the functionally or structurally important residues. In addition, we could determine the precise boundaries of all the transmembrane segments on the basis of the reactivity with N-ethylmaleimide (NEM). The NEM binding results indicated the presence of a transmembrane water-filled channel in the transporter. The twelve transmembrane segments can be divided into three groups; four are totally embedded in the hydrophobic interior, four face a putative water-filled channel along their full length, and the remaining four face the channel for half their length, the other halves being embedded in the hydrophobic interior. These three types of transmembrane segments are mutually arranged with a 4-fold symmetry. The competitive binding of membrane-permeable and -impermeable SH reagents in intact cells indicates that the transmembrane water-filled channel has a thin barrier against hydrophilic molecules in the middle of the transmembrane region. Inhibition and stimulation of NEM binding in the presence of tetracycline reflects the substrate-induced protection or conformational change of the Tn10-encoded metal-tetracycline/H(+) antiporter. The mutations protected from NEM binding by tetracycline were mainly located around the permeability barrier in the N-terminal half, suggesting the location of the substrate binding site.
Collapse
Affiliation(s)
- N Tamura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Iwaki S, Tamura N, Kimura-Someya T, Nada S, Yamaguchi A. Cysteine-scanning mutagenesis of transmembrane segments 4 and 5 of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a permeability barrier in the middle of a transmembrane water-filled channel. J Biol Chem 2000; 275:22704-12. [PMID: 10930423 DOI: 10.1074/jbc.m910354199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine-scanning mutants as to putative transmembrane segments 4 and 5 and the flanking regions of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) were constructed. All mutants were normally expressed. Among the 57 mutants (L99C to I155C), nine conserved arginine-, aspartate-, and glycine-replaced ones exhibited greatly reduced tetracycline resistance and almost no transport activity, and five conserved glycine- and proline-replaced mutants exhibited greatly reduced tetracycline transport activity in inverted membrane vesicles despite their high or moderate drug resistance. All other cysteine-scanning mutants retained normal drug resistance and normal tetracycline transport activity except for the L142C and I143C mutants. The transmembrane (TM) regions TM4 and TM5 were determined to comprise 20 amino acid residues, Leu-99 to Ile-118, and 17 amino acid residues, Ala-136 to Ala-152, respectively, on the basis of N-[(14)C]ethylmaleimide ([(14)C]NEM) reactivity. The NEM reactivity patterns of the TM4 and TM5 mutants were quite different from each other. TM4 could be divided into two halves, that is, a NEM nonreactive periplasmic half and a periodically reactive cytoplasmic half, indicating that TM4 is tilted toward a water-filled transmembrane channel and that only its cytoplasmic half faces the channel. On the other hand, NEM-reactive mutations were observed periodically (every two residues) along the whole length of TM5. A permeability barrier for a membrane-impermeable sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, was present in the middle of TM5 between Leu-142 and Gly-145, whereas all the NEM-reactive mutants as to TM4 were not accessible to 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, indicating that the channel-facing side of TM4 is located inside the permeability barrier. Tetracycline protected the G141C mutant from the NEM binding, whereas the other mutants in TM4 and TM5 were not protected by tetracycline.
Collapse
Affiliation(s)
- S Iwaki
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
7
|
Chan BS, Satriano JA, Schuster VL. Mapping the substrate binding site of the prostaglandin transporter PGT by cysteine scanning mutagenesis. J Biol Chem 1999; 274:25564-70. [PMID: 10464289 DOI: 10.1074/jbc.274.36.25564] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cDNA, PGT, that encodes a widely expressed transporter for prostaglandin (PG) E(2), PGF(2alpha), PGD(2), 8-iso-PGF(2alpha), and thromboxane B(2). To begin to understand the molecular mechanisms of transporter function, we have initiated a structure-function analysis of PGT to identify its substrate-binding region. We have found that by introducing the small, water-soluble, thiol-reactive anion Na(2-sulfonatoethyl)methanethiosulfonate (MTSES) into the substrate pathway, we were able to cause inhibition of transport that could be reversed with dithiothreitol. Importantly, co-incubation with PGE(2) protected PGT from this inhibition, suggesting that MTSES gains access to the aqueous pore pathway of PGT to form a mixed disulfide near the substrate-binding site. To identify the susceptible cysteine, we mutated, one at a time, all six of the putative transmembrane cysteines to serine. Only the mutation of Cys-530 to serine within putative transmembrane 10 became resistant to inhibition by MTSES. Thus, Cys-530 is the substrate-protectable, MTSES-inhibitable residue. To identify other residues that may be lining the substrate-binding site, we initiated cysteine-scanning mutagenesis of transmembrane 10 using Cys-530 as an entry point. On a C530S, MTSES-resistant background, residues in the N- and C-terminal directions were individually mutated to cysteine (Ala-513 to His-536), one at a time, and then analyzed for MTSES inhibition. Of the 24 cysteine-substituted mutants generated, 6 were MTSES-sensitive and, among these, 4 were substrate-protectable. The pattern of sensitivity to MTSES places these residues on the same face of an alpha-helix. The results of cysteine-scanning mutagenesis and molecular modeling of putative transmembrane 10 indicate that the substrate binding of PGT is formed among its membrane-spanning segments, with 4 residues along the cytoplasmic end of helix 10 contributing to one surface of the binding site.
Collapse
Affiliation(s)
- B S Chan
- Renal Division, Department of Medicine, Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
8
|
Kimura-Someya T, Iwaki S, Yamaguchi A. Site-directed chemical modification of cysteine-scanning mutants as to transmembrane segment II and its flanking regions of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a transmembrane water-filled channel. J Biol Chem 1998; 273:32806-11. [PMID: 9830026 DOI: 10.1074/jbc.273.49.32806] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine-scanning mutants, E32C to G62C, of the metal-tetracycline/H+ antiporter were constructed in order to precisely determine the membrane topology around putative transmembrane segment II. None of the mutants lost the ability to confer tetracycline resistance, indicating that the cysteine mutation in each mutant did not alter the protein conformation. [14C]N-Ethylmaleimide (NEM) binding to these cysteine mutants in isolated membranes was then investigated. The peptide chain of this region passes through the membrane at least once because residues 36 and 65 are exposed on the outside and inside surfaces of the membrane, respectively (Kimura, T., Ohnuma, M., Sawai, T., and Yamaguchi, A. (1997) J. Biol. Chem. 272, 580-585). However, there was no continuous segment in which all of the introduced cysteine residues showed almost no reactivity with [14C]NEM. The proportion of the unbound positions in the second half downstream from position 45 was 55% (10/18), which was clearly higher than that in the first half (21%; 3/14), suggesting that the second half is a transmembrane segment. Positions reactive to NEM appear periodically in the second half. They are located on one side of the helical wheel, suggesting that this side of the transmembrane helix faces a water-filled channel. The cysteine mutants as to the reactive positions in the second half were severely inactivated by NEM except for the P59C mutant, whereas the A40C mutant was the only one inactivated by NEM in the first half. These results suggest that the water-filled channel along this helical region may be a substrate translocation pathway.
Collapse
Affiliation(s)
- T Kimura-Someya
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
9
|
Kimura T, Shiina Y, Sawai T, Yamaguchi A. Cysteine-scanning mutagenesis around transmembrane segment III of Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem 1998; 273:5243-7. [PMID: 9478980 DOI: 10.1074/jbc.273.9.5243] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each amino acid in the putative transmembrane helix III and its flanking regions (from Gly-62 to Tyr-98) of the Tn10-encoded metal-tetracycline/H+ antiporter (Tet(B)) was individually replaced with Cys. Out of these 37 cysteine-scanning mutants, the mutants from G62C to R70C and from S92C to Y98C showed high or intermediate reactivity with [14C]N-ethylmaleimide (NEM) except for the M64C mutant. On the other hand, the mutants from R71C to S91C showed almost no reactivity with NEM except for the P72C mutant. These results confirm that the transmembrane helix III is composed of 21 residues from Arg-71 to Ser-91. The majority of Cys replacement mutants retained high or moderate tetracycline transport activity. Cys replacements for Gly-62, Asp-66, Ser-77, Gly-80, and Asp-84 resulted in almost inactive Tet(B) (less than 3% of the wild-type activity). The Arg-70 --> Cys mutant retained very low activity due to a mercaptide between Co2+ and a SH group (Someya, Y., and Yamaguchi, A. (1996) Biochemistry 35, 9385-9391). Three of these six important residues (Ser-77, Gly-80, and Asp-84) are located in the transmembrane helix III and one (Arg-70) is located in the flanking region. These four functionally important residues are located on one side of the helical wheel. Only two of the residual 31 Cys mutants were inactivated by NEM (S65C and L97C). Ser-65 and Leu-97 are located on the cytoplasmic and periplasmic loops, respectively, in the topology of Tet(B). The degree of inactivation of these Cys mutants with SH reagents was dependent on the volume of substituents. In the presence of tetracycline, the reactivity of the S65C mutant with NEM was significantly increased, in contrast, the reactivity of L97C was greatly reduced, indicating that the cytoplasmic and periplasmic loop regions undergo substrate-induced conformational change in the mutually opposite direction.
Collapse
Affiliation(s)
- T Kimura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan
| | | | | | | |
Collapse
|
10
|
Mueckler M, Makepeace C. Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway. J Biol Chem 1997; 272:30141-6. [PMID: 9374494 DOI: 10.1074/jbc.272.48.30141] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A valine-to-isoleucine mutation at amino acid residue 197 of Glut2 or the equivalent residue 165 of Glut1 has been shown to impair glucose transport activity. This mutation was originally discovered in the Glut2 gene of a patient with type 2 diabetes. We investigated the mechanism of the effect of this mutation on transport activity via the analysis of Glut1 mutants expressed in Xenopus oocytes combined with cysteine substitution mutagenesis and the use of cysteine-reactive chemical probes. Aliphatic side chain substitutions at position 165 that were bulkier than the native valine residue inhibited glucose transport activity, whereas substitutions of less bulky side chains had little effect on transport, suggesting a role for steric hindrance. A cysteine residue was introduced at position 165 of a functional, cysteine-less Glut1 construct, and this mutant was then tested for inhibition of transport activity by a membrane-impermeant sulfhydryl-specific reagent (p-chloromercuribenzenesulfonate). p-Chloromercuribenzenesulfonate inhibited activity of the Cys165 mutant when it was added to the external buffer but not when it was injected directly into oocytes, indicating that this residue is accessible from the external solvent but not from the cytoplasm. Competition experiments indicated that Cys165 lies near the exofacial substrate-binding site or directly in the sugar permeation pathway. These data provide evidence that the side chain of Val165, which resides in the middle of transmembrane helix 5, juts into the aqueous permeation pathway of Glut1, probably between the exofacial substrate-binding site and the outer vestibule of the pathway.
Collapse
Affiliation(s)
- M Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | |
Collapse
|
11
|
Meuller J, Zhang J, Hou C, Bragg PD, Rydström J. Properties of a cysteine-free proton-pumping nicotinamide nucleotide transhydrogenase. Biochem J 1997; 324 ( Pt 2):681-7. [PMID: 9182734 PMCID: PMC1218482 DOI: 10.1042/bj3240681] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide nucleotide transhydrogenase from Escherichia coli was investigated with respect to the roles of its cysteine residues. This enzyme contains seven cysteines, of which five are located in the alpha subunit and two are in the beta subunit. All cysteines were replaced by site-directed mutagenesis. The final construct (alphaC292T, alphaC339T, alphaC395S, alphaC397T, alphaC435S, betaC147S, betaC260S) was inserted normally in the membrane and underwent the normal NADPH-dependent conformational change of the beta subunit to a trypsin-sensitive state. Reduction of NADP+ by NADH driven by ATP hydrolysis or respiration was between 32% and 65% of the corresponding wild-type activities. Likewise, the catalytic and proton pumping activities of the purified cysteine-free enzyme were at least 30% of the purified wild-type enzyme activities. The H+/H- ratio for both enzymes was 0.5, although the cysteine-free enzyme appeared to be more stable than the wild-type enzyme in proteoliposomes. No bound NADP(H) was detected in the enzymes. Modification of transhydrogenase by diethyl pyrocarbonate and the subsequent inhibition of the enzyme were unaffected by removal of the cysteines, indicating a lack of involvement of cysteines in this process. Replacement of cysteine residues in the alpha subunit resulted in no or little change in activity, suggesting that the basis for the decreased activity was probably the modification of the conserved beta-subunit residue Cys-260 or (less likely) the non-conserved beta-subunit residue Cys-147. It is concluded that the cysteine-free transhydrogenase is structurally and mechanistically very similar to the wild-type enzyme, with minor modifications of the properties of the NADP(H) site, possibly mediated by the betaC260S mutation. The cysteine-free construct will be a valuable tool for studying structure-function relationships of transhydrogenases.
Collapse
Affiliation(s)
- J Meuller
- Department of Biochemistry and Biophysics, Göteborg University, S-413 90 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
12
|
Abstract
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
13
|
Varela MF, Wilson TH. Molecular biology of the lactose carrier of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:21-34. [PMID: 8764889 DOI: 10.1016/0005-2728(96)00030-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M F Varela
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Wen J, Chen X, Bowie JU. Exploring the allowed sequence space of a membrane protein. NATURE STRUCTURAL BIOLOGY 1996; 3:141-8. [PMID: 8564540 DOI: 10.1038/nsb0296-141] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a comprehensive view of the tolerance of a membrane protein to sequence substitution. We find that the protein, diacylglycerol kinase from Escherichia coli, is extremely tolerant to sequence changes with three-quarters of the residues tolerating non-conservative changes. The conserved residues are distributed with approximately the same frequency in the soluble and transmembrane portions of the protein, but the most critical active-site residues appear to residue in the second cytoplasmic domain. It is remarkable that a unique structure of the membrane embedded portion of the protein can be encoded by a sequence that is so tolerant to substitution.
Collapse
Affiliation(s)
- J Wen
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1570, USA
| | | | | |
Collapse
|
15
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Weitzman C, Consler TG, Kaback HR. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Protein Sci 1995; 4:2310-8. [PMID: 8563627 PMCID: PMC2143026 DOI: 10.1002/pro.5560041108] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Six single-Trp mutants were engineered by individually reintroducing each of the native Trp residues into a functional lactose permease mutant devoid of Trp (Trp-less permease; Menezes ME, Roepe PD, Kaback HR, 1990, Proc Natl Acad Sci USA 87:1638-1642), and fluorescent properties were studied with respect to solvent accessibility, as well as alterations produced by ligand binding. The emission of Trp 33, Trp 78, Trp 171, and Trp 233 is strongly quenched by both acrylamide and iodide, whereas Trp 151 and Trp 10 display a decrease in fluorescence in the presence of acrylamide only and no quenching by iodide. Of the six single-Trp mutants, only Trp 33 exhibits a significant change in fluorescence (ca. 30% enhancement) in the presence of the substrate analog beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). This effect was further characterized by site-directed fluorescent studies with purified single-Cys W33-->C permease labeled with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS). Titration of the change in the fluorescence spectrum reveals a 30% enhancement accompanied with a 5-nm blue shift in the emission maximum, and single exponential behavior with an apparent KD of 71 microM. The effect of substrate binding on the rate of MIANS labeling of single-Cys 33 permease was measured in addition to iodide and acrylamide quenching of the MIANS-labeled protein. Complete blockade of labeling is observed in the presence of TDG, as well as a 30% decrease in accessibility to iodide with no change in acrylamide quenching. Overall, the findings are consistent with the proposal (Wu J, Frillingos S, Kaback HR, 1995a, Biochemistry 34:8257-8263) that ligand binding induces a conformational change at the C-terminus of helix I such that Pro 28 and Pro 31, which are on one face, become more accessible to solvent, whereas Trp 33, which is on the opposite face, becomes less accessible to the aqueous phase. The findings regarding accessibility to collisional quenchers are also consistent with the predicted topology of the six native Trp residues in the permease.
Collapse
Affiliation(s)
- C Weitzman
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | | | |
Collapse
|
17
|
Wu J, Perrin DM, Sigman DS, Kaback HR. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A 1995; 92:9186-90. [PMID: 7568098 PMCID: PMC40949 DOI: 10.1073/pnas.92.20.9186] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.
Collapse
Affiliation(s)
- J Wu
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | | | | | |
Collapse
|