1
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
3
|
Deshmukh SS, Magcalas FW, Kalbfleisch KN, Carpick BW, Kirkitadze MD. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation. J Pharm Biomed Anal 2018; 157:235-243. [PMID: 29866391 DOI: 10.1016/j.jpba.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/01/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31®, is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31® adjuvant, inducing an increase in both the β-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31®. Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption.
Collapse
Affiliation(s)
- Sasmit S Deshmukh
- Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada; SGS Canada, Biopharmaceutical Services, 6490 Vipond Drive, Mississauga, ON, L5T 1W8, Canada
| | - Federico Webster Magcalas
- Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada; Biotechnology Advanced Program, Seneca College, 70 The Pond Road, Toronto, ON, M3J 3M6, Canada
| | - Kristen N Kalbfleisch
- Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada; Biotechnology Advanced Program, Seneca College, 70 The Pond Road, Toronto, ON, M3J 3M6, Canada
| | - Bruce W Carpick
- Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada
| | - Marina D Kirkitadze
- Sanofi Pasteur Ltd., 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, Canada.
| |
Collapse
|
4
|
Hasni I, Yaakoubi H, Hamdani S, Tajmir-Riahi HA, Carpentier R. Mechanism of interaction of Al3+ with the proteins composition of photosystem II. PLoS One 2015; 10:e0120876. [PMID: 25806795 PMCID: PMC4373732 DOI: 10.1371/journal.pone.0120876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.
Collapse
Affiliation(s)
- Imed Hasni
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Hnia Yaakoubi
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Saber Hamdani
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Heidar-Ali Tajmir-Riahi
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Robert Carpentier
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| |
Collapse
|
5
|
Lai KK, Renneberg R, Mak WC. Bioinspired protein microparticles fabrication by peptide mediated disulfide interchange. RSC Adv 2014. [DOI: 10.1039/c4ra00102h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bioinspired green chemistry approach for the fabrication of pure protein microparticles based on peptide mediated disulfide interchange reactions.
Collapse
Affiliation(s)
- Kwok Kei Lai
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Reinhard Renneberg
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Wing Cheung Mak
- Department of Physics, Chemistry and Biology
- Biosensors and Bioelectronics Centre
- Linköping University
- 58183 Linköping, Sweden
- Department of Clinical and Experimental Medicine
| |
Collapse
|
6
|
Young SL, Gupta M, Hanske C, Fery A, Scheibel T, Tsukruk VV. Utilizing Conformational Changes for Patterning Thin Films of Recombinant Spider Silk Proteins. Biomacromolecules 2012; 13:3189-99. [DOI: 10.1021/bm300964h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Seth L. Young
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maneesh Gupta
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christoph Hanske
- Physical Chemistry II, University of Bayreuth, Universitätsstrasse
30, 95447 Bayreuth, Germany
| | - Andreas Fery
- Physical Chemistry II, University of Bayreuth, Universitätsstrasse
30, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, FAN, University of Bayreuth, Universitätsstrasse
30, 95447 Bayreuth, Germany
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Joly D, Govindachary S, Fragata M. Photosystem II reconstitution into proteoliposomes and methodologies for structure-function characterization. Methods Mol Biol 2011; 684:217-45. [PMID: 20960133 DOI: 10.1007/978-1-60761-925-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the photosystem II (PSII) reconstitution into proteoliposomes. In the first part of the chapter, protocols are outlined for the preparation of lipid bilayer vesicles (liposomes) constituted of individual thylakoid lipids or their mixtures, for the preparation of PSII particles, and for the incorporation of the PSII particles into the liposomes. In the second part of the chapter, methodologies are described for the structure-function characterization of the PSII-lipid complexes (proteoliposomes). This includes the sodium dodecylsulfate-polyacrylamide gel electrophoresis determination of the PSII proteins, the measurement of oxygen-evolving activity of PSII in the proteoliposomes, the study of structural changes of the PSII proteins upon their incorporation into the lipid bilayers by Fourier transform infrared (FT-IR) spectroscopy, and the characterization of the PSII activity by fluorescence induction.
Collapse
Affiliation(s)
- David Joly
- Département de chimie biologie (GRBV), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | |
Collapse
|
8
|
Kumauchi M, Kaledhonkar S, Philip AF, Wycoff J, Hara M, Li Y, Xie A, Hoff WD. A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein. J Am Chem Soc 2010; 132:15820-30. [PMID: 20954744 PMCID: PMC2999845 DOI: 10.1021/ja107716r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAS domains form a divergent protein superfamily with more than 20 000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only nine residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these nine conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side-chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pK(a). Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side-chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high-resolution structures of PAS domains reveals that the side-chain hydrogen bonding of residue 43 but not residue identity is highly conserved and suggests that its helical cap affects signaling kinetics in other PAS domains.
Collapse
Affiliation(s)
- Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Andrew F. Philip
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| | - James Wycoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Yunxing Li
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
9
|
van der Horst MA, Stalcup TP, Kaledhonkar S, Kumauchi M, Hara M, Xie A, Hellingwerf KJ, Hoff WD. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis. J Am Chem Soc 2010; 131:17443-51. [PMID: 19891493 DOI: 10.1021/ja9057103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with photochemistry based on trans to cis isomerization of its p-coumaric acid (pCA) chromophore. The addition of trans-locked pCA to I. loihiensis increases biofilm formation, whereas cis-locked pCA decreases it. This demonstrates that the PYP homologue regulates biofilm formation in I. loihiensis, revealing an unexpected functional versatility in the PYP family of photoreceptors. These results imply that I. loihiensis thrives not only in the deep sea but also near the water surface and provide an example of genome-based discovery of photophysiological responses. The use of locked pCA analogs is a novel and generally applicable pharmacochemical tool to study the in vivo role of PYPs irrespective of genetic accessibility. Heterologously produced PYP from I. loihiensis (Il PYP) absorbs maximally at 446 nm and has a pCA pK(a) of 3.4. Photoexcitation triggers the formation of a pB signaling state that decays with a time constant of 0.3 s. FTIR difference signals at 1726 and 1497 cm(-1) reveal that active-site proton transfer during the photocycle is conserved in Il PYP. It has been proposed that a correlation exists between the lifetime of a photoreceptor signaling state and the time scale of the biological response that it regulates. The data presented here provide an example of a protein with a rapid photocycle that regulates a slow biological response.
Collapse
Affiliation(s)
- Michael A van der Horst
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Huesgen PF, Schuhmann H, Adamska I. Deg/HtrA proteases as components of a network for photosystem II quality control in chloroplasts and cyanobacteria. Res Microbiol 2009; 160:726-32. [PMID: 19732828 DOI: 10.1016/j.resmic.2009.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/16/2022]
Abstract
Organisms that perform oxygenic photosynthesis are subjected to photoinhibition of their photosynthetic function when exposed to excessive illumination. The main target of photoinhibition is the D1 protein in the reaction center of the photosystem II complex. Rapid degradation of photodamaged D1 protein and its replacement by a de novo synthesized functional copy represent an important repair mechanism crucial for cell survival under light stress conditions. This review summarizes the literature on the ATP-independent Deg/HtrA family of serine endopeptidases in cyanobacteria and chloroplasts of higher plants, and discusses their role in D1 protein degradation. We propose that Deg/HtrA proteases are part of a larger network of enzymes that ensure protein quality control, including photosystem II, in plants and cyanobacteria.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Department of Plant Physiology and Biochemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
11
|
Sayeed WMH, Baenziger JE. Structural characterization of the osmosensor ProP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1108-15. [PMID: 19366597 DOI: 10.1016/j.bbamem.2009.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/09/2009] [Accepted: 01/21/2009] [Indexed: 11/20/2022]
Abstract
ProP, an osmoprotectant symporter from the major facilitator superfamily was expressed, purified and reconstituted into proteoliposomes that are amenable to structural characterization using infrared spectroscopy. Infrared spectra recorded in both (1)H(2)O and (2)H(2)O buffers reveal amide I band shapes that are characteristic of a predominantly alpha-helical protein, and that are similar to those recorded from the well-characterized homolog, lactose permease (LacY). Curve-fit analysis shows that ProP and LacY both exhibit a high alpha-helical content. Both proteins undergo extensive peptide hydrogen-deuterium exchange after exposure to (2)H(2)O, but are surprisingly thermally stable with denaturation temperatures greater than 60 degrees C. 25-30% of the peptide hydrogens in both ProP and LacY are resistant to exchange after 72 h in (2)H(2)O at 4 degrees C. Surprisingly, these exchange resistant peptide hydrogens exchange completely for deuterium at temperatures below those that lead to denaturation. Our results show that ProP adopts a highly alpha-helical fold similar to that of LacY, and that both transmembrane folds exhibit unusually high temperature-sensitive solvent accessibility. The results provide direct evidence that ProP adopts a structure consistent with other major facilitator superfamily members.
Collapse
Affiliation(s)
- Wajid M H Sayeed
- Department of Biochemistry, University of Ottawa, 451 Smyth Rd., Ottawa, Ontario, Canada K1H 8M5
| | | |
Collapse
|
12
|
Infrared spectroscopic characterization of copper–polyhistidine from 1,800 to 50 cm−1: model systems for copper coordination. J Biol Inorg Chem 2008; 14:23-34. [DOI: 10.1007/s00775-008-0421-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
|
13
|
Seabourn BW, Chung OK, Seib PA, Mathewson PR. Determination of secondary structural changes in gluten proteins during mixing using Fourier transform horizontal attenuated total reflectance spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4236-4243. [PMID: 18489117 DOI: 10.1021/jf703569b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fourier transform horizontal attenuated total reflectance (FT-HATR) was used to examine changes in the secondary structure of gluten proteins in a flour-water dough system during mixing. Midinfrared spectra of mixed dough revealed changes in four bands in the amide III region associated with secondary structure in proteins: 1317 (alpha-helix), 1285 (beta-turn), 1265 (random coil), and 1242 cm (-1) (beta-sheet). The largest band, which also showed the greatest change in second derivative band area (SDBA) during mixing, was located at 1242 cm (-1). The bands at 1317 and 1285 cm (-1) also showed an increase in SDBA over time. Conversely, the band at 1265 cm (-1) showed a corresponding decrease over time as the doughs were mixed. All bands reached an optimum corresponding to the minimum mobility of the dough as determined by the mixograph. Increases in alpha-helix, beta-turn, and beta-sheet secondary structures during mixing suggest that the dough proteins assume a more ordered conformation. These results demonstrate that it is possible, using infrared spectroscopic techniques, to relate the rheological behavior of developing dough in a mixograph directly to changes in the structure of the gluten protein system.
Collapse
Affiliation(s)
- Bradford W Seabourn
- Grain Marketing & Production Research Center, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, Kansas 66502, USA.
| | | | | | | |
Collapse
|
14
|
Beauchemin R, Harnois J, Rouillon R, Tajmir-Riahi H, Carpentier R. Interaction of polyamines with proteins of photosystem II: Cation binding and photosynthetic oxygen evolution. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Xiao H, Xie Y, Liu Q, Xu X, Shi C. The studies of FT-IR and CD spectroscopy on catechol oxidase I from tobacco. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:2840-8. [PMID: 16165022 DOI: 10.1016/j.saa.2004.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 10/23/2004] [Accepted: 10/25/2004] [Indexed: 05/04/2023]
Abstract
A novel copper-containing enzyme named COI (catechol oxidase I) has been isolated and purified from tobacco by extracting acetone-emerged powder with phosphate buffer, centrifugation at low temperature, ammonium sulfate fractional precipitation, and column chromatography on DEAE-sephadex (A-50), sephadex (G-75), and DEAE-celluse (DE-52). PAGE, SDS-PAGE were used to detect the enzyme purity, and to determine its molecular weight. Then the secondary structures of COI at different pH, different temperatures and different concentrations of guanidine hydrochloride (GdnHCl) were studied by the FT-IR, Fourier self-deconvolution spectra, and circular dichroism (CD). At pH 2.0, the contents of both alpha-helix and anti-parallel beta-sheet decrease, and that of random coil increases, while beta-turn is unchanged compared with the neutral condition (pH 7.0). At pH 11.0, the results indicate that the contents of alpha-helix, anti-parallel beta-sheet and beta-turn decrease, while random coil structure increases. According to the CD measurements, the relative average fractions of alpha-helix, anti-parallel beta-sheet, beta-turn/parallel beta-sheet, aromatic residues and disulfide bond, and random coil/gamma-turn are 41.7%, 16.7%, 23.5%, 11.3%, and 6.8% at pH 7.0, respectively, while 7.2%, 7.7%, 15.2%, 10.7%, 59.2% at pH 2.0, and 20.6%, 9.5%, 15.2%, 10.5%, 44.2% at pH 11.0. Both alpha-helix and random coil decrease with temperature increasing, and anti-parallel beta-sheet increases at the same time. After incubated in 6 mol/L guanidine hydrochloride for 30 min, the fraction of alpha-helix almost disappears (only 1.1% left), while random coil/gamma-turn increases to 81.8%, which coincides well with the results obtained through enzymatic activity experiment.
Collapse
Affiliation(s)
- Hourong Xiao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | | | | | | | | |
Collapse
|
16
|
Shi C, Dai Y, Liu Q, Xie Y, Xu X. The FT-IR spectrometric analysis of the changes of polyphenol oxidase II secondary structure. J Mol Struct 2003. [DOI: 10.1016/s0022-2860(02)00471-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Silva P, Choi YJ, Hassan HAG, Nixon PJ. Involvement of the HtrA family of proteases in the protection of the cyanobacterium Synechocystis PCC 6803 from light stress and in the repair of photosystem II. Philos Trans R Soc Lond B Biol Sci 2002; 357:1461-7; discussion 1467-70. [PMID: 12437885 PMCID: PMC1693057 DOI: 10.1098/rstb.2002.1146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosystem II (PSII) is prone to irreversible light-induced damage, with the D1 polypeptide a major target. Repair processes operate in the cell to replace a damaged D1 subunit within the complex with a newly synthesized copy. As yet, the molecular details of PSII repair are relatively obscure despite the critical importance of this process for maintaining PSII activity and cell viability. We are using the cyanobacterium Synechocystis sp. PCC 6803 to identify the various proteases and chaperones involved in D1 turnover in vivo. Two families of proteases are being studied: the FtsH family (four members) of Zn(2+)-activated nucleotide-dependent proteases; and the HtrA (or DegP) family (three members) of serine-type proteases. In this paper, we report the results of our studies on a triple mutant in which all three copies of the htrA gene family have been inactivated. Growth of the mutant on agar plates was inhibited at high light intensities, especially in the presence of glucose. Oxygen evolution measurements indicated that, under conditions of high light, the rate of synthesis of functional PSII was less in the mutant than in the wild-type. Immunoblotting experiments conducted on cells blocked in protein synthesis further indicated that degradation of D1 was slowed in the mutant. Overall, our observations indicate that the HtrA family of proteases are involved in the resistance of Synechocystis 6803 to light stress and play a part, either directly or indirectly, in the repair of PSII in vivo.
Collapse
Affiliation(s)
- Paulo Silva
- Wolfson Laboratories, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
| | | | | | | |
Collapse
|
18
|
Ruan X, Li D, Xu Q, Mao H, Li G, Gong Y, Kuang T, Zhao N. Phosphatidylcholine-induced reactivation of photosystem II membranes pretreated with Triton X-100. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2002; 67:109-15. [PMID: 12031811 DOI: 10.1016/s1011-1344(02)00235-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triton X-100-induced inactivation and phosphatidylcholine-induced reactivation of photosystem II (PSII) membranes were investigated using oxygen electrode, variable fluorescence and spectroscopic techniques including absorption and circular dichroism spectroscopy. Incubation of the PSII membrane with Triton X-100 reduced the oxygen-evolving rate, modified the variable chlorophyll fluorescence kinetics, changed the protein secondary structures, altered the chlorophyll binding state to proteins and decreased the excitonic interaction of chlorophyll molecules. Phosphatidylcholine addition did not change the protein secondary structures, but could partially reactivate the reduced oxygen-evolving rate, and partly reversed the variable fluorescence parameters, the chlorophyll binding state and the excitonic interaction of the chlorophyll molecules. The results indicate that the phosphatidylcholine environment can optimize the tertiary structures of PSII.
Collapse
Affiliation(s)
- Xiang Ruan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Komenda J, Lupínková L, Kopecký J. Absence of the psbH gene product destabilizes photosystem II complex and bicarbonate binding on its acceptor side in Synechocystis PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:610-9. [PMID: 11856320 DOI: 10.1046/j.0014-2956.2001.02693.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PsbH protein, a small subunit of the photosystem II complex (PSII), was identified as a 6-kDa protein band in the PSII core and subcore (CP47-D1-D2-cyt b-559) from the wild-type strain of the cyanobacterium Synechocystis PCC 6803. The protein was missing in the D1-D2-cytochrome b-559 complex and also in all PSII complexes isolated from IC7, a mutant lacking the psbH gene. The following properties of PSII in the mutant contrasted with those in wild-type: (a) CP47 was released during nondenaturing electrophoresis of the PSII core isolated from IC7; (b) depletion of CO2 resulted in a reversible decrease of the QA- reoxidation rate in the IC7 cells; (c) light-induced decrease in PSII activity, measured as 2,5-dimethyl-benzoquinone-supported Hill reaction, was strongly dependent on the HCO3- concentration in the IC7 cells; and (d) illumination of the IC7 cells lead to an extensive oxidation, fragmentation and cross-linking of the D1 protein. We did not find any evidence for phosphorylation of the PsbH protein in the wild-type strain. The results showed that in the PSII complex of Synechocystis attachment of CP47 to the D1-D2 heterodimer appears weakened and binding of bicarbonate on the PSII acceptor side is destabilized in the absence of the PsbH protein.
Collapse
Affiliation(s)
- Josef Komenda
- Photosynthesis Research Centre, University of South Bohemia, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
20
|
Ruan X, Xu Q, Mao HB, Li GF, Wei J, Gong YD, Kuang TY, Zhao NM. Strong-light photoinhibition treatment accelerates the changes of protein secondary structures in triton-treated photosystem I and photosystem II complexes. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:247-54. [PMID: 11565905 DOI: 10.1023/a:1010908210655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in the protein secondary structure and electron transport activity of the Triton X-100-treated photosystem I (PSI) and photosystem II (PSII) complexes after strong illumination treatment were studied using Fourier transform-infrared (FT-IR) spectroscopy and an oxygen electrode. Short periods of photoinhibitory treatment led to obvious decreases in the rates of PSI-mediated electron transport activity and PSII-mediated oxygen evolution in the native or Triton-treated PSI and PSII complexes. In the native PSI and PSII complexes, the protein secondary structures had little changes after the photoinhibitory treatment. However, in both Triton-treated PSI and PSII complexes, short photoinhibition times caused significant loss of alpha-helical content and increase of beta-sheet structure, similar to the conformational changes in samples of Triton-treated PSI and PSII complexes after long periods of dark incubation. Our results demonstrate that strong-light treatment to the Triton-treated PSI and PSII complexes accelerates destruction of the transmembrane structure of proteins in the two photosynthetic membranes.
Collapse
Affiliation(s)
- X Ruan
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Photosystem II is particularly vulnerable to excess light. When illuminated with strong visible light, the reaction center D1 protein is damaged by reactive oxygen molecules or by endogenous cationic radicals generated by photochemical reactions, which is followed by proteolytic degradation of the damaged D1 protein. Homologs of prokaryotic proteases, such as ClpP, FtsH and DegP, have been identified in chloroplasts, and participation of the thylakoid-bound FtsH in the secondary degradation steps of the photodamaged D1 protein has been suggested. We found that cross-linking of the D1 protein with the D2 protein, the alpha-subunit of cytochrome b(559), and the antenna chlorophyll-binding protein CP43, occurs in parallel with the degradation of the D1 protein during the illumination of intact chloroplasts, thylakoids and photosystem II-enriched membranes. The cross-linked products are then digested by a stromal protease(s). These results indicate that the degradation of the photodamaged D1 protein proceeds through membrane-bound proteases and stromal proteases. Moreover, a 33-kDa subunit of oxygen-evolving complex (OEC), bound to the lumen side of photosystem II, regulates the formation of the cross-linked products of the D1 protein in donor-side photoinhibition of photosystem II. Thus, various proteases and protein components in different compartments in chloroplasts are implicated in the efficient turnover of the D1 protein, thus contributing to the control of the quality of photosystem II under light stress conditions.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan.
| |
Collapse
|
22
|
Cui F, Lin Y, Zhang D, Tian M. Irradiation effects on secondary structure of protein induced by keV ions. Radiat Phys Chem Oxf Engl 1993 2001. [DOI: 10.1016/s0969-806x(00)00341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ruan X, Wei J, Xu Q, Wang JS, Gong YD, Zhang XF, Kuang TY, Zhao NM. Comparison of the effects of Triton X-100 treatment on the protein secondary structure of Photosystem I and Photosystem II studied by FT-IR spectroscopy. J Mol Struct 2000. [DOI: 10.1016/s0022-2860(00)00422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Arrondo JL, Goñi FM. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:367-405. [PMID: 10605294 DOI: 10.1016/s0079-6107(99)00007-3] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infrared (IR) spectroscopy is a useful technique in the study of protein conformation and dynamics. The possibilities of the technique become apparent specially when applied to large proteins in turbid suspensions, as is often the case with membrane proteins. The present review describes the applications of IR spectroscopy to the study of membrane proteins, with an emphasis on recent work and on spectra recorded in the transmission mode, rather than using reflectance techniques. Data treatment procedures are discussed, including band analysis and difference spectroscopy methods. A technique for the analysis of protein secondary and tertiary structures that combines band analysis by curve-fitting of original spectra with protein thermal denaturation is described in detail. The assignment of IR protein bands in H2O and in D2O, one of the more difficult points in protein IR spectroscopy, is also reviewed, including some cases of unclear assignments such as loops, beta-hairpins, or 3(10)-helices. The review includes monographic studies of some membrane proteins whose structure and function have been analysed in detail by IR spectroscopy. Special emphasis has been made on the role of subunit III in cytochrome c oxidase structure, and the proton pathways across this molecule, on the topology and functional cycle of sarcoplasmic reticulum Ca(2+)-ATPase, and on the role of lipids in determining the structure of the nicotinic acetylcholine receptor. In addition, shorter descriptions of retinal proteins and references to other membrane proteins that have been studied less extensively are also included.
Collapse
Affiliation(s)
- J L Arrondo
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Bilbao, Spain.
| | | |
Collapse
|
25
|
Lavoie H, Gallant J, Grandbois M, Blaudez D, Desbat B, Boucher F, Salesse C. The behavior of membrane proteins in monolayers at the gas–water interface: comparison between photosystem II, rhodopsin and bacteriorhodopsin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 1999. [DOI: 10.1016/s0928-4931(99)00124-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Xiao YJ, Gao XX, Markwell J. In-situ monitoring of the interaction of lactate dehydrogenase with NAD on a gold electrode by FT-SERS. J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Bograh A, Carpentier R, Tajmir-Riahi HA. The Effect of Cholesterol on the Solution Structure of Proteins of Photosystem II. Protein Secondary Structure and Photosynthetic Oxygen Evolution. J Colloid Interface Sci 1999; 210:118-122. [PMID: 9924113 DOI: 10.1006/jcis.1998.5949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol induces large perturbations in the physical properties of membranes, especially in the structural organization of the phospholipid bilayers and the aggregation and solubility of proteins at physiological temperatures. This study was designed to examine the interaction of cholesterol with lipid and proteins of chloroplasts photosystem II (PSII) submembrane fractions in air dried film at pH 6-7 with cholesterol concentrations of 0.01 to 20 mM. Fourier transform infrared difference spectroscopy with its self-deconvolution and second derivative methods as well as curve-fitting procedures are used, in order to determine the cholesterol binding mode, the protein conformational changes, and the structural properties of cholesterol-protein complexes. Correlations between the effect of cholesterol on the protein secondary structure and the rate of oxygen evolution in PSII are also established. Spectroscopic evidence showed that at low cholesterol concentration (0.01 and 0.1 mM), minor chol-protein and chol-lipid interactions (through hydrogen bonding) occur with no major perturbations of the protein secondary structure. As cholesterol concentration increases (5 and 10 and 20 mM), major alterations of the protein secondary structure are observed from that of the alpha-helix 47% (uncomplexed protein) to 43-39% (complexes) and the beta-sheet structure 18% (uncomplexed protein) to 22-26% (complexes). Those changes coincide with a partial decrease in the rate of the oxygen evolution (8-33%) is observed in the presence of cholesterol at high concentration. Copyright 1999 Academic Press.
Collapse
Affiliation(s)
- A Bograh
- Groupe de Recherche en Énergie et Information Biomoléculaires, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| | | | | |
Collapse
|
28
|
Gallant J, Desbat B, Vaknin D, Salesse C. Polarization-modulated infrared spectroscopy and x-ray reflectivity of photosystem II core complex at the gas-water interface. Biophys J 1998; 75:2888-99. [PMID: 9826610 PMCID: PMC1299961 DOI: 10.1016/s0006-3495(98)77731-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface.
Collapse
Affiliation(s)
- J Gallant
- GREIB, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
29
|
Kim S, Barry BA. Vibrational spectrum associated with the reduction of tyrosyl radical D* in photosystem II: a comparative biochemical and kinetic study. Biochemistry 1998; 37:13882-92. [PMID: 9753478 DOI: 10.1021/bi981318v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystem II (PSII) contains a redox-active tyrosine, D. Difference FT-IR spectroscopy can be used to obtain structural information about this species, which is a neutral radical, D*, in the photooxidized form. Previously, we have used isotopic labeling, site-directed mutagenesis, and kinetics to assign a vibrational line at 1477 cm-1 to D*; these studies were performed on highly resolved PSII preparations at pH 7.5 ¿Kim et al. (1998) Biochim. Biophys. Acta 1364, 337-360; publisher's correction, Biochim. Biophys. Acta 1366, 330-354¿. Here, we use kinetics to assign vibrational features to tyrosyl radical, D*, in PSII membranes. EPR and fluorescence controls identify a time regime in which D* decay occurs independently of redox changes involving the PSII quinone acceptors. Difference FT-IR spectra, acquired over this time regime, exhibit decreases in the amplitude of a 1477 cm-1 line; quantitative comparison with EPR transients supports the assignment to D*. Conditions, requiring the use of phosphate/formate, have been described for observation of a dissimilar FT-IR spectrum, which has been assigned to tyrosyl radical D*; this spectrum lacks a 1477 cm-1 line ¿Hienerwadel et al. (1997) Biochemistry 36, 14712-14723¿. Under these conditions, we have observed (1) an acceleration in the rate of D* decay and a decrease in D* yield attributable to the presence of formate, (2) a proportional decrease in the amplitude of FT-IR spectra acquired over the time regime in which D* decays, (3) frequency shifts in the D* - D FT-IR spectrum, (4) large-scale structural changes, as assessed by the amide I line shape, and (5) contributions to the FT-IR spectrum from the phosphate/formate buffer in the absence of PSII. We conclude that changes in the FT-IR spectrum, observed in the presence of phosphate/formate, are caused by alterations in the environment of D* and by direct phosphate/formate contributions to the spectrum.
Collapse
Affiliation(s)
- S Kim
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, St. Paul 55108-1022, USA
| | | |
Collapse
|
30
|
Aggeli A, Bannister ML, Bell M, Boden N, Findlay JB, Hunter M, Knowles PF, Yang JC. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Biochemistry 1998; 37:8121-31. [PMID: 9609707 DOI: 10.1021/bi972112h] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IsK (minK) protein, in concert with another channel protein KVLQT1, mediates a distinct, slowly activating, voltage-gated potassium current across certain mammalian cell membranes. Site-directed mutational studies have led to the proposal that the single transmembrane segment of IsK participates in the pore of the potassium channel [Takumi, T. (1993) News Physiol. Sci. 8, 175-178]. We present functional and structural studies of a short peptide (K27) with primary structure NH2-1KLEALYILMVLGFFGFFTLGIMLSYI27R-COOH, corresponding to the transmembrane segment of IsK (residues 42-68). When K27 was incorporated, at low concentrations, into phosphatidylethanolamine, black-lipid membranes, single-channel activity was observed, with no strong ion selectivity. IR measurements reveal the peptide has a predominantly helical conformation in the membrane. The atomic resolution structure of the helix has been established by high-resolution 1H NMR spectroscopy studies. These studies were carried out in a solvent comprising 86% v/v 1,1,1,3,3,3-hexafluoro-isopropanol-14% v/v water, in which the IR spectrum of the peptide was found to be very similar to that observed in the bilayer. The NMR studies have established that residues 1-3 are disordered, while residues 4-27 have an alpha-helical conformation, the helix being looser near the termini and more stable in the central region of the molecule. The length (2. 6 nm) of the hydrophobic segment of the helix, residues 7-23, matches the span of the hydrocarbon chains (2.3 +/- 0.25 nm) of fully hydrated bilayers of phosphatidylcholine lipid mixture from egg yolk. The side chains on the helix surface are predominantly hydrophobic, consistent with a transmembrane location of the helix. The ion-channeling activity is believed to stem from long-lived aggregates of these helices. The aggregation is mediated by the pi-pi stacking of phenylalanine aromatic rings of adjacent helices and favorable interactions of the opposing aliphatic-like side chains, such as leucine and methionine, with the lipid chains of the bilayer. This mechanism is in keeping with site-directed mutational studies which suggest that the transmembrane segment of IsK is an integral part of the pore of the potassium channel and has a similar disposition to that in the peptide model system.
Collapse
Affiliation(s)
- A Aggeli
- Centre for Self-Organising Molecular Systems, University of Leeds, U.K
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Zhang H, Ishikawa Y, Yamamoto Y, Carpentier R. Secondary structure and thermal stability of the extrinsic 23 kDa protein of photosystem II studied by Fourier transform infrared spectroscopy. FEBS Lett 1998; 426:347-51. [PMID: 9600264 DOI: 10.1016/s0014-5793(98)00371-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary structure and thermal stability of the extrinsic 23 kDa protein (OEC23) of spinach photosystem II have been characterized in solution between 25 and 75 degrees C using Fourier transform infrared spectroscopy. Quantitative analysis of the amide I band (1700-1600 cm(-1)) shows that OEC23 contains 5% alpha-helix, 37% beta-sheet, 24% turn, and 34% disorder structures at 25 degrees C. No appreciable conformational changes occur below 45 degrees C. At elevated temperatures, the beta-sheet structure is unfolded into the disorder structure with a major conformational transition occurring at 55 degrees C. Implications of these results for the functions of OEC23 in photosystem II are discussed.
Collapse
Affiliation(s)
- H Zhang
- Groupe de Recherche en Energie et Information Biomoléculaires, Université du Québec à Trois-Rivières, Canada
| | | | | | | |
Collapse
|
33
|
Protein secondary structure and conformational changes of photosystem II during heat denaturation studied by Fourier transform-infrared spectroscopy. J Mol Struct 1998. [DOI: 10.1016/s0022-2860(98)00287-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Gabashvili I, Menikh A, Ségui J, Fragata M. Protein structure of photosystem II studied by FT-IR spectroscopy. Effect of digalactosyldiacylglycerol on the tyrosine side chain residues. J Mol Struct 1998. [DOI: 10.1016/s0022-2860(97)00367-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Zhang H, Wydrzynski T. Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 1998; 37:1565-74. [PMID: 9484227 DOI: 10.1021/bi9707640] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reaction center-binding protein D1 of photosystem II (PS II) undergoes rapid turnover under light stress conditions. In the present study, we investigated the role of the extrinsic 33 kDa protein (OEC33) in the early stages of D1 turnover. D1 degradation was measured after strong illumination (1000-5000 microE m-2 S-1) of spinach manganese-depleted, PSII-enriched membrane and core samples in the presence and absence of the OEC33 under aerobic conditions at room temperature. PSII samples lacking the OEC33 were prepared by standard biochemical treatments with Tris or CaCl2/NH2OH while samples retaining the OEC33 were prepared with NH2OH or NaCl/NH2OH. The degradation of D1, monitored by SDS/urea-polyacrylamide gel electrophoresis and Western blotting using specific antibodies against D1, proceeds to a greater extent in NH2OH-treated samples than in Tris-treated samples over a 60 min illumination period. Under the same conditions, significantly more aggregation of D1 occurs in the Tris-treated samples than in the NH2OH-treated samples. The lower level of D1 degradation in Tris-treated samples is not due to secondary proteolysis, as judged from the time course for degradation at 25 degrees C or the degradation pattern at 4 degrees C. Similarly, for NaCl/NH2OH-treated samples, D1 degradation is greater and D1 aggregation less than in CaCl2/NH2OH-treated samples. The effect of the presence of the OEC33 on D1 degradation and aggregation is confirmed by reconstitution experiments in which the isolated OEC33 is restored back to Tris-treated samples. During very strong illumination, significant loss of CP43 also occurs in Tris-treated but not in NH2OH-treated samples. Structural analysis of PS II core complexes by Fourier transform infrared (FT-IR) spectroscopy revealed very little change in the protein secondary structure after 10 min illumination of NH2OH-treated samples while a large 10% decrease of alpha-helix content occurs in Tris-treated samples. On the basis of these results, we suggest that either (1) the OEC33 stabilizes the structural integrity of PS II such that it prevents the photodamaged D1 protein from aggregating with nearby polypeptides and thereby facilitating degradation or (2) the OEC33 specifically stabilizes CP43, a putative D1-specific protease, which normally promotes the efficient degradation of D1.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
De Las Rivas J, Barber J. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 1997; 36:8897-903. [PMID: 9220977 DOI: 10.1021/bi970684w] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The secondary structure of photosystem II reaction centers isolated from pea has been deduced from quantitative analysis of the component bands of the infrared amide I spectral region, determined by FTIR spectroscopy. The analysis shows the isolated complex to consist of 40% alpha-helix, 10% beta-sheet, 14% beta-strands (or extended chains), 17% turns, 15% loops, and 3% nonordered segments. These structural protein elements were determined for samples in H2O, in D2O, and in dried films. The isolated reaction center, composed of proteins D1,D2,cytochrome b559, and PsbI, has been predicted to contain a total of 13 transmembrane alpha-helices, which conveys a percentage of this type of structure congruent with the structural determination deduced from FTIR spectra. The process of thermal destabilization of the reaction centers has also been studied by FTIR spectroscopy, showing a clear main conformational transition at 42 degrees C, which indicates a high thermal sensitivity of the secondary structure of this protein complex. Such thermal instability may correlate with the well-described high sensitivity of photosystem II to damage and may relate to the process of rapid protein degradation that photosystem II suffers during photoinhibition of plants.
Collapse
Affiliation(s)
- J De Las Rivas
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of the Basque Country, P.O. Box 644, E48080 Bilbao, Spain.
| | | |
Collapse
|
37
|
Mercer EA, Abbott GW, Brazier SP, Ramesh B, Haris PI, Srai SK. Synthetic putative transmembrane region of minimal potassium channel protein (minK) adopts an alpha-helical conformation in phospholipid membranes. Biochem J 1997; 325 ( Pt 2):475-9. [PMID: 9230130 PMCID: PMC1218584 DOI: 10.1042/bj3250475] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Minimal potassium channel protein (minK) is a potassium channel protein consisting of 130 amino acids, possessing just one putative transmembrane domain. In this study we have synthesized a peptide with the amino acid sequence RDDSKLEALYILMVLGFFGFFTLGIMLSYI, containing the putative transmembrane region of minK, and analysed its secondary structure by using Fourier-transform IR and CD spectroscopy. The peptide was virtually insoluble in aqueous buffer, forming intermolecular beta-sheet aggregates. On attempted incorporation of the peptide into phospholipid membranes with a method involving dialysis, the peptide adopted a predominantly intermolecular beta-sheet conformation identical with that of the peptide in aqueous buffer, in agreement with a previous report [Horvàth, Heimburg, Kovachev, Findlay, Hideg and Marsh, (1995) Biochemistry 34, 3893-3898]. However, by using an alternative method of incorporating the peptide into phospholipid membranes we found that the peptide adopted a predominantly alpha-helical conformation, a finding consistent with various proposed structural models. These observed differences in secondary structure are due to artifacts of aggregation of the peptide before incorporation into lipid.
Collapse
Affiliation(s)
- E A Mercer
- Department of Biochemistry and Molecular Biology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K
| | | | | | | | | | | |
Collapse
|
38
|
Baenziger JE, Chew JP. Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Biochemistry 1997; 36:3617-24. [PMID: 9132013 DOI: 10.1021/bi962845m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The difference between infrared spectra of the nicotinic acetylcholine receptor (nAChR) recorded using the attenuated total reflectance technique in the presence and absence of carbamylcholine exhibits a complex pattern of positive and negative bands that provides a spectral map of the structural changes that occur in the nAChR upon agonist binding and subsequent desensitization. Two relatively intense bands are observed in the amide I region of the difference spectra recorded in 1H2O buffer near 1655 cm(-1) and 1620 cm(-1) that were previously interpreted in terms of either a net conversion of beta-sheet to alpha-helix or a reorientation of transmembrane alpha-helix accompanied by a change in structure of beta-sheet and/or turn [Baenziger, J. E., Miller, K. W., & Rothschild, K. J. (1993) Biochemistry 32, 5448-5454]. However, difference spectra recorded in 2H2O buffer reveal that these and other difference bands in the amide I region undergo downshifts in frequency upon peptide 1H/2H exchange that are much larger than the downshifts in frequency that are typically observed for the amide I vibrations of either alpha-helix or beta-sheet. Difference spectra recorded in 2H2O buffer within either minutes or hours of prior exposure of the nAChR to 2H2O exhibit the same amide I difference band shifts that are observed in difference spectra recorded after 3 days prior exposure of the nAChR to 2H2O. Most of the peptides that are involved in both ligand binding and the resting to desensitized conformational change and that give rise to bands in the difference spectra therefore exchange their hydrogens for deuterium on the seconds to minutes time scale. The frequencies of the difference bands, the magnitudes of the difference band shifts upon peptide 1H/2H exchange, and the rapidity of the hydrogen deuterium exchange kinetics of those structures that give rise to amide I bands in the difference spectra all suggest that the formation of a channel-inactive desensitized state results predominantly from a conformational change in solvent-accessible extramembranous regions of the polypeptide backbone as opposed to a large structural perturbation near the ion channel gate. A conformational change in the agonist binding site may be primarily responsible for channel inactivation upon desensitization.
Collapse
Affiliation(s)
- J E Baenziger
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
39
|
Effect of TCA-depletion of extrinsic polypeptides on electron transport on oxidizing side of PS II. CHINESE SCIENCE BULLETIN-CHINESE 1997. [DOI: 10.1007/bf02882441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Xiong J, Subramaniam S. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci 1996; 5:2054-73. [PMID: 8897606 PMCID: PMC2143261 DOI: 10.1002/pro.5560051012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A three-dimensional model of the photosystem II (PSII) reaction center from the cyanobacterium Synechocystis sp. PCC 6803 was generated based on homology with the anoxygenic purple bacterial photosynthetic reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis, for which the X-ray crystallographic structures are available. The model was constructed with an alignment of D1 and D2 sequences with the L and M subunits of the bacterial reaction center, respectively, and by using as a scaffold the structurally conserved regions (SCRs) from bacterial templates. The structurally variant regions were built using a novel sequence-specific approach of searching for the best-matched protein segments in the Protein Data Bank with the "basic local alignment search tool" (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990, J Mol Biol 215:403-410), and imposing the matching conformational preference on the corresponding D1 and D2 regions. The structure thus obtained was refined by energy minimization. The modeled D1 and D2 proteins contain five transmembrane alpha-helices each, with cofactors (4 chlorophylls, 2 pheophytins, 2 plastoquinones, and a non-heme iron) essential for PSII primary photochemistry embedded in them. A beta-carotene, considered important for PSII photoprotection, was also included in the model. Four different possible conformations of the primary electron donor P680 chlorophylls were proposed, one based on the homology with the bacterial template and the other three on existing experimental suggestions in literature. The P680 conformation based on homology was preferred because it has the lowest energy. Redox active tyrosine residues important for P680+ reduction as well as residues important for PSII cofactor binding were analyzed. Residues involved in interprotein interactions in the model were also identified. Herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modeled in the plastoquinone QB binding niche using the structural information available from a DCMU-binding bacterial reaction center. A bicarbonate anion, known to play a role in PSII, but not in anoxygenic photosynthetic bacteria, was modeled in the non-heme iron site, providing a bidentate ligand to the iron. By modifying the previous hypothesis of Blubaugh and Govindjee (1988, Photosyn Res 19:85-128), we modeled a second bicarbonate and a water molecule in the QB site and we proposed a hypothesis to explain the mechanism of QB protonation mediated by bicarbonate and water. The bicarbonate, stabilized by D1-R257, donates a proton to QB2- through the intermediate of D1-H252; and a water molecule donates another proton to QB2-. Based on the discovery of a "water transport channel" in the bacterial reaction center, an analogous channel for transporting water and bicarbonate is proposed in our PSII model. The putative channel appears to be primarily positively charged near QB and the non-heme iron, in contrast to the polarity distribution in the bacterial water transport channel. The constructed model has been found to be consistent with most existing data.
Collapse
Affiliation(s)
- J Xiong
- Department of Plant Biology, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|
41
|
Kurosawa Y, Hashimoto K. The Immunoglobulin Superfamily: Where Do Invertebrates Fit In? ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-642-79693-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
42
|
Young NM, MacKenzie CR, Narang SA, Oomen RP, Baenziger JE. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett 1995; 377:135-9. [PMID: 8543036 DOI: 10.1016/0014-5793(95)01325-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A disulphide bond was introduced into a single-chain Fv form of the anticarbohydrate antibody, Se155-4 by replacing Ala-L57 of the light chain and Asp-H106 of the heavy chain with cysteines, by site-directed mutagenesis. To maintain the salt-bridge from the latter residue to Arg-H98, Tyr-107 was also altered to Asp. The resulting ds-scFv was shown to retain full antigen-binding activity, by enzyme immunoassay and surface plasmon resonance analysis of binding kinetics. Compared with the parent scFv, the disulphide bonded form was shown to have enhanced thermal stability, by Fourier transform IR spectroscopy. The Tm was raised from 60 degrees C to 69 degrees C. The ds-scFv form thus combines the stable monomeric form of the disulphide form with the expression advantages of the scFv.
Collapse
Affiliation(s)
- N M Young
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ont
| | | | | | | | | |
Collapse
|
43
|
Baenziger JE, Méthot N. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of alpha-helical peptide hydrogens in the nicotinic acetylcholine receptor. J Biol Chem 1995; 270:29129-37. [PMID: 7493938 DOI: 10.1074/jbc.270.49.29129] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The structure of the nicotinic acetylcholine receptor (nAChR) has been studied using a novel combination of hydrogen/deuterium exchange and attenuated total reflectance Fourier transform infrared spectroscopy. Fourier transform infrared spectra show marked changes in both the amide I and amide II bands upon exposure of the nAChR to 2H2O. The substantial decrease in intensity of the amide II band reflects the exchange of roughly 30% of the peptide hydrogens within seconds of exposure to 2H2O, 50% after 30 min, 60% after 12 h, and 75% after prolonged exposure for several days at room temperature or lower temperatures. The 30% of peptide hydrogens that exchange within seconds is highly exposed to solvent and likely involved in random and turn conformations, whereas the 25% of exchange-resistant peptide hydrogens is relatively inaccessible to solvent and likely located in the transmembrane domains of the nAChR. Marked changes occur in the amide I contour within seconds of exposure of the nAChR to 2H2O as a result of relatively large downshifts in the frequencies of amide I component bands assigned to turns and random structures. In contrast, only subtle change occur in the amide I contour between 3 min and 12 h after exposure to 2H2O as a result of slight downshifts in the frequencies of alpha-helix and beta-sheet vibrations. It is demonstrated that the time courses and relative magnitudes of the amide I component band shifts can be used both as an aid in the assignment of component bands to specific secondary structures and as a probe of the exchange rates of different types of secondary structures in the nAChR. Significantly, the intensities of the band shifts reflecting the exchange of alpha-helical secondary structures are relatively weak indicating that a large proportion of the 25% exchange resistant peptides adopt an alpha-helical conformation. Conversely, no evidence is found for the existence of a large number of exchange-resistant beta-strands. The exchange kinetics suggest a predominantly alpha-helical secondary structure for the transmembrane domains of the nAChR.
Collapse
Affiliation(s)
- J E Baenziger
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
44
|
Barbato R, Friso G, Ponticos M, Barber J. Characterization of the light-induced cross-linking of the alpha-subunit of cytochrome b559 and the D1 protein in isolated photosystem II reaction centers. J Biol Chem 1995; 270:24032-7. [PMID: 7592601 DOI: 10.1074/jbc.270.41.24032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Illumination of the isolated reaction center of photosystem II generates a protein of 41 kDa molecular mass. Using immunoblotting, it is confirmed that the protein is an adduct of the D1 protein and the alpha-subunit of cytochrome b559. Its formation seems to be photochemically induced, being independent of temperature between 4 and 20 degrees C and unaffected by a mixture of protease inhibitors. The maximum levels are detected when the pH is in the region 6.5-8.5 and when illumination intensities are moderate. Although higher light intensities induce a higher rate of formation, the accumulation of elevated levels of the 41-kDa protein does not occur due to light-induced degradation. This degradation is also unaffected by the presence of protease inhibitors. Proteolytic mapping and N-terminal sequencing indicates that the cross-linking process involves the N-terminal serine of the alpha-subunit of cytochrome b559 and D1 residues in the 239-244 FGQEEE motif close to the QB binding site. In conclusion, the results indicate that the N terminus of the alpha-subunit is exposed on the stromal side of photosystem II in such a way as to undergo light-induced cross-linking in the QB region of the D1 protein. They also suggest that the 41-kDa adduct may be an intermediate before the light-induced cleavage of the D1 protein in the FGQEEE region.
Collapse
Affiliation(s)
- R Barbato
- Biochemistry Department, Wolfson Laboratories, Imperial College of Science, Technology & Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
45
|
Nahar S, Tajmir-Riahi H. Do metal ions alter the protein secondary structure of a light-harvesting complex of thylakoid membranes? J Inorg Biochem 1995. [DOI: 10.1016/0162-0134(94)00055-f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Ahmed A, Tajmir-Riahi HA, Carpentier R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett 1995; 363:65-8. [PMID: 7729557 DOI: 10.1016/0014-5793(95)00282-e] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In chloroplast photosystem II, the extrinsic polypeptide of 33 kDa is involved in the stabilization the Mn cluster in charge of water splitting and in the fulfilment of the Ca(2+)-cofactor requirement for oxygen evolution. The conformational analysis of the purified 33 kDa extrinsic polypeptide was carried out using FTIR spectroscopy with its self-deconvolution and second derivative resolution enhancement as well as curve-fitting procedures. The FTIR spectroscopic results showed that the isolated polypeptide is characterized by a major proportion beta-sheet conformation (36%) with 27% alpha-helix, 24% turn, and 13% beta-antiparallel structures.
Collapse
Affiliation(s)
- A Ahmed
- Centre de recherche en photobiophysique, Université du Québec a Trois-Rivières, Canada
| | | | | |
Collapse
|
47
|
Characteristic changes of function and structure of Photosystem II during strong-light photoinhibition under aerobic conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00010-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 1995; 30:95-120. [PMID: 7656562 DOI: 10.3109/10409239509085140] [Citation(s) in RCA: 1411] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is an established tool for the structural characterization of proteins. However, many potential pitfalls exist for the unwary investigator. In this review we critically assess the application of FTIR spectroscopy to the determination of protein structure by (1) outlining the principles underlying protein secondary structure determination by FTIR spectroscopy, (2) highlighting the situations in which FTIR spectroscopy should be considered the technique of choice, (3) discussing the manner in which experiments should be conducted to derive as much physiologically relevant information as possible, and (4) outlining current methods for the determination of secondary structure from infrared spectra of proteins.
Collapse
Affiliation(s)
- M Jackson
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Manitoba
| | | |
Collapse
|
49
|
A quantitative analysis of protein secondary structure of photosystem II particles and light-harvesting complex of chloroplast thylakoid membranes by FT-IR spectroscopy. J Mol Struct 1994. [DOI: 10.1016/0022-2860(94)08386-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Montoya G, Cases R, Rodríguez R, Aured M, Picorel R. Detergent-induced reversible denaturation of the photosystem II reaction center: implications for pigment-protein interactions. Biochemistry 1994; 33:11798-804. [PMID: 7918397 DOI: 10.1021/bi00205a016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Incubation of the D1-D2-cytochrome b559 complex with Triton X-100 modified the protein secondary structure, caused significant spectral modifications, and reduced the formation of light-induced spin-polarized triplet electron paramagnetic resonance (EPR) signal. After 24 h of incubation, the absorption spectrum shifted from 675.5 to 671.5 nm and the fluorescence spectrum shifted from 682 to 672 nm. These shifts were accompanied by an increase in the chlorophyll fluorescence yield and by decreases in the intensity of the circular dichroism in the red region and the secondary electron transport activity. The intensity of the light-induced triplet EPR signal was also markedly reduced in the same experimental conditions. Substitution of dodecyl beta-maltoside for Triton X-100 reversed all the above-mentioned parameters to the values exhibited by the native D1-D2-Cyt b559 complex, including the characteristic triplet EPR signal. We concluded that all observed changes were due to the destruction of P680 with Triton X-100 and to the reestablishment of P680 in the presence of dodecyl beta-maltoside. The easier but certainly not the only possible explanation to all these phenomena is to consider a dimeric structure for P680, at least in its ground state, where interactions take place within the two dimeric chromophores and with the apoprotein. Such a dimeric structure would be very sensitive to small modifications of the P680 domain, which convert the dimer absorbing at 680 into two chlorophyll monomers absorbing near 670 nm. The dodecyl beta-maltoside reestablished the structure of the native P680 domain.
Collapse
Affiliation(s)
- G Montoya
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain
| | | | | | | | | |
Collapse
|