1
|
Wennerström H, Sparr E, Stenhammar J. On the coupling between membrane bending and stretching in lipid vesicles. J Colloid Interface Sci 2025; 690:137279. [PMID: 40101630 DOI: 10.1016/j.jcis.2025.137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The formation of a lipid vesicle from a lamellar phase involves a cost in bending energy of 100-1000 times the thermal energy for values of the membrane bending rigidity κ typical for phospholipid bilayers. The bending rigidity of a bilayer is however a strongly decreasing function of its thickness h, and the bilayer can thus reduce its bending energy by stretching (and thus thinning) the bilayer. In this paper, we construct a simple model to describe this mechanism for the coupling between bending and stretching and analyse its effect on the bending energy and thermal fluctuations of spherical lipid vesicles. We show that the bilayer thinning becomes significant for small vesicles, and for a vesicle with radius there is a sizeable thinning of the bilayer compared to the planar state. We furthermore demonstrate how this thinning is associated with a significant decrease in free energy due to the thermally excited bending modes. We argue that this previously unexplored effect can explain the experimentally observed lower limit of achievable vesicle sizes, which eventually become unstable due to the thinning of the bilayer. We also sketch how this effect provides a potential generic mechanism for the strong curvature dependence of protein adsorption to lipid membranes.
Collapse
Affiliation(s)
- Håkan Wennerström
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.
| |
Collapse
|
2
|
Toyoda A, Kimura H, Sugahara T, Miyazaki A, Sakai T, Yamada S. Boundary Lubrication with Adsorbed Anionic Surfactant Bilayers in Hard Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1773-1780. [PMID: 39794155 DOI: 10.1021/acs.langmuir.4c04155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca2+) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers. Friction and lubrication properties were evaluated for the confined film of the C18HAS hard water solution between mica surfaces using the surface forces apparatus (SFA). When the two surfaces were brought into contact under load and sheared against each other, the lubricating film consisted of two adsorbed C18HAS bilayers whose friction coefficient μ was of the order of 10-3 or below. The detailed analysis of the friction features revealed that the slipping in the boundary film does not occur at the interface between the opposed headgroup region of the two adsorbed bilayers, which is the typical mechanism for the low friction of adsorbed phospholipid bilayers extensively studied in the literature. Instead, slipping occurs at the interface between opposed liquid-like alkyl chain tails within the adsorbed bilayers; the low friction coefficient comes from the existence of two slip planes in the boundary film.
Collapse
Affiliation(s)
- Aya Toyoda
- R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan
| | - Hikaru Kimura
- R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan
| | - Tadashi Sugahara
- R&D - Material Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan
| | - Atsushi Miyazaki
- R&D - Material Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan
| | - Takaya Sakai
- R&D, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shinji Yamada
- R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan
| |
Collapse
|
3
|
Sari M, Schmidt A, Dietz J, Steinem C, Janshoff A. Mechanistic Insights into Synaptotagmin-1 Mediated Membrane Fusion and Interactions. Methods Mol Biol 2025; 2887:207-226. [PMID: 39806157 DOI: 10.1007/978-1-0716-4314-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins. PSMs enable one to obtain detailed information about the fusion process with particular emphasis on fusion intermediates and fusion pore formation. We demonstrate the potential of the PSM system using SNARE-mediated fusion. Accompanied by colloidal probe microscopy, molecular information can be gathered on how full-length synaptotagmin-1 (syt-1) contributes to the fusion process. We propose that syt-1 engages with anionic bilayers, significantly modifying the adhesion between membranes. The introduction of Ca2+ transforms these interactions, shifting from a state of minimal interaction force between bilayers to one of pronounced strength. This syt-1 interaction facilitates fusion in the presence of Ca2+ with a significant reduction in the occurrence of stalled intermediate fusion states. Moreover, the presence of Ca2+ significantly accelerates the fusion process, an effect that is further amplified by the addition of multivalent anions such as ATP.
Collapse
Affiliation(s)
- Merve Sari
- Institutes of Physical Chemistry, and Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Alina Schmidt
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Jörn Dietz
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institutes of Physical Chemistry, and Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Ridolfi A, Cardellini J, Gashi F, van Herwijnen MJC, Trulsson M, Campos-Terán J, H M Wauben M, Berti D, Nylander T, Stenhammar J. Electrostatic interactions control the adsorption of extracellular vesicles onto supported lipid bilayers. J Colloid Interface Sci 2023; 650:883-891. [PMID: 37450977 DOI: 10.1016/j.jcis.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Communication between cells located in different parts of an organism is often mediated by membrane-enveloped nanoparticles, such as extracellular vesicles (EVs). EV binding and cell uptake mechanisms depend on the heterogeneous composition of the EV membrane. From a colloidal perspective, the EV membrane interacts with other biological interfaces via both specific and non-specific interactions, where the latter include long-ranged electrostatic and van der Waals forces, and short-ranged repulsive "steric-hydration" forces. While electrostatic forces are generally exploited in most EV immobilization protocols, the roles played by various colloidal forces in controlling EV adsorption on surfaces have not yet been thoroughly addressed. In the present work, we study the adsorption of EVs onto supported lipid bilayers (SLBs) carrying different surface charge densities using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and confocal laser scanning microscopy (CLSM). We demonstrate that EV adsorption onto lipid membranes can be controlled by varying the strength of electrostatic forces and we theoretically describe the observed phenomena within the framework of nonlinear Poisson-Boltzmann theory. Our modelling results confirm the experimental observations and highlight the crucial role played by attractive electrostatics in EV adsorption onto lipid membranes. They furthermore show that simplified theories developed for model lipid systems can be successfully applied to the study of their biological analogues and provide new fundamental insights into EV-membrane interactions with potential use in developing novel EV separation and immobilization strategies.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.
| | - Jacopo Cardellini
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Fatlinda Gashi
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Martin Trulsson
- Division of Computational Chemistry, Lund University, Lund, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, México City, Mexico; LINXS - Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Tommy Nylander
- Division of Physical Chemistry, Lund University, Lund, Sweden; LINXS - Institute of Advanced Neutron and X-ray Science, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Cao Y, Klein J. Lipids and lipid mixtures in boundary layers: From hydration lubrication to osteoarthritis. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Porras-Gómez M, Shoaib T, Steer D, Espinosa-Marzal RM, Leal C. Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophys J 2022; 121:886-896. [PMID: 35176270 PMCID: PMC8943818 DOI: 10.1016/j.bpj.2022.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
Lower tract respiratory diseases such as pneumonia are pervasive, affecting millions of people every year. The stability of the air/water interface in alveoli and the mechanical performance during the breathing cycle are regulated by the structural and elastic properties of pulmonary surfactant membranes (PSMs). Respiratory dysfunctions and pathologies often result in, or are caused by, impairment of the PSMs. However, a gap remains between our knowledge of the etiology of lung diseases and the fundamental properties of PSMs. For example, bacterial pneumonia in humans and mice has been associated with aberrant levels of cardiolipin, a mitochondrial-specific, highly unsaturated 4-tailed anionic phospholipid, in lung fluid, which likely disrupts the structural and mechanical integrity of PSMs. Specifically, cardiolipin is expected to significantly alter PSM elasticity due to its intrinsic molecular properties favoring membrane folding away from a flat configuration. In this paper, we investigate the structural and mechanical properties of the lipidic components of PSMs using lipid-based models as well as bovine extracts affected by the addition of pathological cardiolipin levels. Specifically, using a combination of optical and atomic force microscopy with a surface force apparatus, we demonstrate that cardiolipin strongly promotes hemifusion of PSMs and that these local membrane contacts propagate at larger scales, resulting in global stiffening of lung membranes.
Collapse
Affiliation(s)
- Marilyn Porras-Gómez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Tooba Shoaib
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Dylan Steer
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Rosa Maria Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
7
|
Wieser V, Mears LLE, Barker RD, Cheng HW, Valtiner M. Hydration Forces Dominate Surface Charge Dependent Lipid Bilayer Interactions under Physiological Conditions. J Phys Chem Lett 2021; 12:9248-9252. [PMID: 34533315 PMCID: PMC8488952 DOI: 10.1021/acs.jpclett.1c02572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Lipid bilayer interactions are essential to a vast range of biological functions, such as intracellular transport mechanisms. Surface charging mediated by concentration dependent ion adsorption and desorption on lipid headgroups alters electric double layers as well as van der Waals and steric hydration forces of interacting bilayers. Here, we directly measure bilayer interactions during charge modulation in a symmetrically polarized electrochemical three-mirror interferometer surface forces apparatus. We quantify polarization and concentration dependent hydration and electric double layer forces due to cation adsorption/desorption. Our results demonstrate that exponential hydration layer interactions effectively describe surface potential dependent surface forces due to cation adsorption at high salt concentrations. Hence, electric double layers of lipid bilayers are exclusively dominated by inner Helmholtz charge regulation under physiological conditions. These results are important for rationalizing bilayer behavior under physiological conditions, where charge and concentration modulation may act as biological triggers for function and signaling.
Collapse
Affiliation(s)
- Valentina Wieser
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Laura L. E. Mears
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Robert D. Barker
- School
of Physical Sciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Hsiu-Wei Cheng
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Markus Valtiner
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| |
Collapse
|
8
|
Mao X, Yang D, Xie L, Liu Q, Tang T, Zhang H, Zeng H. Probing the Interactions between Pickering Emulsion Droplets Stabilized with pH-Responsive Nanoparticles. J Phys Chem B 2021; 125:7320-7331. [PMID: 34165981 DOI: 10.1021/acs.jpcb.1c03852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence and adsorption of particles at the oil/water interface play a critical role in stabilizing Pickering emulsions and affecting their bulk behavior. For water-in-oil (W/O) and oil-in-water (O/W) Pickering emulsions with pH-responsive nanoparticles, their interaction forces and stabilization mechanisms at the nanoscale have not been reported. Herein, the Pickering emulsions formed by oil/water mixtures under different pH values with bilayer oleic acid-coated Fe3O4 nanoparticles (Fe3O4@2OA NPs) were characterized using microscopy imaging and zeta potential and interfacial tension (IFT) measurements. The interaction forces between formed emulsion droplets were quantified using an atomic force microscope (AFM) drop probe technique. A W/O emulsion formed at pH 2 and 4 is mainly stabilized by the steric barrier formation of confined particle layers (with Fe3O4@2OA NPs and aggregates). At pH 9 and 11, an O/W emulsion is formed, and its stabilization mechanism is mainly due to relatively low IFT, strong electrostatic repulsion due to carboxyl groups, and steric repulsion from confined nanoparticles and aggregates, leading to a stable confined thin water film. Increasing the maximum loading force and dwelling time enhances the confinement of Fe3O4@2OA particles and aggregates at the oil/water interface. This work provides useful insights into the interaction and stabilization mechanisms of Pickering emulsions with stimuli-responsive interface-active particles.
Collapse
Affiliation(s)
- Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Abbot V, Sharma P. Investigating thermodynamic, acoustic and spectroscopic parameters of rutin trihydrate with cationic surfactant CTAB in hydro-ethanolic solvent systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Witt H, Savić F, Verbeek S, Dietz J, Tarantola G, Oelkers M, Geil B, Janshoff A. Membrane fusion studied by colloidal probes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:223-237. [PMID: 33599795 PMCID: PMC8071799 DOI: 10.1007/s00249-020-01490-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Membrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.
Collapse
Affiliation(s)
- Hannes Witt
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
- Physics of Living Systems, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Filip Savić
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Sarah Verbeek
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Jörn Dietz
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Gesa Tarantola
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Marieelen Oelkers
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Burkhard Geil
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Pazzi J, Subramaniam AB. Nanoscale Curvature Promotes High Yield Spontaneous Formation of Cell-Mimetic Giant Vesicles on Nanocellulose Paper. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56549-56561. [PMID: 33284582 DOI: 10.1021/acsami.0c14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, techniques for the assembly of phospholipid films into cell-like giant unilamellar vesicles (GUVs) use planar surfaces and require the application of electric fields or dissolved molecules to obtain adequate yields. Here, we present the use of nanocellulose paper, which are surfaces composed of entangled cylindrical nanofibers, to promote the facile and high yield assembly of GUVs. Use of nanocellulose paper results in up to a 100 000-fold reduction in costs while increasing yields compared to extant surface-assisted assembly techniques. Quantitative measurements of yields and the distributions of sizes using large data set confocal microscopy illuminates the mechanism of assembly. We present a thermodynamic "budding and merging", BNM, model that offers a unified explanation for the differences in the yields and sizes of GUVs obtained from surfaces of varying geometry and chemistry. The BNM model considers the change in free energy due to budding by balancing the elastic, adhesion, and edge energies of a section of a surface-attached membrane that transitions into a surface-attached spherical bud. The model reveals that the formation of GUVs is spontaneous on hydrophilic surfaces consisting of entangled cylindrical nanofibers with dimensions similar to nanocellulose fibers. This work advances understanding of the effects of surface properties on the assembly of GUVs. It also addresses practical barriers that currently impede the promising use of GUVs as vehicles for the delivery of drugs, for the manufacturing of synthetic cells, and for the assembly of artificial tissues at scale.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
12
|
Abbot V, Sharma P. Thermodynamics and acoustic effects of quercetin on micellization and interaction behaviour of CTAB in different hydroethanol solvent systems. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Flavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆H
o
m
), change in entropy (∆S
o
m
) and change in Gibbs free Energy (∆G
o
m
) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Solan , India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Solan , India
| |
Collapse
|
13
|
Kan Y, Yang Q, Tan Q, Wei Z, Chen Y. Diminishing Cohesion of Chitosan Films in Acidic Solution by Multivalent Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4964-4974. [PMID: 32308004 DOI: 10.1021/acs.langmuir.0c00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a natural polymer with good biocompatibility, biodegradability, and bioactivity that has great potential for biomedical and industrial applications. Like other natural sugar-based polymers, chitosan molecules own versatile adhesion abilities to bind with various surfaces, owing to multiple functional moieties contained in the chain. To develop the promising biomaterials based on the chitosan chemistry, it is fundamentally important to figure out its adhesion mechanism under a certain condition, which leaves us numbers of open questions. In this work, we characterized the chitosan films adsorbed on a mica substrate in acidic solution and investigated the effects of multivalent salts on the cohesive behaviors of the films by means of the surface forces apparatus. The results showed that the cohesion capacities of chitosan films were reduced to around 30% of their original states after the addition of 10-7 M LaCl3 into 150 mM acetic acid, which could be partially recovered by holding the films at the contact position for a longer time. Surprisingly, the cohesion loss in the films exhibited the dependence on the properties of the metal cations including valance and concentration. The topography of the chitosan-coated surface also showed obvious aggregation in the presence of submicromolar of the salts. Here, we attributed these phenomena regarding cohesion loss to the mechanisms involved in the absorption of metal cations by the chitosan chains, which not only consumed the binding sites but also induced conformation change in the polymer network. Our findings may offer a suggestion for the production of chitosan-based materials to notice the potential impacts of ultralow concentrated salts that are usually neglected even under acidic conditions.
Collapse
Affiliation(s)
- Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Qiang Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Qiyan Tan
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhiyong Wei
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, and School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
On the rupture of thin films made from aqueous surfactant solutions. Adv Colloid Interface Sci 2020; 275:102075. [PMID: 31780044 DOI: 10.1016/j.cis.2019.102075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022]
Abstract
This short review describes the work on aqueous foam film stability with the important past contributions of Dotchi Exerowa and Dimo Platikanov, together with advances from other research groups. The review is focused on film rupture, for which few controlled experiments can be found in the literature and as a consequence, our understanding is still limited. The work on rupture of films in foams is described, together with the correlations with the rupture of isolated films. The review addresses mainly the case of aqueous films and foams, but analog studies of emulsions and emulsion films are also briefly discussed.
Collapse
|
15
|
Bilotto P, Lengauer M, Andersson J, Ramach U, Mears LLE, Valtiner M. Interaction Profiles and Stability of Rigid and Polymer-Tethered Lipid Bilayer Models at Highly Charged and Highly Adhesive Contacts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15552-15563. [PMID: 31475831 DOI: 10.1021/acs.langmuir.9b01942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding interaction force versus distance profiles of supported lipid bilayers (SLBs) is relevant to a number of areas, which rely on these model systems, including, e.g., characterization of ligand/receptor interactions or bacterial adhesion. Here, the stability of 4 different SLB architectures was compared using the surface forces apparatus (SFA) and atomic force microscopy (AFM). Specifically, the outer envelope of the bilayer systems remained constant as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The inner layer was varied between DPPC and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) both on mica, and self-assembled monolayers (SAMs) of hexadecanethiol and the polymer-tethered diphytanylglycerol-tetraethylene glycol-lipoid acid (DPhyTL) on smooth gold surfaces. In that same order these gave an increasing strength of interaction between the inner layer and the supporting substrate and hence improved stability under highly adhesive conditions. Detachment profiles from highly charged and highly adhesive contacts were characterized, and approach characteristics were fitted to DLVO models. We find increasing stability under highly adhesive loads, approaching the hydrophobic limit of the adhesive energy between the inner and outer layers for the SAM-based systems. For all four SLBs we further compare AFM surface topographies, which strongly depend on preparation conditions, and the DLVO fitting of the SFA approach curves finds a strong charge regulation behavior during interaction, dependent on the particular model system. In addition, we find undulation characteristics during approach and separation. The increased stability of the complex architectures on a gold support makes these model systems an ideal starting point for studying more complex strongly adhesive/interacting systems, including, for example, ligand/receptor interactions, biosensing interactions, or cell/surface interactions.
Collapse
Affiliation(s)
- Pierluigi Bilotto
- Institute of Applied Physics , Vienna University of Technology , Vienna 1040 , Austria
| | - Maximilian Lengauer
- Institute of Applied Physics , Vienna University of Technology , Vienna 1040 , Austria
| | | | - Ulrich Ramach
- Institute of Applied Physics , Vienna University of Technology , Vienna 1040 , Austria
- CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie , Wiener Neustadt 2700 , Austria
| | - Laura L E Mears
- Institute of Applied Physics , Vienna University of Technology , Vienna 1040 , Austria
| | - Markus Valtiner
- Institute of Applied Physics , Vienna University of Technology , Vienna 1040 , Austria
| |
Collapse
|
16
|
Cao Y, Kampf N, Klein J. Boundary Lubrication, Hemifusion, and Self-Healing of Binary Saturated and Monounsaturated Phosphatidylcholine Mixtures ⧫. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15459-15468. [PMID: 31296001 DOI: 10.1021/acs.langmuir.9b01660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide range of phosphatidylcholine (PC) lipids with different degrees of unsaturation has been identified in the human synovial fluid and on the cartilage surface. The outstanding lubricity of the articular cartilage surface has been attributed to boundary layers comprising complexes of such lipids, though to date, only lubrication by single-component PC-lipid-based boundary layers has been investigated. As distinguishable lubrication behavior has been found to be related to the PC structures, we herein examined the surface morphology (on mica) and the lubrication ability of binary PC lipid mixtures, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), using atomic force microscopy (AFM) and a surface force balance (SFB). These two PC lipids are among the most abundant saturated and unsaturated PC components in synovial joints. Small unilamellar vesicles (SUVs) prepared from DPPC-POPC mixtures (8:2, 5:5, and 2:8, molar ratios) ruptured and formed bilayers on mica. The normal and shear forces between two DPPC-POPC bilayer-coated mica surfaces across the corresponding SUV dispersions show good boundary lubrication (friction coefficients ≤ ca. 10-4) up to contact stresses of 8.3 ± 2.2 MPa for 8:2 DPPC-POPC and 5.0 ± 1.7 MPa for the others. Hemifusion induced at high normal pressures was observed, probably because of the height mismatch of two components. Reproducible successive approaches after hemifusion indicate rapid self-healing of the mica-supported bilayers in the presence of the SUVs reservoir. This work is a first step to provide insight concerning the lubrication, wear, and healing of the PC-based boundary layers, which must consist of multicomponent lipid mixtures, on the articular cartilage surface.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Nir Kampf
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jacob Klein
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
17
|
Dyett BP, Yu H, Strachan J, Drummond CJ, Conn CE. Fusion dynamics of cubosome nanocarriers with model cell membranes. Nat Commun 2019; 10:4492. [PMID: 31582802 PMCID: PMC6776645 DOI: 10.1038/s41467-019-12508-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Drug delivery with nanocarriers relies on the interaction of individual nanocarriers with the cell surface. For lipid-based NCs, this interaction uniquely involves a process of membrane fusion between the lipid bilayer that makes up the NC and the cell membrane. Cubosomes have emerged as promising fusogenic NCs, however their individual interactions had not yet been directly observed due to difficulties in achieving adequate resolution or disentangling multiple interactions with common characterization techniques. Moreover, many studies on these interactions have been performed under static conditions which may not mimic the actual transport of NCs. Herein we have observed fusion of lipid cubosome NCs with lipid bilayers under flow. Total internal reflection microscopy has allowed visualisation of the fusion event which was sensitive to the lipid compositions and rationalized by lipid diffusion. The fusion event in supported lipid bilayers has been compared with those in cells, revealing a distinct similarity in kinetics.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| | - Haitao Yu
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| | - Jamie Strachan
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Thurn H, Hoffmann H. Evidence of Sticky Contacts between Wormlike Micelles in Viscoelastic Surfactant Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12192-12204. [PMID: 31441659 DOI: 10.1021/acs.langmuir.9b02120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many cationic surfactants form highly viscoelastic solutions at concentrations of only a few percent. These solutions contain wormlike micelles (WLM) which can be several micrometers long. The structural relaxation time, τs in these solutions can be as long as many seconds, and the zero-shear viscosity can be in the range of 106 Pas. Electric birefringence measurements on such solutions showed four different relaxation times with increasing concentration. The two shortest ones, τ1 and τ2 in the μs region were due to the alignment of small rodlike or ringlike micelles. The third one, τ3, was observed in the viscoelastic region in the ms region and finally, a fourth one, τ4, which was the same as the structural relaxation time, τs. In this article, it is shown that the τ3 process is due to the formation and opening of contacts between the WLM. The reason for the contacts is the attraction between the WLM which is due to the hydrophobic surfaces of the micelles. The contacts crosslink the WLM and thus form a three-dimensional network. This network is the reason for the high viscosity and viscoelastic properties of the samples. If the attraction between the WLM is reduced by adding glycerol to the solution, the viscosity of the solution breaks down. The same happens if the surface of the WLM is made hydrophilic by the addition of small amphiphilic molecules. The WLM are not destroyed by these procedures.
Collapse
|
19
|
Kurniawan J, Ventrici de Souza JF, Dang AT, Liu GY, Kuhl TL. Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir-Blodgett Deposition: A Tutorial. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15622-15639. [PMID: 30465730 DOI: 10.1021/acs.langmuir.8b03504] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structure, phase behavior, and properties of cellular membranes are derived from their composition, which includes phospholipids, sphingolipids, sterols, and proteins with various levels of glycosylation. Because of the intricate nature of cellular membranes, a plethora of in vitro studies have been carried out with model membrane systems that capture particular properties such as fluidity, permeability, and protein binding but vastly simplify the membrane composition in order to focus in detail on a specialized property or function. Supported lipid bilayers (SLB) are widely used as archetypes for cellular membranes, and this instructional review primarily focuses on the preparation and characterization of SLB systems formed by Langmuir deposition methods. Typical characterization methods, which take advantage of the planar orientation of SLBs, are illustrated, and references that go into more depth are included. This invited instructional review is written so that nonexperts can quickly gain in-depth knowledge regarding the preparation and characterization of SLBs. In addition, this work goes beyond traditional instructional reviews to provide expert readers with new results that cover a wider range of SLB systems than those previously reported in the literature. The quality of an SLB is frequently not well described, and details such as topological defects can influence the results and conclusions of an individual study. This article quantifies and compares the quality of SLBs fabricated from a variety of gel and fluid compositions, in correlation with preparation techniques and parameters, to generate general rules of thumb to guide the construction of designed SLB systems.
Collapse
|
20
|
Lee DW. Revisiting the Interaction Force Measurement between Lipid Bilayers Using a Surface Forces Apparatus (SFA). J Oleo Sci 2018; 67:1361-1372. [PMID: 30404956 DOI: 10.5650/jos.ess18088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology
| |
Collapse
|
21
|
Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R. Phases of the exocytotic fusion pore. FEBS Lett 2018; 592:3532-3541. [PMID: 30169901 DOI: 10.1002/1873-3468.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Membrane fusion and fission are fundamental processes in living organisms. Membrane fusion occurs through the formation of a fusion pore, which is the structure that connects two lipid membranes during their fusion. Fusion pores can form spontaneously, but cells endow themselves with a set of proteins that make the process of fusion faster and regulatable. The fusion pore starts with a narrow diameter and dilates relatively slowly; it may fluctuate in size or can even close completely, producing a transient vesicle fusion (kiss-and-run), or can finally expand abruptly to release all vesicle contents. A set of proteins control the formation, dilation, and eventual closure of the fusion pore and, therefore, the velocity at which the contents of secretory vesicles are released to the extracellular medium. Thus, the regulation of fusion pore expansion or closure is key to regulate the release of neurotransmitters and hormones. Here, we review the phases of the fusion pore and discuss the implications in the modes of exocytosis.
Collapse
Affiliation(s)
| | - María Ángeles Montes
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Pablo Montenegro
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| |
Collapse
|
22
|
Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, Elani Y. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat Commun 2018; 9:1882. [PMID: 29760422 PMCID: PMC5951844 DOI: 10.1038/s41467-018-04282-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components. Assembly of higher-order artificial vesicles can unlock new applications. Here, the authors use optical tweezers to construct user-defined 2D and 3D architectures of chemically distinct vesicles and demonstrate inter-vesicle communication and light-enabled compartment merging.
Collapse
Affiliation(s)
- Guido Bolognesi
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Mark S Friddin
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ali Salehi-Reyhani
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Yuval Elani
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
24
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
25
|
Bu B, Tian Z, Li D, Ji B. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore. Front Mol Neurosci 2016; 9:136. [PMID: 28018169 PMCID: PMC5145871 DOI: 10.3389/fnmol.2016.00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process.
Collapse
Affiliation(s)
- Bing Bu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| | - Zhiqi Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Dechang Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| |
Collapse
|
26
|
Lettieri R, Di Giorgio F, Colella A, Magnusson R, Bjorefors F, Placidi E, Palleschi A, Venanzi M, Gatto E. DPPTE Thiolipid Self-Assembled Monolayer: A Critical Assay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11560-11572. [PMID: 27689538 DOI: 10.1021/acs.langmuir.6b01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supported lipid membranes represent an elegant way to design a fluid interface able to mimic the physicochemical properties of biological membranes, with potential biotechnological applications. In this work, a diacyl phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE), functionalized with a thiol group, was immobilized on a gold surface. In this molecule, the thiol group, responsible for the Au-S bond (45 kJ/mol) is located on the phospholipid polar head, letting the hydrophobic chain protrude from the film. This system is widely used in the literature but is no less challenging, since its characterization is not complete, as several discordant data have been obtained. In this work, the film was characterized by cyclic voltammetry blocking experiments, to verify the SAM formation, and by reductive desorption measurements, to estimate the molecular density of DPPTE on the gold surface. This value has been compared to that obtained by quartz crystal microbalance measurements. Ellipsometry and impedance spectroscopy measurements have been performed to obtain information about the monolayer thickness and capacitance. The film morphology was investigated by atomic force microscopy. Finally, Monte Carlo simulations were carried out, in order to gain molecular information about the morphologies of the DPPTE SAM and compare them to the experimental results. We demonstrate that DPPTE molecules, incubated 18 h below the phase transition temperature (T = 41.1 ± 0.4 °C) in ethanol solution, are able to form a self-assembled monolayer on the gold surface, with domain structures of different order, which have never been reported before. Our results make possible rationalization of the scattered results so far obtained on this system, giving a new insight into the formation of phospholipids SAMs on a gold surface.
Collapse
Affiliation(s)
- Raffaella Lettieri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Floriana Di Giorgio
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Alessandra Colella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Roger Magnusson
- Department of Physics, Chemistry and Biology (IFM), University of Linköping , 581 83 Linköping, Sweden
| | - Fredrik Bjorefors
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 538, SE-75121 Uppsala, Sweden
| | - Ernesto Placidi
- Institute of Structure of Matter, CNR, Department of Physics, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Mariano Venanzi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| |
Collapse
|
27
|
SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Proc Natl Acad Sci U S A 2016; 113:13051-13056. [PMID: 27807132 DOI: 10.1073/pnas.1615885113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fusion of lipid bilayers is usually prevented by large energy barriers arising from removal of the hydration shell, formation of highly curved structures, and, eventually, fusion pore widening. Here, we measured the force-dependent lifetime of fusion intermediates using membrane-coated silica spheres attached to cantilevers of an atomic-force microscope. Analysis of time traces obtained from force-clamp experiments allowed us to unequivocally assign steps in deflection of the cantilever to membrane states during the SNARE-mediated fusion with solid-supported lipid bilayers. Force-dependent lifetime distributions of the various intermediate fusion states allowed us to propose the likelihood of different fusion pathways and to assess the main free energy barrier, which was found to be related to passing of the hydration barrier and splaying of lipids to eventually enter either the fully fused state or a long-lived hemifusion intermediate. The results were compared with SNARE mutants that arrest adjacent bilayers in the docked state and membranes in the absence of SNAREs but presence of PEG or calcium. Only with the WT SNARE construct was appreciable merging of both bilayers observed.
Collapse
|
28
|
Ghosh A, Bandyopadhyay D, Sharma A. Influence of the mutable kinetic parameters on the adhesion and debonding of thin viscoelastic films. J Colloid Interface Sci 2016; 477:109-22. [DOI: 10.1016/j.jcis.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/03/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
|
29
|
Frost SJ, Mawad D, Hook J, Lauto A. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair. Adv Healthc Mater 2016; 5:401-14. [PMID: 26725593 DOI: 10.1002/adhm.201500589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring.
Collapse
Affiliation(s)
- Samuel J. Frost
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
| | - D. Mawad
- Department of Materials; Imperial College London; SW7 2AZ UK
- School of Materials Science and Engineering; University of New South Wales; Sydney 2052 Australia
| | - J. Hook
- School of Chemistry; University of New South Wales; Sydney 2052 Australia
| | - Antonio Lauto
- School of Science and Health; University of Western Sydney; Penrith NSW 2751 Australia
- The Biomedical Engineering and Neuroscience (BENS) Research Group; The MARCS Institute; Penrith NSW 2751 Australia
| |
Collapse
|
30
|
Thewes N, Thewes A, Loskill P, Peisker H, Bischoff M, Herrmann M, Santen L, Jacobs K. Stochastic binding of Staphylococcus aureus to hydrophobic surfaces. SOFT MATTER 2015; 11:8913-8919. [PMID: 26294050 DOI: 10.1039/c5sm00963d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential.
Collapse
Affiliation(s)
- Nicolas Thewes
- Experimental Physics, Saarland University, Campus E2 9, D-66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. Towards understanding of nanoparticle–protein corona. Arch Toxicol 2015; 89:519-39. [DOI: 10.1007/s00204-015-1458-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
|
33
|
Thewes N, Loskill P, Jung P, Peisker H, Bischoff M, Herrmann M, Jacobs K. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1501-12. [PMID: 25247133 PMCID: PMC4168904 DOI: 10.3762/bjnano.5.163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/25/2023]
Abstract
Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces.
Collapse
Affiliation(s)
- Nicolas Thewes
- Experimental Physics, Campus E2 9, Saarland University, D-66123 Saarbrücken, Germany
| | - Peter Loskill
- Experimental Physics, Campus E2 9, Saarland University, D-66123 Saarbrücken, Germany
- Present address: Dept. of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany
| | - Henrik Peisker
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany
| | - Karin Jacobs
- Experimental Physics, Campus E2 9, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Blockage of coalescence of water droplets in asphaltenes solutions: A jamming perspective. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Everett WN, Bevan MA. kT-Scale interactions between supported lipid bilayers. SOFT MATTER 2014; 10:332-342. [PMID: 24652312 DOI: 10.1039/c3sm52200h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We use total internal reflection microscopy (TIRM) and confocal laser scanning microscopy (CSLM) to study supported lipid bilayer (SLB)-modified silica colloids with various SLB compositions (e.g., PEGylated vs. non-PEGylated) that control colloidal and bilayer stability. Measured and predicted potentials accurately capture stable configurations. For unstable conditions when SLBs adhere, fuse, or spread between surfaces, SLB structures are connected to effective potentials as well as time-dependent behavior. In all cases, directly measured and inferred interactions are well described by steric interactions between PEG brushes and van der Waals weakened by substrate roughness. Our findings quantify non-specific kT-scale interactions between SLB-modified colloids and surfaces, which enables the design of such systems for use in biomedical applications and studies of biomolecular interactions.
Collapse
Affiliation(s)
- W Neil Everett
- Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
36
|
Barthel E, Roquigny R, Serreau L, Denoyel R, Clerc-Imperor M, Drummond C. Contact interaction of double-chained surfactant layers on silica: bilayer rupture and capillary bridge formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14473-14481. [PMID: 24171391 DOI: 10.1021/la403044x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The contact between two layers of double-chained C18 surfactants adsorbed on silica has been investigated. Using a custom-made surface forces apparatus with high stiffness, we have studied the process of (1) compression and collapse of the layers and (2) surface separation after layer collapse. A continuum mechanics model accounts for the compression and collapse of the surfactant layers. The layer compressibility and molecular energy of rupture can be inferred directly. When the surfaces are rinsed in deionized water, an intriguing structural force is observed: the resulting attractive interaction induces the diffusion of surfactant to the contact area, with the gradual buildup of a capillary bridge of the pure smectic phase of the surfactant. Models are proposed to analyze the force profile.
Collapse
Affiliation(s)
- Etienne Barthel
- Surface du Verre et Interfaces, CNRS/Saint-Gobain , BP 135, 93303 Aubervilliers Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Membrane fusion and vesicular transformation induced by Alzheimer's amyloid beta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1314-21. [DOI: 10.1016/j.bbamem.2013.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/21/2022]
|
38
|
Orozco-Alcaraz R, Kuhl TL. Interaction forces between DPPC bilayers on glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:337-43. [PMID: 23199333 PMCID: PMC3576029 DOI: 10.1021/la3039329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The surface force apparatus (SFA) was utilized to obtain force-distance profiles between silica-supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long-range electrostatic repulsion and short-range steric repulsion are measured as a result of the deprotonation of silica in water and the roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane, and a van der Waals adhesion comparable to that measured with well-packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass-supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to the stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to physisorption to rougher silica.
Collapse
Affiliation(s)
- Raquel Orozco-Alcaraz
- University of California Davis. Department of Chemical Engineering and Materials Science, One Shields Avenue, Davis CA 95616
| | - Tonya L. Kuhl
- University of California Davis. Department of Chemical Engineering and Materials Science, One Shields Avenue, Davis CA 95616
| |
Collapse
|
39
|
Mosapour Kotena Z, Behjatmanesh-Ardakani R, Hashim R, Manickam Achari V. Hydrogen bonds in galactopyranoside and glucopyranoside: a density functional theory study. J Mol Model 2012; 19:589-99. [DOI: 10.1007/s00894-012-1576-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
40
|
Destabilizing giant vesicles with electric fields: an overview of current applications. J Membr Biol 2012; 245:555-64. [PMID: 22864479 DOI: 10.1007/s00232-012-9467-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/24/2012] [Indexed: 10/28/2022]
Abstract
This review presents an overview of the effects of electric fields on giant unilamellar vesicles. The application of electrical fields leads to three basic phenomena: shape changes, membrane breakdown, and uptake of molecules. We describe how some of these observations can be used to measure a variety of physical properties of lipid membranes or to advance our understanding of the phenomena of electropermeabilization. We also present results on how electropermeabilization and other liposome responses to applied fields are affected by lipid composition and by the presence of molecules of therapeutic interest in the surrounding solution.
Collapse
|
41
|
Banquy X, Kristiansen K, Lee DW, Israelachvili JN. Adhesion and hemifusion of cytoplasmic myelin lipid membranes are highly dependent on the lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:402-10. [PMID: 22047743 PMCID: PMC3273667 DOI: 10.1016/j.bbamem.2011.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/18/2022]
Abstract
We report the effects of calcium ions on the adhesion and hemifusion mechanisms of model supported myelin lipid bilayer membranes of differing lipid composition. As in our previous studies Min et al. [1,2], the lipid compositions used mimic "healthy" and "diseased-like" (experimental autoimmune encephalomyelitis, EAE) membranes. Our results show that the interaction forces as a function of membrane separation distance are well described by a generic model that also (and in particular) includes the hydrophobic interaction arising from the hydrophobically exposed (interior) parts of the bilayers. The model is able to capture the mechanical instability that triggers the onset of the hemifusion event, and highlights the primary role of the hydrophobic interaction in membrane fusion. The effects of lipid composition on the fusion mechanism, and the adhesion forces between myelin lipid bilayers, can be summarized as follows: in calcium-free buffer, healthy membranes do not present any signs of adhesion or hemifusion, while diseased membranes hemifuse easily. Addition of 2mM calcium favors adhesion and hemifusion of the membranes independently of their composition, but the mechanisms involved in the two processes were different: healthy bilayers systematically presented stronger adhesion forces and lower energy barriers to fusion compared to diseased bilayers. These results are of particular relevance for understanding lesion development (demyelination, swelling, vacuolization and/or vesiculation) in myelin associated diseases such as multiple sclerosis and its relationship to lipid domain formation in myelin membranes.
Collapse
Affiliation(s)
- Xavier Banquy
- Department of Chemical Engineering, University of California at Santa Barbara, CA 93106, USA
| | - Kai Kristiansen
- Department of Chemical Engineering, University of California at Santa Barbara, CA 93106, USA
| | - Dong Woog Lee
- Department of Chemical Engineering, University of California at Santa Barbara, CA 93106, USA
| | - Jacob N. Israelachvili
- Department of Chemical Engineering, University of California at Santa Barbara, CA 93106, USA
- Materials Department, University of California at Santa Barbara, CA 93106, USA
| |
Collapse
|
42
|
Langevin D, Marquez-Beltran C, Delacotte J. Surface force measurements on freely suspended liquid films. Adv Colloid Interface Sci 2011; 168:124-34. [PMID: 21561596 DOI: 10.1016/j.cis.2011.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
This paper reviews existing studies of freely suspended liquid films, focusing on the role of the forces between surfaces. The important role of kinetics phenomena is discussed. Examples of studies making use of solutions containing surfactants, proteins and particles are compared. The different aspects of film lifetime are discussed, from film formation to film rupture. A comparison with the few existing theories is also made.
Collapse
|
43
|
Programming the Cellular Uptake of Physiologically Stable Peptide-Gold Nanoparticle Hybrids with Single Amino Acids. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Yang H, Fung SY, Liu M. Programming the cellular uptake of physiologically stable peptide-gold nanoparticle hybrids with single amino acids. Angew Chem Int Ed Engl 2011; 50:9643-6. [PMID: 21948562 DOI: 10.1002/anie.201102911] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Indexed: 01/24/2023]
Affiliation(s)
- Hong Yang
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, M5G 1L7, Canada
| | | | | |
Collapse
|
45
|
General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers. Proc Natl Acad Sci U S A 2011; 108:15699-704. [PMID: 21896718 DOI: 10.1073/pnas.1112411108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We establish and quantify correlations among the molecular structures, interaction forces, and physical processes associated with light-responsive self-assembled surfactant monolayers or bilayers at interfaces. Using the surface forces apparatus (SFA), the interaction forces between adsorbed monolayers and bilayers of an azobenzene-functionalized surfactant can be drastically and controllably altered by light-induced conversion of trans and cis molecular conformations. These reversible conformation changes affect significantly the shape of the molecules, especially in the hydrophobic region, which induces dramatic transformations of molecular packing in self-assembled structures, causing corresponding modulation of electrostatic double layer, steric hydration, and hydrophobic interactions. For bilayers, the isomerization from trans to cis exposes more hydrophobic groups, making the cis bilayers more hydrophobic, which lowers the activation energy barrier for (hemi)fusion. A quantitative and general model is derived for the interaction potential of charged bilayers that includes the electrostatic double-layer force of the Derjaguin-Landau-Verwey-Overbeek theory, attractive hydrophobic interactions, and repulsive steric-hydration forces. The model quantitatively accounts for the elastic strains, deformations, long-range forces, energy maxima, adhesion minima, as well as the instability (when it exists) as two bilayers breakthrough and (hemi)fuse. These results have several important implications, including quantitative and qualitative understanding of the hydrophobic interaction, which is furthermore shown to be a nonadditive interaction.
Collapse
|
46
|
Raudino A, Pannuzzo M. Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles. J Chem Phys 2010; 132:045103. [DOI: 10.1063/1.3290823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
47
|
Lagleize JM, Richetti P, Drummond C. Delamination and renovation of a molecular surfactant-polymer boundary lubricant film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11472-11479. [PMID: 19722607 DOI: 10.1021/la901237q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have studied the behavior under compression and shear of two molecularly smooth mica surfaces immersed in aqueous solutions of a dimeric cationic surfactant and an oppositely charged polyelectrolyte-neutral diblock copolymer by using a surface force apparatus-nanotribometer, SFA-N. The surfactant and copolymer coadsorb as a mix molecular boundary lubricant film on the negatively charged mica surfaces leading to low friction in a sliding mechanical contact. However, under fritting conditions, shearing can induce different dynamic transitions of the confined films. Transitions from the initial low friction steady state to new steady states of low or high friction can be induced when the sliding velocity is increased above certain values. These dynamical transitions occur together with thickness reduction of the confined film. A reverse transition to the low friction steady state accompanied by the renovation of the film can be triggered by reintroducing some matter in the contact, via increasing the amplitude of the fritting cycles.
Collapse
Affiliation(s)
- J-M Lagleize
- Université de Bordeaux, Centre de Recherche Paul Pascal, UPR8641 CNRS Avenue Schweitzer, 33600 Pessac Cedex, France
| | | | | |
Collapse
|
48
|
Adsorption and onset of lubrication by a double-chained cationic surfactant on silica surfaces. J Colloid Interface Sci 2009; 332:382-8. [DOI: 10.1016/j.jcis.2008.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 11/18/2022]
|
49
|
Beauvais M, Serreau L, Heitz C, Barthel E. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces? J Colloid Interface Sci 2009; 331:178-84. [PMID: 19059599 DOI: 10.1016/j.jcis.2008.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.
Collapse
Affiliation(s)
- Muriel Beauvais
- Laboratoire Surface du Verre et Interfaces, UMR 125, CNRS/Saint-Gobain, 39 Quai Lucien Lefranc, B.P. 135, F-93303 Aubervilliers cedex, France.
| | | | | | | |
Collapse
|
50
|
Kashiwada A, Tsuboi M, Matsuda K. Target-selective vesicle fusion induced by molecular recognition on lipid bilayers. Chem Commun (Camb) 2009:695-7. [DOI: 10.1039/b815688c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|