1
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Chandrasekar S, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local monomer levels and established filaments potentiate non-muscle myosin 2 assembly. J Cell Biol 2024; 223:e202305023. [PMID: 38353656 PMCID: PMC10866686 DOI: 10.1083/jcb.202305023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kem A. Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreya Chandrasekar
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Matthew Akamatsu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jeremy D. Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Justin W. Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
2
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local Monomer Levels and Established Filaments Potentiate Non-Muscle Myosin 2 Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538303. [PMID: 37162845 PMCID: PMC10168331 DOI: 10.1101/2023.04.26.538303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Jeremy D Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| |
Collapse
|
3
|
Yang S, Lee KH, Woodhead JL, Sato O, Ikebe M, Craig R. The central role of the tail in switching off 10S myosin II activity. J Gen Physiol 2019; 151:1081-1093. [PMID: 31387899 PMCID: PMC6719407 DOI: 10.1085/jgp.201912431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Myosin II is a motor protein with two heads and an extended tail that plays an essential role in cell motility. Its active form is a polymer (myosin filament) that pulls on actin to generate motion. Its inactive form is a monomer with a compact structure (10S sedimentation coefficient), in which the tail is folded and the two heads interact with each other, inhibiting activity. This conformation is thought to function in cells as an energy-conserving form of the molecule suitable for storage as well as transport to sites of filament assembly. The mechanism of inhibition of the compact molecule is not fully understood. We have performed a 3-D reconstruction of negatively stained 10S myosin from smooth muscle in the inhibited state using single-particle analysis. The reconstruction reveals multiple interactions between the tail and the two heads that appear to trap ATP hydrolysis products, block actin binding, hinder head phosphorylation, and prevent filament formation. Blocking these essential features of myosin function could explain the high degree of inhibition of the folded form of myosin thought to underlie its energy-conserving function in cells. The reconstruction also suggests a mechanism for unfolding when myosin is activated by phosphorylation.
Collapse
Affiliation(s)
- Shixin Yang
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - John L Woodhead
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
4
|
Heissler SM, Sellers JR. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Traffic 2016; 17:839-59. [PMID: 26929436 DOI: 10.1111/tra.12388] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| |
Collapse
|
5
|
Salzameda B, Facemyer KC, Beck BW, Cremo CR. The N-terminal lobes of both regulatory light chains interact with the tail domain in the 10 S-inhibited conformation of smooth muscle myosin. J Biol Chem 2006; 281:38801-11. [PMID: 17012238 DOI: 10.1074/jbc.m606555200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of ATP, unphosphorylated smooth muscle myosin can form a catalytically inactive monomer that sediments at 10 Svedbergs (10 S). The tail of 10 S bends into thirds and interacts with the regulatory domain. ADP-P(i) is "trapped" at the active site, and consequently the ATPase activity is extremely low. We are interested in the structural basis for maintenance of this off state. Our prior photocross-linking work with 10 S showed that tail residues 1554-1583 are proximal to position 108 in the C-terminal lobe of one of the two regulatory light chains ( Olney, J. J., Sellers, J. R., and Cremo, C. R. (1996) J. Biol. Chem. 271, 20375-20384 ). These data suggested that the tail interacts with only one of the two regulatory light chains. Here we present data, using a photocross-linker on position 59 on the N-terminal lobe of the regulatory light chain (RLC), demonstrating that both regulatory light chains of a single molecule can cross-link to the light meromyosin portion of the tail. Mass spectrometric data show four specific cross-linked regions spanning residues 1428-1571 in the light meromyosin portion of the tail, consistent with cross-linking two RLC to one light meromyosin. In addition, we find that position 59 can cross-link internally to residues 42-45 within the same RLC subunit. The internal cross-link only forms in 10 S and not in unphosphorylated heavy meromyosin (lacking the light meromyosin), suggesting a structural rearrangement within the RLC attributed to the interaction of the tail with the head.
Collapse
Affiliation(s)
- Bridget Salzameda
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
6
|
Fernandes DJ, Mitchell RW, Lakser O, Dowell M, Stewart AG, Solway J. Do inflammatory mediators influence the contribution of airway smooth muscle contraction to airway hyperresponsiveness in asthma? J Appl Physiol (1985) 2003; 95:844-53. [PMID: 12851423 DOI: 10.1152/japplphysiol.00192.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is now accepted that a host of cytokines, chemokines, growth factors, and other inflammatory mediators contributes to the development of nonspecific airway hyperresponsiveness in asthma. Yet, relatively little is known about how inflammatory mediators might promote airway structural remodeling or about the molecular mechanisms by which they might exaggerate smooth muscle shortening as observed in asthmatic airways. Taking a deep inspiration, which provides relief of bronchodilation in normal subjects, is less effective in asthmatic subjects, and some have speculated that this deficiency stems directly from an abnormality of airway smooth muscle and results in airway hyperresponsiveness to constrictor agonists. Here, we consider some of the mechanisms by which inflammatory mediators might acutely or chronically induce changes in the contractile apparatus that in turn might contribute to hyperresponsive airways in asthma.
Collapse
Affiliation(s)
- Darren J Fernandes
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ellison PA, DePew ZS, Cremo CR. Both heads of tissue-derived smooth muscle heavy meromyosin bind to actin in the presence of ADP. J Biol Chem 2003; 278:4410-5. [PMID: 12464606 DOI: 10.1074/jbc.m211016200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of ADP and phosphorylation upon the actin binding properties of heavy meromyosin was investigated using three fluorescence methods that monitor the number of heavy meromyosin heads that bind to pyrene-actin: (i) amplitudes of ATP-induced dissociation, (ii) amplitudes of ADP-induced dissociation of the pyrene-actin-heavy meromyosin complex, and (iii) amplitudes of the association of heavy meromyosin with pyrene-actin. Both heads bound to pyrene-actin, irrespective of regulatory light chain phosphorylation or the presence of ADP. This behavior was found for native regulated heavy meromyosin prepared by proteolytic digestion of chicken gizzard myosin with between 5 and 95% heavy chain cleavage at the actin-binding loop, showing that two-head binding is a property of heavy meromyosin with uncleaved heavy chains. These data are in contrast to a previous study using an uncleaved expressed preparation (Berger, C. E., Fagnant, P. M., Heizmann, S., Trybus, K. M., and Geeves, M. A. (2001) J. Biol. Chem. 276, 23240-23245), which showed that one head of the unphosphorylated heavy meromyosin-ADP complex bound to actin and that the partner head either did not bind or bound weakly. Possible explanations for the differences between the two studies are discussed. We have shown that unphosphorylated heavy meromyosin appears to adopt a special state in the presence of ADP based upon analysis of actin-heavy meromyosin association rate constants. Data were consistent with one head binding rapidly and the second head binding more slowly in the presence of ADP. Both heads bound to actin at the same rate for all other states.
Collapse
Affiliation(s)
- Patricia A Ellison
- Department of Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
8
|
Uchimura T, Fumoto K, Yamamoto Y, Ueda K, Hosoya H. Spatial localization of mono-and diphosphorylated myosin II regulatory light chain at the leading edge of motile HeLa cells. Cell Struct Funct 2002; 27:479-86. [PMID: 12576640 DOI: 10.1247/csf.27.479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nonmuscle myosin II activity is regulated by phosphorylation of the myosin II regulatory light chain (MRLC) at Ser19 or at both Thr18 and Ser19, and the phosphorylation of MRLC promotes the contractility and stability of actomyosin. To analyze the states of MRLC phosphorylation at the leading edge in the motile HeLa cells, we have examined the subcellular distribution of monophosphorylated or diphosphorylated form of MRLC using a confocal microscope. The cross-sectional imaging revealed that monophosphorylated MRLC distributed throughout the cortical region and the leading edge, but its fluorescent signal was much stronger at the leading edge. This distribution pattern of monophosphorylated MRLC was almost identical to those of myosin II and F-actin. On the other hand, diphosphorylated MRLC is localized at the base of leading edge, spatially very close to the substrate, and colocalized with F-actin in part at the base of filopodia. Diphosphorylated MRLC was hardly detectable at the tip of filopodia and the cell cortical region, where monophosphorylated MRLC was clearly detected. These localization patterns suggest that myosin II is activated at the leading edge, especially at the base but not the tip of filopodia in motile cells. Next, we analyzed the cells expressing GFP-tagged recombinant MRLCs. Expression of GFP-tagged diphosphorylatable and monophosphorylatable MRLCs led to a significant increase in the filopodial number, compared with the cells expressing nonphosphorylatable MRLC. This result indicated that expression of phosphorylatable MRLC enhances the formation of filopodia at the wound edge.
Collapse
Affiliation(s)
- Takashi Uchimura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
9
|
Rosenfeld SS, Xing J, Whitaker M, Cheung HC, Brown F, Wells A, Milligan RA, Sweeney HL. Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle. J Biol Chem 2000; 275:25418-26. [PMID: 10827085 DOI: 10.1074/jbc.m002685200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin II undergoes an additional movement of the regulatory domain with ADP release that is not seen with fast skeletal muscle myosin II. In this study, we have examined the interactions of smooth muscle myosin subfragment 1 with ADP to see if this additional movement corresponds to an identifiable state change. These studies indicate that for this myosin:ADP, both the catalytic site and the actin-binding site can each assume one of two conformations. Relatively loose coupling between these two binding sites leads to three discrete actin-associated ADP states. Following an initial, weakly bound state, binding of myosin:ADP to actin shifts the equilibrium toward a mixture of two states that each bind actin strongly but differ in the conformation of their catalytic sites. By contrast, fast myosins, including Dictyostelium myosin II, have reciprocal coupling between the actin- and ADP-binding sites, so that either actin or nucleotide, but not both, can be tightly bound. This uncoupling, which generates a second strongly bound actomyosin ADP state in smooth muscle, would prolong the fraction of the ATPase cycle time that this actomyosin spends in a force-generating conformation and may be central to explaining the physiologic differences between this and other myosins.
Collapse
Affiliation(s)
- S S Rosenfeld
- Department of Neurology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kolega J, Kumar S. Regulatory light chain phosphorylation and the assembly of myosin II into the cytoskeleton of microcapillary endothelial cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 43:255-68. [PMID: 10401581 DOI: 10.1002/(sici)1097-0169(1999)43:3<255::aid-cm8>3.0.co;2-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During the crawling movements of non-muscle cells, myosin II-containing structures assemble and disassemble with a high degree of spatial and temporal heterogeneity. In order to understand how this is controlled, we examined factors that influence the association of myosin II with detergent-resistant cytoskeletons of cultured endothelial cells. Treatment of cells with 0.05% Triton X-100 in an actin-stabilizing buffer released approximately 42% of the myosin II from the cytoplasm. Most remaining myosin II was dissociated from the cytoskeleton by treatment with ATP or AMPPNP, but not ADP, suggesting that myosin II is retained as ATP-sensitive filaments or via rigor-like binding to F-actin. Disruption of actin filaments with cytochalasin or latrunculin prior to detergent permeabilization sharply decreased the amount of myosin II retained, suggesting the latter type of association. Because phosphorylation of myosin II affects filament assembly and actin binding in vitro, phosphorylation levels in soluble and cytoskeletal myosin II were measured. Phosphorylation of myosin heavy chains was not significantly different between the two fractions, but regulatory light chains of cytoskeletal myosin II were 5 times more phosphorylated than in soluble myosin II. Tryptic-peptide mapping showed that cytoskeletal light chains were phosphorylated predominantly at serine 19/threonine 18, which regulates myosin II assembly in vitro, whereas soluble light chains were not phosphorylated or were phosphorylated at threonine 9. Treating cells with the kinase inhibitor, staurosporine, prior to permeabilization decreased light-chain phosphorylation with concomitant reduction in myosin retention. These observations suggest that assembly of myosin II into cytoskeletal structures, where it can generate and resist forces, is regulated in vivo by phosphorylation of myosin light chains at serine 19/threonine 18.
Collapse
Affiliation(s)
- J Kolega
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, School of Medicine and Biomedical Sciences 14214, USA.
| | | |
Collapse
|
11
|
Murphy CT, Spudich JA. Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 2000; 21:139-51. [PMID: 10961838 DOI: 10.1023/a:1005610007209] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The catalytic head of myosin is a globular structure that has historically been divided into three segments of 25, 50, and 20 kDa. The solvent-exposed, proteolytically-sensitive surface loops of myosin that join these three segments are highly variable in their sequences. While surface loops have not traditionally been thought to affect enzymatic activities, these loops lie near the ATP and actin-binding sites and have been implicated in the modulation of myosin's kinetic activities. In this work we review the wealth of data regarding the loops that has accumulated over the years and discuss the roles of the loops in contributing to the different activities displayed by different myosin isoforms.
Collapse
Affiliation(s)
- C T Murphy
- Department of Biochemistry, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
12
|
Olney JJ, Sellers JR, Cremo CR. Structure and function of the 10 S conformation of smooth muscle myosin. J Biol Chem 1996; 271:20375-84. [PMID: 8702773 DOI: 10.1074/jbc.271.34.20375] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Smooth myosin regulatory light chain (RLC) was exchanged with RLC labeled with benzophenone-4-iodoacetamide at Cys-108. Irradiation under conditions that favor the folded (10 S) conformation resulted in 10 S cross-linked myosin that could not unfold. Purified 10 S cross-linked myosin was cross-linked between the RLC of one head to light meromyosin between leucine 1554 and glutamate 1583, adjacent to a predicted noncoiled region, approximately 60 nm from the tip of the tail. At high ionic strength without actin, product release from one-half of the heads was slow (like 10 S) whereas the other half were activated. This suggests that tail binding to the RLC carboxyl-terminal domain stabilizes ionic interactions important to slow nucleotide release. With actin, product release from both (un)phosphorylated 10 S cross-linked myosin was from one slow population similar to unphosphorylated filaments. 10 S cross-linked myosin weakly bound actin (dissociation constant > 500 microM) and did not move actin in vitro. Single-headed myosin did not fold or trap nucleotide. These and other data suggest that "trapping" occurs only with both heads and the tail binds to a newly formed site, which includes the RLC carboxyl-terminal domain, once trapping has occurred.
Collapse
Affiliation(s)
- J J Olney
- Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | |
Collapse
|
13
|
|
14
|
Ikebe M, Mitra S, Hartshorne DJ. Cleavage at site A, Glu-642 to Ser-643, of the gizzard myosin heavy chain decreases affinity for actin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Maruta S, Ikebe M. Photoaffinity labelling of smooth-muscle myosin by methylanthraniloyl-8-azido-ATP. Biochem J 1993; 292 ( Pt 2):439-44. [PMID: 8503878 PMCID: PMC1134228 DOI: 10.1042/bj2920439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methylanthraniloyl-8-azido-ATP (Mant-8-N3-ATP), which binds to the 20 kDa C-terminal tryptic fragment of skeletal-muscle myosin subfragment-1 [Maruta, Miyanishi and Matsuda (1989) Eur. J. Biochem. 184, 213-221], was synthesized and used as a probe of the conformational change of smooth-muscle myosin. Mant-8-N3-ATP, like ATP, induced the formation of the 10 S conformation at low ionic strength. In the presence of vanadate, smooth-muscle myosin formed a stable complex with Mant-8-N3-ADP, and this complex showed the 10 S-->6 S transition of myosin. ATP-binding sites for 6 S (extended state) and 10 S (folded state) myosin were studied by photolabelling of myosin with Mant-8-N3-ADP. For both 6 S and 10 S myosin, Mant-8-N3-ATP was incorporated into the 29 kDa N-terminal tryptic fragment of myosin heavy chain. This is unlike the labelling of skeletal-muscle myosin, in which the 20 kDa C-terminal fragment is labelled. The labelling of 29 kDa fragment was diminished significantly by addition of ATP. These results suggest that the conformation of the ATP-binding site of smooth-muscle myosin is different from that of skeletal-muscle myosin. To examine further the possible differences in the labelling site between 6 S and 10 S myosin, the affinity-labelled 29 kDa fragment was subjected to complete proteolysis by lysylendo-peptidase. The fluorescent-labelled-peptide map suggested that the Mant-8-N3-ADP-binding sites for 6 S and 10 S myosin were identical.
Collapse
Affiliation(s)
- S Maruta
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
16
|
Ganguly C, Martin B, Bubb M, Korn E. Limited proteolysis reveals a structural difference in the globular head domains of dephosphorylated and phosphorylated Acanthamoeba myosin II. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36773-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Applegate D, Pardee JD. Actin-facilitated assembly of smooth muscle myosin induces formation of actomyosin fibrils. J Biophys Biochem Cytol 1992; 117:1223-30. [PMID: 1607384 PMCID: PMC2289491 DOI: 10.1083/jcb.117.6.1223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.
Collapse
Affiliation(s)
- D Applegate
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York 10029
| | | |
Collapse
|
18
|
Ikebe M, Hewett TE, Martin AF, Chen M, Hartshorne DJ. Cleavage of a smooth muscle myosin heavy chain near its C terminus by alpha-chymotrypsin. Effect on the properties of myosin. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Affiliation(s)
- J R Sellers
- Laboratory of Molecular Cardiology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Ikebe M, Mitsui T, Maruta S. Regulation of smooth muscle actomyosin function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 304:25-36. [PMID: 1803901 DOI: 10.1007/978-1-4684-6003-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Ikebe
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | |
Collapse
|
21
|
Redowicz MJ, Sobieszek A, Strzelecka-Gołaszewska H. Conformational transitions within the head and at the head-rod junction in smooth muscle myosin studied with a limited proteolysis method. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:601-8. [PMID: 2209613 DOI: 10.1111/j.1432-1033.1990.tb19266.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It was previously shown that tryptic digestion of subfragment 1 (S1) of skeletal muscle myosins at 0 degree C results in cleavage of the heavy chain at a specific site located 5 kDa from the NH2-terminus. This cleavage is enhanced by nucleotides and suppressed by actin and does not occur at 25 degrees C, except in the presence of nucleotide. Here we show a similar temperature sensitivity and protection by actin of an analogous chymotryptic cleavage site in the heavy chain of gizzard S1. The results support the view that the myosin head, in general, can exist in two different conformational states even in the absence of nucleotides and actin, and indicate that the heavy chain region 5 kDa from the NH2-terminus is involved in the communication between the sites of nucleotide and actin binding. We also show here for the first time that the S1-S2 junction in gizzard myosin can be cleaved by chymotrypsin and that this cleavage (observed in papain-produced S1 devoid of the regulatory light chain) is also temperature-dependent but insensitive to nucleotides and actin. It is suggested that the temperature-dependent alteration in the flexibility of the head-rod junction, which is apparent from these and similar observations on skeletal muscle myosin [Miller, L. & Reisler, E. (1985) J. Mol. Biol. 182, 271-279; Redowicz, M.J. & Strzelecka-Gołaszewska, H. (1988) Eur. J. Biochem. 177, 615-624], may contribute to the temperature dependence of some steps in the cross-bridge cycle.
Collapse
Affiliation(s)
- M J Redowicz
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warszawa, Poland
| | | | | |
Collapse
|
22
|
Abstract
The enzymatic activity of filamentous dephosphorylated smooth muscle myosin has been difficult to determine because the polymer disassembles to the folded conformation in the presence of MgATP. Monoclonal antirod antibodies were used here to "fix" dephosphorylated myosin in the filamentous state. The steady-state actin-activated ATPase of phosphorylated filaments was 30-100-fold higher than that of antibody-stabilized dephosphorylated filaments, suggesting that phosphorylation can activate ATPase activity independent of changes in assembly. The degree of regulation may exceed 100-fold, because steady-state measurements slightly overestimate the rate of product release from dephosphorylated filaments. Single-turnover experiments in the absence of actin showed that although dephosphorylated folded myosin released products at the low rate of 0.0005 s-1 (Cross, R. A., K. E. Cross, A. Sobieszek. 1986. EMBO [Eur. Mol. Biol. Organ.] J. 5:2637-2641) the rate of product release from dephosphorylated filaments was only 3-12-fold higher, depending on the ionic strength. The addition of actin did not increase this rate to any appreciable extent. Dephosphorylated filaments and dephosphorylated heavy meromyosin (Sellers, J. R. 1985. J. Biol. Chem. 260:15815-15819) thus have similar low rates of phosphate release both in the presence and absence of actin. These results show that light chain phosphorylation alone, without invoking other mechanisms, is an effective switch for regulating the activity of smooth muscle myosin filaments.
Collapse
Affiliation(s)
- K M Trybus
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| |
Collapse
|
23
|
Frado LL, Craig R. Structural changes induced in Ca2+-regulated myosin filaments by Ca2+ and ATP. J Biophys Biochem Cytol 1989; 109:529-38. [PMID: 2760106 PMCID: PMC2115714 DOI: 10.1083/jcb.109.2.529] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.
Collapse
Affiliation(s)
- L L Frado
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
24
|
Brzeska H, Lynch TJ, Korn ED. The effect of actin and phosphorylation on the tryptic cleavage pattern of Acanthamoeba myosin IA. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81791-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Inhibition of Conformational Change in Smooth Muscle Myosin by a Monoclonal Antibody against the 17-kDa Light Chain. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83721-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Hartshorne DJ, Ito M, Ikebe M. Myosin and contractile activity in smooth muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1989; 255:269-77. [PMID: 2694808 DOI: 10.1007/978-1-4684-5679-0_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D J Hartshorne
- Muscle Biology Group, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
27
|
Mary A, Achyuthan KE, Greenberg CS. b-chains prevent the proteolytic inactivation of the a-chains of plasma factor XIII. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 966:328-35. [PMID: 2901275 DOI: 10.1016/0304-4165(88)90082-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the transglutaminase activity is associated exclusively with the thrombin-cleaved a chains of plasma Factor XIII, there is little information regarding the role of the b-chains. The present investigations were undertaken to clarify the role of the b-chains during proteolytic activation of plasma factor XIII a-chains. The a-chains of platelet Factor XIII (a2) were extremely sensitive to alpha-thrombin proteolysis, especially in the presence of 5 mM EDTA, resulting in two major fragments with molecular masses 51 +/- 3 kDa and 19 +/- 4 kDa. Furthermore, fibrin enhanced the alpha-thrombin proteolysis of thrombin-cleaved platelet Factor XIII a-chains in presence of CaCl2 or EDTA, resulting in several peptide fragments with molecular masses from 51 +/- 3 kDa to 14 +/- 4 kDa. By contrast, thrombin-cleaved a-chains of plasma Factor XIII (a2b2) were not further degraded by alpha-thrombin in presence of 5 mM EDTA. Even in the combined presence of 5 mM EDTA and 0.1 mg/ml fibrin, alpha-thrombin proteolysis of plasma Factor XIIIa was limited to the formation of a 76 kDa fragment (= Factor XIIIa), a 51 +/- 3 kDa fragment and trace amounts of a 14 +/- 4 kDa species. Platelet Factor XIII proteolyzed by 500 nM alpha-thrombin in presence of 5 mM EDTA expressed less than 20% of enzymatic activity obtained when platelet Factor XIII was activated in presence of 5 mM CaCl2. In contrast, plasma Factor XIII activated by 500 nM apha-thrombin in presence of 5 mM EDTA expressed nearly 65% of original transglutaminase activity. Likewise, when plasma Factor XIII was proteolyzed by 100-1000 nM gamma-thrombin in presence of 5 mM CaCl2 or 5 mM EDTA, maximal transglutaminase activity was observed. However, when platelet Factor XIII was similarly treated with gamma-thrombin in presence of 5 mM EDTA, only one-half the original transglutaminase activity was obtained. The b-chains thus appear to mimic the function of Ca2+ in preserving transglutaminase activity of thrombin-cleaved a-chains. The b-chains of plasma Factor XIII were not degraded by either alpha- or gamma-thrombin treatment, in presence of 5 mM EDTA or 5 mM CaCl2. Both platelet and plasma Factor XIII a-chains were degraded by trypsin to fragments with molecular masses of 51 +/- 3 kDa and 19 +/- 4 kDa in presence of 5 mM CaCl2 and to fragments with molecular masses of 19 +/- 4 kDa and lower, in presence of 5 mM EDTA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Mary
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
28
|
Audemard E, Bertrand R, Bonet A, Chaussepied P, Mornet D. Pathway for the communication between the ATPase and actin sites in myosin. J Muscle Res Cell Motil 1988; 9:197-218. [PMID: 2970474 DOI: 10.1007/bf01773891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- E Audemard
- Centre de Biochimie Macromoléculaire du CNRS, Université de Montpellier I, Unité INSERM 249, France
| | | | | | | | | |
Collapse
|
29
|
Ikebe M, Koretz J, Hartshorne DJ. Effects of phosphorylation of light chain residues threonine 18 and serine 19 on the properties and conformation of smooth muscle myosin. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68804-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Bonet A, Audemard E, Mornet D. The internal crosslinking of the S1 heavy chain from smooth muscle probed by dibromobimane. Biochem Biophys Res Commun 1988; 152:1-8. [PMID: 2965870 DOI: 10.1016/s0006-291x(88)80671-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reaction of the crosslinker dibromobimane has recently revealed a functionally important internal loop structure within the skeletal myosin S1 heavy chain where Cys-522 of the 50K domain and Cys-707 (SH1) of the 20K region are spatially juxtaposed. Here we have studied the possible relevance of this topological feature to the architecture and transducing activity of the myosin head in general, by extending the dibromobimane modification to smooth muscle myosin. Treatment of chicken gizzard myosin S1 with dibromobimane resulted in intramolecular crosslinking between the C-terminal 25K and central 50K segments of the S1 heavy chain. The data suggest a conservation at the 50K-25K interface of smooth muscle S1 heavy chain and the importance of the neighboring SH1 region, whose conformation may play an important role in energy transduction by the myosin head.
Collapse
Affiliation(s)
- A Bonet
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, INSERM U-249 Université de Montpellier I, France
| | | | | |
Collapse
|
31
|
Brzeska H, Lynch TJ, Korn ED. Localization of the actin-binding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57410-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Comparative structure of the protease-sensitive regions of the subfragment-1 heavy chain from smooth and skeletal myosins. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49287-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Lynch TJ, Brzeska H, Korn ED. Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)76502-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|