1
|
Grage SL, Guschtschin-Schmidt N, Meng B, Kohlmeyer A, Afonin S, Ulrich AS. Interaction of Squalamine with Lipid Membranes. J Phys Chem B 2025; 129:1760-1773. [PMID: 39905636 DOI: 10.1021/acs.jpcb.4c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Squalamine is an aminosterol from dogfish shark which has drawn attention, besides its antimicrobial activity, as a drug candidate in the treatment of Parkinson's disease due to its ability to prevent binding of α-synuclein to lipid membranes. To get insight into the mode of action of this steroid, we studied the influence of squalamine on lipid bilayers and whether it could inhibit the binding of a model peptide. Solid-state 19F NMR of labeled [KIGAKI]3 indicated that, indeed, this peptide no longer binds as a flexible chain to the bilayer in the presence of squalamine. When the cationic squalamine was added to lipid vesicles containing phosphatidylglycerol lipids, the aminosterol was found in differential scanning calorimetry and solid-state 31P NMR experiments to lower the gel-to-fluid phase transition and cause the phase separation of domains enriched in anionic lipids. Squalamine had only a little influence on 2H NMR relaxation and on the order parameters of the chains. These findings indicate that the aminosterol does not affect the molecular mobility of the hydrophobic core of the bilayer; hence, it does not insert into the membrane, nor causes thinning as found for molecules inserting in the headgroup region. On the other hand, squalamine was found to interact with lipid headgroups through electrostatic interactions, as seen by solid-state 2H NMR on headgroup-labeled lipids. Furthermore, 31P NMR showed that squalamine shifted the lamellar-to-hexagonal phase transition of phosphatidylethanolamine lipids to higher temperatures, indicating a preference for positively curved membranes. Altogether, our experiments indicate a strong interaction of the cationic squalamine with lipid headgroups, in particular with anionic lipids. This affinity for membranes is strong enough to efficiently displace cationic polypeptides, confirming the proposed action mechanism in Parkinson treatment. Notably, supported by 1H-1H NOESY experiments, it was found that squalamine does not insert into the bilayer, but rather acts as facial amphiphile binding to the membrane surface. The binding to membranes may be envisaged in the form of oligomeric or micellar assemblies, which can disrupt the membrane at high concentrations, thereby explaining the antimicrobial and antifungal activities of squalamine.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Nadja Guschtschin-Schmidt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Beibei Meng
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
de Souza KR, Nunes LO, Salnikov ES, Mundim HM, Munhoz VHO, Lião LM, Aisenbrey C, Resende JM, Bechinger B, Verly RM. Elucidating the conformational behavior and membrane-destabilizing capability of the antimicrobial peptide ecPis-4s. Biophys Chem 2025; 317:107353. [PMID: 39579655 DOI: 10.1016/j.bpc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Here we present studies of the structure and membrane interactions of ecPis-4 s, a new antimicrobial peptide from the piscidin family, which shows a wide-range of potential biotechnological applications. In order to understand the mode of action ecPis-4 s, the peptide was chemically synthesized and structural investigations in the presence of anionic POPC:POPG (3:1, mol:mol) membrane and SDS micelles were performed. CD spectroscopy demonstrated that ecPis-4 s has a high content of helical structure in both membrane mimetic media, which is in line with solution NMR spectroscopy that revealed an amphipathic helical conformation throughout the entire peptide chain. Solid-state NMR experiments of ecPis-4 s selectively labeled with 15N/2H and reconstituted into uniaxially oriented POPC:POPG membranes revealed an ideal partition of hydrophilic and hydrophobic residues within the bilayer interface. The peptide aligns in parallel to the membrane surface, a topology stabilized by aromatic side-chain interactions of the Phe-1, Phe-2 and Trp-9 with the phospholipids. 2H NMR experiments using deuterated lipids revealed that anionic lipid accumulates in the vicinity of the cationic peptide upon peptide-membrane binding.
Collapse
Affiliation(s)
- K R de Souza
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil; Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - L O Nunes
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - E S Salnikov
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - H M Mundim
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - V H O Munhoz
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - L M Lião
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - C Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - J M Resende
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - B Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France; Institut Universitaire de France (IUF), France
| | - R M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil.
| |
Collapse
|
3
|
Liu F, Greenwood AI, Xiong Y, Miceli RT, Fu R, Anderson KW, McCallum SA, Mihailescu M, Gross R, Cotten ML. Host Defense Peptide Piscidin and Yeast-Derived Glycolipid Exhibit Synergistic Antimicrobial Action through Concerted Interactions with Membranes. JACS AU 2023; 3:3345-3365. [PMID: 38155643 PMCID: PMC10751773 DOI: 10.1021/jacsau.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Developing new antimicrobials as alternatives to conventional antibiotics has become an urgent race to eradicate drug-resistant bacteria and to save human lives. Conventionally, antimicrobial molecules are studied independently even though they can be cosecreted in vivo. In this research, we investigate two classes of naturally derived antimicrobials: sophorolipid (SL) esters as modified yeast-derived glycolipid biosurfactants that feature high biocompatibility and low production cost; piscidins, which are host defense peptides (HDPs) from fish. While HDPs such as piscidins target the membrane of pathogens, and thus result in low incidence of resistance, SLs are not well understood on a mechanistic level. Here, we demonstrate that combining SL-hexyl ester (SL-HE) with subinhibitory concentration of piscidins 1 (P1) and 3 (P3) stimulates strong antimicrobial synergy, potentiating a promising therapeutic window. Permeabilization assays and biophysical studies employing circular dichroism, NMR, mass spectrometry, and X-ray diffraction are performed to investigate the mechanism underlying this powerful synergy. We reveal four key mechanistic features underlying the synergistic action: (1) P1/3 binds to SL-HE aggregates, becoming α-helical; (2) piscidin-glycolipid assemblies synergistically accumulate on membranes; (3) SL-HE used alone or bound to P1/3 associates with phospholipid bilayers where it induces defects; (4) piscidin-glycolipid complexes disrupt the bilayer structure more dramatically and differently than either compound alone, with phase separation occurring when both agents are present. Overall, dramatic enhancement in antimicrobial activity is associated with the use of two membrane-active agents, with the glycolipid playing the roles of prefolding the peptide, coordinating the delivery of both agents to bacterial surfaces, recruiting the peptide to the pathogenic membranes, and supporting membrane disruption by the peptide. Given that SLs are ubiquitously and safely used in consumer products, the SL/peptide formulation engineered and mechanistically characterized in this study could represent fertile ground to develop novel synergistic agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Fei Liu
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Alexander I. Greenwood
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Yawei Xiong
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rebecca T. Miceli
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Riqiang Fu
- Center
of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Kyle W. Anderson
- National
Institute of Standards and Technology, Rockville, Maryland 20850, United States
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mihaela Mihailescu
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Richard Gross
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Myriam L. Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
4
|
Castangia I, Fulgheri F, Leyva-Jimenez FJ, Alañón ME, Cádiz-Gurrea MDLL, Marongiu F, Meloni MC, Aroffu M, Perra M, Allaw M, Abi Rached R, Oliver-Simancas R, Escribano Ferrer E, Asunis F, Manca ML, Manconi M. From Grape By-Products to Enriched Yogurt Containing Pomace Extract Loaded in Nanotechnological Nutriosomes Tailored for Promoting Gastro-Intestinal Wellness. Antioxidants (Basel) 2023; 12:1285. [PMID: 37372015 DOI: 10.3390/antiox12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Grape pomace is the main by-product generated during the winemaking process; since it is still rich in bioactive molecules, especially phenolic compounds with high antioxidant power, its transformation in beneficial and health-promoting foods is an innovative challenge to extend the grape life cycle. Hence, in this work, the phytochemicals still contained in the grape pomace were recovered by an enhanced ultrasound assisted extraction. The extract was incorporated in liposomes prepared with soy lecithin and in nutriosomes obtained combining soy lecithin and Nutriose FM06®, which were further enriched with gelatin (gelatin-liposomes and gelatin-nutriosomes) to increase the samples' stability in modulated pH values, as they were designed for yogurt fortification. The vesicles were sized ~100 nm, homogeneously dispersed (polydispersity index < 0.2) and maintained their characteristics when dispersed in fluids at different pH values (6.75, 1.20 and 7.00), simulating salivary, gastric and intestinal environments. The extract loaded vesicles were biocompatible and effectively protected Caco-2 cells against oxidative stress caused by hydrogen peroxide, to a better extent than the free extract in dispersion. The structural integrity of gelatin-nutriosomes, after dilution with milk whey was confirmed, and the addition of vesicles to the yogurt did not modify its appearance. The results pointed out the promising suitability of vesicles loading the phytocomplex obtained from the grape by-product to enrich the yogurt, offering a new and easy strategy for healthy and nutritional food development.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Francisco Javier Leyva-Jimenez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Maria Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | | | - Francesca Marongiu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Cristina Meloni
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Perra
- Biomedical and Tissue Engineering Laboratory, Fundación de Investigación Hospital General Universitario, 46022 Valencia, Spain
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rita Abi Rached
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rodrigo Oliver-Simancas
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Elvira Escribano Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08028 Barcelona, Spain
| | - Fabiano Asunis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| |
Collapse
|
5
|
Lai A, Macdonald PM. Phospholipid lateral diffusion in the presence of cationic peptides as measured via 31P CODEX NMR. Biophys Chem 2023; 295:106964. [PMID: 36764129 DOI: 10.1016/j.bpc.2023.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The effects of two cationic peptides on phospholipid lateral diffusion in binary mixtures of POPC with various anionic phospholipids were measured via 31P CODEX NMR. Large unilamellar vesicles composed of POPC/POPG (70/30 mol/mol), or POPC/DOPS (70/30 mol/mol), or POPC/TOCL (85/15 mol/mol), or POPC/DOPA (50/50 mol/mol) were exposed to either polylysine (pLYS, N = 134 monomers) or KL-14 (KKLL KKAKK LLKKL), a model amphipathic helical peptide, in an amount corresponding to 80% neutralization of the anionic phospholipid charge by the cationic lysine residues. In the absence of added peptide, phospholipid lateral diffusion coefficients (all measured at 10 °C) increased with increasing reduced temperature (T-Tm). The POPC/DOPA mixture was an exception to this generalization, in that lateral diffusion for both components was far slower than any other mixture investigated, an effect attributed to intermolecular hydrogen bonding. The addition of pLYS or KL-14 decreased lateral diffusion in the POPC/DOPS LUV, but had minimal effects in the POPC/POPG LUV, indicating that ease of access of the cationic peptide residues to the anionic phospholipid groups was important. Both cationic peptides produced the opposite effect in the POPC/DOPA case, in that lateral diffusion increased significantly in their presence, with KL-14 being most effective. This latter observation was interpreted in terms of the electrostatic / H-bond model proposed by Kooijman et al. [Journal of Biological Chemistry, 282:11356-11,364, 2007] to describe the mechanism of interaction between the phosphomonoester head group of PA and the tertiary amine of lysine.
Collapse
Affiliation(s)
- Angel Lai
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Peter M Macdonald
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
6
|
Manconi M, Rezvani M, Manca ML, Escribano-Ferrer E, Fais S, Orrù G, Lammers T, Asunis F, Muntoni A, Spiga D, De Gioannis G. Bridging biotechnology and nanomedicine to produce biogreen whey-nanovesicles for intestinal health promotion. Int J Pharm 2023; 633:122631. [PMID: 36690128 DOI: 10.1016/j.ijpharm.2023.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
New intestinal health-promoting biotechnological nanovesicles were manufactured by combining the main environmental pollutant generated from the cheese-making process, whey, with phospholipid, sodium hyaluronate and dextrin, thus overcoming environmental and medical challenges. An efficient, consolidated and eco-friendly preparation method was employed to manufacture the vesicles and the bioactive whey was obtained by mesophilic dark fermentation without external inoculum through a homolactic pathway, which was operated in such a way as to maximize the production of lactic acid. The biotechnological nutriosomes and hyalonutriosomes were relatively small (∼100 nm) and characterized by the net negative surface charge (>-30 mV). The addition of maltodextrin to the liposomes and especially to the hyalurosomes significantly stabilized the vesicles under acidic conditions, simulating the gastric environment, as their size and polydispersity index were significantly lower (p < 0.05) than those of the other formulations. The vesicles were effectively internalized by Caco-2 cells and protected them against oxidative stress. Nutriosomes promoted the proliferation of Streptococcus salivarius, a human commensal bacterium, to a better extent (p < 0.05) than liposomes and hyalurosomes, as a function of the concentration tested. These findings could open a new horizon in intestinal protection and health promotion by integrating biotechnology, nanomedicine, sustainability principles and bio-circular economy.
Collapse
Affiliation(s)
- Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maryam Rezvani
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Department of Food Science and Technology, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Sara Fais
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124 Cagliari, Italy
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Fabiano Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| | - Daniela Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| |
Collapse
|
7
|
Clop EM, Fraceto LF, Miguel V, Gastaldi S, de Paula E, Perillo MA. Combined in-silico and in-vitro experiments support acid-base equilibrium as a tool to estimate the localization depth of 4-nitrophenol within a phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184009. [PMID: 35896126 DOI: 10.1016/j.bbamem.2022.184009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The interaction and location of 4-nitrophenol (PNP) in biomembranes are relevant in the bioaccumulation and potentiation of the intensive toxic effects of this persistent organic pollutant. In this work, in-silico analyses predicted that, in a fluid phospholipid bilayer, the minimum energy of the protonated (PNPH) and deprotonated (PNP-) species is located within the glycerol and choline region, respectively. This was experimentally confirmed by acid-base equilibrium experiments and theory, allowing the estimation of the mean location of PNP within a bilayer region with a dielectric constant D = 50.6 compatible with the phosphate/choline moiety of egg-yolk phosphatidylcholine unilamellar (EPC) vesicles. The comparison with the D = 43.2 value obtained in Triton X-100 micelles allow predicting a mean surface potential of ψ = 25.37 mV for the EPC-water interface. Changes in the chemical shifts and longitudinal relaxation times of EPC hydrogens by 1H NMR confirm the deeper location of the PNPH within the glycerol region and at the choline region (PNP-) at higher pH. Intermolecular PNP-EPC dipolar interactions within the choline region was also demonstrated at pH 10.2 using ROESY experiments. Additional information was obtained trough 31P NMR, that detected an increase in the anisotropy at the membrane interface after insertion of PNP which probably act as a bridge between choline moieties rigidizing the crystalline structure at that spot. Concluding, here we provide experimental support to the "pH-piston hypothesis" proposed some decades ago in the pharmaceutical field, and that reinforce the importance of the environmental conditions (e.g. pH) to modulate the bioavailability of this highly toxic pollutant.
Collapse
Affiliation(s)
- Eduardo M Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Leonardo F Fraceto
- Depto de Engenharia Ambiental, Universidade Estadual Paulista Julio de Mesquita Filho, Sorocaba, SP, Brazil
| | - Virginia Miguel
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Salomé Gastaldi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Eneida de Paula
- Depto de Bioquímica e Biologia Tecidual, Inst. Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - María Angélica Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| |
Collapse
|
8
|
Engberg O, Ulbricht D, Döbel V, Siebert V, Frie C, Penk A, Lemberg MK, Huster D. Rhomboid-catalyzed intramembrane proteolysis requires hydrophobic matching with the surrounding lipid bilayer. SCIENCE ADVANCES 2022; 8:eabq8303. [PMID: 36149963 PMCID: PMC9506719 DOI: 10.1126/sciadv.abq8303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Membrane thinning by rhomboid proteins has been proposed to reduce hydrophobic mismatch, providing a unique environment for important functions ranging from intramembrane proteolysis to retrotranslocation in protein degradation. We show by in vitro reconstitution and solid-state nuclear magnetic resonance that the lipid environment of the Escherichia coli rhomboid protease GlpG influences its activity with an optimal hydrophobic membrane thickness between 24 and 26 Å. While phosphatidylcholine membranes are only negligibly altered by GlpG, in an E. coli-relevant lipid mix of phosphatidylethanolamine and phosphatidylglycerol, a thinning by 1.1 Å per leaflet is observed. Protease activity is strongly correlated with membrane thickness and shows no lipid headgroup specificity. We infer from these results that, by adjusting the thickness of specific membrane domains, membrane proteins shape the bilayer for their specific needs.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - David Ulbricht
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Viola Döbel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Verena Siebert
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Christian Frie
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Anja Penk
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Marius K. Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107 Leipzig, Germany
| |
Collapse
|
9
|
Mitchell W, Tamucci JD, Ng EL, Liu S, Birk AV, Szeto HH, May ER, Alexandrescu AT, Alder NN. Structure-activity relationships of mitochondria-targeted tetrapeptide pharmacological compounds. eLife 2022; 11:75531. [PMID: 35913044 PMCID: PMC9342957 DOI: 10.7554/elife.75531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria play a central role in metabolic homeostasis, and dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Tetrapeptides with alternating cationic and aromatic residues such as SS-31 (elamipretide) show promise as therapeutic compounds for mitochondrial disorders. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs, benchmarked against SS-31, that differ with respect to aromatic side chain composition and sequence register. We present the first structural models for this class of compounds, obtained with Nuclear Magnetic Resonance (NMR) and molecular dynamics approaches, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. The peptides had no strict requirement for side chain composition or sequence register to permeate cells and target mitochondria in mammalian cell culture assays. All four peptides were pharmacologically active in serum withdrawal cell stress models yet showed significant differences in their abilities to restore mitochondrial membrane potential, preserve ATP content, and promote cell survival. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register influence the activity of these mitochondria-targeted peptides, helping provide a framework for the rational design of next-generation therapeutics with enhanced potency.
Collapse
Affiliation(s)
- Wayne Mitchell
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jeffrey D Tamucci
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Emery L Ng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Shaoyi Liu
- Social Profit Network, Menlo Park, CA, United States
| | - Alexander V Birk
- Department of Biology, York College of CUNY, New York, NY, United States
| | - Hazel H Szeto
- Social Profit Network, Menlo Park, CA, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
10
|
Antila HS, Wurl A, Ollila OS, Miettinen MS, Ferreira TM. Rotational decoupling between the hydrophilic and hydrophobic regions in lipid membranes. Biophys J 2022; 121:68-78. [PMID: 34902330 PMCID: PMC8758420 DOI: 10.1016/j.bpj.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
Cells use homeostatic mechanisms to ensure an optimal composition of distinct types of lipids in cellular membranes. The hydrophilic region of biological lipid membranes is mainly composed of several types of phospholipid headgroups that interact with incoming molecules, nanoparticles, and viruses, whereas the hydrophobic region consists of a distribution of acyl chains and sterols affecting membrane fluidity/rigidity related properties and forming an environment for membrane-bound molecules such as transmembrane proteins. A fundamental open question is to what extent the motions of these regions are coupled and, consequently, how strongly the interactions of phospholipid headgroups with other molecules depend on the properties and composition of the membrane hydrophobic core. We combine advanced solid-state nuclear magnetic resonance spectroscopy with high-fidelity molecular dynamics simulations to demonstrate how the rotational dynamics of choline headgroups remain nearly unchanged (slightly faster) with incorporation of cholesterol into a phospholipid membrane, contrasting the well-known extreme slowdown of the other phospholipid segments. Notably, our results suggest a new paradigm in which phospholipid dipole headgroups interact as quasi-freely rotating flexible dipoles at the interface, independent of the properties in the hydrophobic region.
Collapse
Affiliation(s)
- Hanne S. Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany,Corresponding author
| | - Anika Wurl
- NMR Group, Institute for Physics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Tiago M. Ferreira
- NMR Group, Institute for Physics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany,Corresponding author
| |
Collapse
|
11
|
Kumar S, Fischer M, Kaur N, Scheidt HA, Mithu VS. Impact of Lipid Ratio on the Permeability of Mixed Phosphatidylcholine/Phosphatidylglycerol Membranes in the Presence of 1-Dodecyl-3-methylimidazolium Bromide Ionic Liquid. J Phys Chem B 2021; 126:174-183. [PMID: 34965130 DOI: 10.1021/acs.jpcb.1c06796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied the impact of the lipid ratio on the membrane permeability of mixed phosphatidylcholine (POPC)/phosphatidylglycerol (POPG) membranes induced by 1-dodecyl-3-methylimidazolium bromide ([C12MIM]+Br-) ionic liquid by evaluating the role of affinity and architecture of the phospholipid bilayer. Nine different model membranes composed of negatively charged POPG and zwitterionic POPC lipids mixed in molar ratios of 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9 have been studied. The membrane permeability of each composition has been evaluated using fluorescence-based dye leakage assays. Despite having the highest membrane affinity, POPG-rich membranes doped with 10 and 20 mol % POPC are found to be the least permeable. 31P- and 2H-based solid-state NMR investigations reveal that the minor POPC component is homogeneously dispersed in the PG/PC (8:2) membrane. In contrast, the lipids seem to be segregated into POPG- and POPC-rich domains in the complementary PG/PC (2:8) composition. Although [C12MIM]+ cations have a stronger interaction with the POPG component in the mixed membranes, their insertion has a limited impact on the overall structure and dynamics of the PG/PC (8:2) composition.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Markus Fischer
- Institut für Medizinische Physik und Biophysik, Leipzig University, Leipzig 04109, Germany
| | - Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A Scheidt
- Institut für Medizinische Physik und Biophysik, Leipzig University, Leipzig 04109, Germany
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
12
|
Bacle A, Buslaev P, Garcia-Fandino R, Favela-Rosales F, Mendes Ferreira T, Fuchs PFJ, Gushchin I, Javanainen M, Kiirikki AM, Madsen JJ, Melcr J, Milán Rodríguez P, Miettinen MS, Ollila OHS, Papadopoulos CG, Peón A, Piggot TJ, Piñeiro Á, Virtanen SI. Inverse Conformational Selection in Lipid-Protein Binding. J Am Chem Soc 2021; 143:13701-13709. [PMID: 34465095 DOI: 10.1021/jacs.1c05549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.
Collapse
Affiliation(s)
- Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1 rue Georges Bonnet, Poitiers 86000, France
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain.,CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Fernando Favela-Rosales
- Departamento de Ciencias Básicas, Tecnológico Nacional de México - ITS Zacatecas Occidente, Sombrerete, Zacatecas 99102, México
| | - Tiago Mendes Ferreira
- NMR group - Institute for Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Patrick F J Fuchs
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France.,UFR Sciences du Vivant, Université de Paris, Paris 75013, France
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, Prague CZ-16610, Czech Republic
| | - Anne M Kiirikki
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Jesper J Madsen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, Groningen9747 AG, The Netherlands
| | - Paula Milán Rodríguez
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Chris G Papadopoulos
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Antonio Peón
- CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Thomas J Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Salla I Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
13
|
Role of cationic head-group in cytotoxicity of ionic liquids: Probing changes in bilayer architecture using solid-state NMR spectroscopy. J Colloid Interface Sci 2021; 581:954-963. [DOI: 10.1016/j.jcis.2020.08.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023]
|
14
|
Lactobacillus crispatus BC1 Biosurfactant Delivered by Hyalurosomes: An Advanced Strategy to Counteract Candida Biofilm. Antibiotics (Basel) 2021; 10:antibiotics10010033. [PMID: 33401413 PMCID: PMC7823809 DOI: 10.3390/antibiotics10010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of resistance to antifungal drugs has made the treatment of vulvovaginal candidiasis (VVC) very challenging. Among natural substances, biosurfactants (BS) produced by Lactobacillus have gained increasing interest in counteracting Candida infections for their proven anti-adhesive properties and safety profile. In the present study, liposomes (LP-BS) or liposomes coated with hyaluronic acid (HY-LP-BS) were prepared in the presence of the BS isolated from the vaginal strain Lactobacillus crispatus BC1 and characterized in terms of size, ζ potential, stability and mucoadhesion. The anti-biofilm activity of free BS, LP-BS and HY-LP-BS was investigated against different Candida albicans and non-albicans strains (C. glabrata, C. lusitaniae, C. tropicalis, C. krusei and C. parapsilosis), clinically isolated from patients affected by VVC. The inhibition of biofilm formation and the dispersal of pre-formed biofilm were evaluated. The obtained phospholipid vesicles showed suitable size for vaginal application and good stability over the storage period. HY-LP-BS exhibited good mucoadhesive properties and the best anti-biofilm profile, both in preventing or limiting the surface colonization by a broad spectrum of Candida species. In conclusion, the formulation of a novel antifungal agent derived from the vaginal microbiota into mucoadhesive nanocarriers appears to be a promising biotherapeutic strategy to counteract vulvovaginal candidiasis.
Collapse
|
15
|
Pacull EM, Sendker F, Bernhard F, Scheidt HA, Schmidt P, Huster D, Krug U. Integration of Cell-Free Expression and Solid-State NMR to Investigate the Dynamic Properties of Different Sites of the Growth Hormone Secretagogue Receptor. Front Pharmacol 2020; 11:562113. [PMID: 33324203 PMCID: PMC7723455 DOI: 10.3389/fphar.2020.562113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cell-free expression represents an attractive method to produce large quantities of selectively labeled protein for NMR applications. Here, cell-free expression was used to label specific regions of the growth hormone secretagogue receptor (GHSR) with NMR-active isotopes. The GHSR is a member of the class A family of G protein-coupled receptors. A cell-free expression system was established to produce the GHSR in the precipitated form. The solubilized receptor was refolded in vitro and reconstituted into DMPC lipid membranes. Methionines, arginines, and histidines were chosen for 13C-labeling as they are representative for the transmembrane domains, the loops and flanking regions of the transmembrane α-helices, and the C-terminus of the receptor, respectively. The dynamics of the isotopically labeled residues was characterized by solid-state NMR measuring motionally averaged 1H-13C dipolar couplings, which were converted into molecular order parameters. Separated local field DIPSHIFT experiments under magic-angle spinning conditions using either varying cross polarization contact times or direct excitation provided order parameters for these residues showing that the C-terminus was the segment with the highest motional amplitude. The loop regions and helix ends as well as the transmembrane regions of the GHSR represent relatively rigid segments in the overall very flexible receptor molecule. Although no site resolution could be achieved in the experiments, the previously reported highly dynamic character of the receptor concluded from uniformly 13C labeled receptor samples could be further specified by this segmental labeling approach, leading to a more diversified understanding of the receptor dynamics under equilibrium conditions.
Collapse
Affiliation(s)
- Emelyne M Pacull
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Franziska Sendker
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ulrike Krug
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Kremkow J, Luck M, Huster D, Müller P, Scheidt HA. Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes. Biomolecules 2020; 10:biom10101384. [PMID: 32998467 PMCID: PMC7650631 DOI: 10.3390/biom10101384] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Deciphering the membrane interaction of drug molecules is important for improving drug delivery, cellular uptake, and the understanding of side effects of a given drug molecule. For the anti-inflammatory drug ibuprofen, several studies reported contradictory results regarding the impact of ibuprofen on cholesterol-containing lipid membranes. Here, we investigated membrane localization and orientation as well as the influence of ibuprofen on membrane properties in POPC/cholesterol bilayers using solid-state NMR spectroscopy and other biophysical assays. The presence of ibuprofen disturbs the molecular order of phospholipids as shown by alterations of the 2H and 31P-NMR spectra of the lipids, but does not lead to an increased membrane permeability or changes of the phase state of the bilayer. 1H MAS NOESY NMR results demonstrate that ibuprofen adopts a mean position in the upper chain/glycerol region of the POPC membrane, oriented with its polar carbonyl group towards the aqueous phase. This membrane position is only marginally altered in the presence of cholesterol. A previously reported result that ibuprofen is expelled from the membrane interface in cholesterol-containing DMPC bilayers could not be confirmed.
Collapse
Affiliation(s)
- Jan Kremkow
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
| | - Meike Luck
- Department of Biology, Humboldt University Berlin, Invalidenstr. 42, D-10115 Berlin, Germany; (M.L.); (P.M.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 42, D-10115 Berlin, Germany; (M.L.); (P.M.)
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
- Correspondence:
| |
Collapse
|
17
|
Glycyrrhetinic Acid Liposomes and Hyalurosomes on Spanish Broom, Flax, and Hemp Dressings to Heal Skin Wounds. Molecules 2020; 25:molecules25112558. [PMID: 32486398 PMCID: PMC7321348 DOI: 10.3390/molecules25112558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The focus of this work was to prepare Spanish Broom, flax, and hemp dressings impregnated with glycyrrhetinic acid (GA) liposomes or hyalurosomes to promote the healing process and protect the skin wounds. Vesicles were prepared by the film hydration method and characterized in terms of size, particle size distribution, ζ potential, encapsulation efficiency, in vitro release, and biocompatibility on 3T3 fibroblasts. Loaded liposomes and hyalurosomes showed nanometric size (355 ± 19 nm and 424 ± 32 nm, respectively), good size distribution (lower than 0.3), and appropriate encapsulation efficiency (58.62 ± 3.25% and 59.22 ± 8.18%, respectively). Hyalurosomes showed good stability during the storage period, which can be correlated to the negative ζ potential, and allowed a fast and complete release of GA. Preliminary biological studies revealed that both kinds of loaded vesicles were not cytotoxic and that hyalurosomes could exert a slight stimulating effect on fibroblast proliferation. Finally, in vitro release studies from the different dressings impregnated with the loaded vesicles demonstrated that a high amount of GA could be reached at the wound site after 60 min from application. In conclusion, the results suggested that the developed dressings, especially those impregnated with hyalurosomes, can be efficiently used to promote the healing process.
Collapse
|
18
|
Ravula T, Kim J, Lee DK, Ramamoorthy A. Magnetic Alignment of Polymer Nanodiscs Probed by Solid-State NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1258-1265. [PMID: 31961695 PMCID: PMC7414804 DOI: 10.1021/acs.langmuir.9b03538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of amphipathic polymers to self-assemble with lipids and form nanodiscs has been a boon for the field of functional reconstitution of membrane proteins. In a field dominated by detergent micelles, a unique feature of polymer nanodiscs is their much-desired ability to align in the presence of an external magnetic field. Magnetic alignment facilitates the application of solid-state nuclear magnetic resonance (NMR) spectroscopy and aids in the measurement of residual dipolar couplings via well-established solution NMR spectroscopy. In this study, we comprehensively investigate the magnetic alignment properties of styrene maleimide quaternary ammonium (SMA-QA) polymer-based nanodiscs by using 31P and 14N solid-state NMR experiments under static conditions. The results reported herein demonstrate the spontaneous magnetic alignment of large-sized (≥20 nm diameter) SMA-QA nanodiscs (also called as macro-nanodiscs) with the lipid bilayer normal perpendicular to the magnetic field direction. Consequently, the orientation of macro-nanodiscs is further shown to flip the alignment axis parallel to the magnetic field direction upon the addition of a paramagnetic lanthanide salt. These results demonstrate the use of SMA-QA polymer nanodiscs for solid-state NMR applications including structural studies on membrane proteins.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - JaeWoong Kim
- Department of Fine Chemistry , Seoul National University of Science and Technology , Seoul 01811 , Republic of Korea
| | - Dong-Kuk Lee
- Department of Fine Chemistry , Seoul National University of Science and Technology , Seoul 01811 , Republic of Korea
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
19
|
Near-Infrared Ag2S quantum dots loaded in phospholipid nanostructures: Physical properties, stability and cytotoxicity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Antila H, Buslaev P, Favela-Rosales F, Ferreira TM, Gushchin I, Javanainen M, Kav B, Madsen JJ, Melcr J, Miettinen MS, Määttä J, Nencini R, Ollila OHS, Piggot TJ. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J Phys Chem B 2019; 123:9066-9079. [DOI: 10.1021/acs.jpcb.9b06091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Fernando Favela-Rosales
- Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas Occidente, C. P. 99102 Zacatecas, México
| | - Tiago M. Ferreira
- NMR Group - Institute for Physics, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Batuhan Kav
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesper J. Madsen
- Department of Chemistry, The University of Chicago, 60637 Chicago, Illinois, United States of America
- Department of Global Health, College of Public Health, University of South Florida, 33612 Tampa, Florida, United States of America
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jukka Määttä
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas J. Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
21
|
Bteich M, Poulin P, Haddad S. The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs. Expert Opin Drug Metab Toxicol 2019; 15:633-658. [DOI: 10.1080/17425255.2019.1640679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michel Bteich
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Patrick Poulin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
- Consultant Patrick Poulin Inc., Québec city, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
A New Method of Assessing Lipid Mixtures by 31P Magic-Angle Spinning NMR. Biophys J 2019; 114:1368-1376. [PMID: 29590594 DOI: 10.1016/j.bpj.2018.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022] Open
Abstract
A variety of lipids that differ by their chains and headgroups are found in biomembranes. In addition to studying the overall membrane phase, determination of the structure, dynamics, and headgroup conformation of individual lipids in the mixture would be of great interest. We have thus developed, to our knowledge, a new approach using solid-state 31P NMR, magic-angle spinning, and chemical-shift anisotropy (CSA) recoupling, using an altered version of the recoupling of chemical shift anisotropy (ROCSA) pulse sequence, here penned PROCSA. The resulting two-dimensional spectra allowed the simultaneous measurement of the isotropic chemical shift and CSA of each lipid headgroup, thus providing a valuable measure of its dynamics and structure. PROCSA was applied to mixtures of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in various relative proportions, to mimic bacterial membranes and assess the respective roles of lipids in shaping these bilayers. The results were interpreted in terms of membrane topology, lipid propensity to adopt various phases or conformations, and lipid-lipid miscibility. Our results showed that PG dictates the lipid behavior when present in a proportion of 20 mol % or more. A small proportion of PG is thus able to impose a bilayer structure to the hexagonal phase forming PE. We discuss the requirement for lipids, such as PE, to be able to adopt non-bilayer phases in a membrane.
Collapse
|
23
|
Bhattacharyya D, Kim M, Mroue KH, Park M, Tiwari A, Saleem M, Lee D, Bhunia A. Role of non-electrostatic forces in antimicrobial potency of a dengue-virus derived fusion peptide VG16KRKP: Mechanistic insight into the interfacial peptide-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:798-809. [DOI: 10.1016/j.bbamem.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
24
|
Salnikov ES, Aisenbrey C, Anantharamaiah G, Bechinger B. Solid-state NMR structural investigations of peptide-based nanodiscs and of transmembrane helices in bicellar arrangements. Chem Phys Lipids 2019; 219:58-71. [DOI: 10.1016/j.chemphyslip.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023]
|
25
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
26
|
Pullanchery S, Yang T, Cremer PS. Introduction of Positive Charges into Zwitterionic Phospholipid Monolayers Disrupts Water Structure Whereas Negative Charges Enhances It. J Phys Chem B 2018; 122:12260-12270. [DOI: 10.1021/acs.jpcb.8b08476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zhang N, Qi R, Chen Y, Ji X, Han Y, Wang Y. Partition of Glutamic Acid-Based Single-Chain and Gemini Amphiphiles into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13652-13661. [PMID: 30350992 DOI: 10.1021/acs.langmuir.8b02627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the interactions of amphiphile molecules with biological membranes is very important to many practical applications. Amino acid amphiphiles are a kind of mild surfactants and have many unique performances. However, their interactions with phospholipid membranes have scarcely been studied. This work has studied the interactions of glutamic acid-based gemini amphiphile C12(Glu)2C12 and single-chain amphiphile C12Glu with the model biomembrane formed by the phospholipid 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The partition coefficients of C12(Glu)2C12 and C12Glu into the DOPC vesicles were derived from the observed enthalpy curves obtained by isothermal titration calorimetry at temperatures of 25.0 and 37.0 °C, and pHs of 5.6 and 7.4, corresponding to the skin surface and human physiological conditions. The results from cryogenic transmission electron microscopy, dynamic light scattering, and zeta potential measurements show that the amphiphile molecules form different aggregates, which make the amphiphile molecules exhibit different partition abilities to the DOPC vesicles. For C12Glu, the molecules form shorter wormlike micelles with a lower surface charge at all the pHs and temperatures used, and the partition coefficient of C12Glu into the DOPC vesicles does not change with temperature and pH. Differently, the C12(Glu)2C12 molecules form fibers with a larger negative charge and belts with a smaller negative charge at pHs 7.4 and 5.6, respectively, no matter what temperature is used. As a result, the partitions of C12(Glu)2C12 into the DOPC vesicles are markedly different at these two pH values, and the belts at pH 7.4 exhibit a stronger partition ability than the fibrils at pH 5.6. Moreover, at any temperature and pH, C12(Glu)2C12 shows a stronger partition ability than C12Glu. This work can help to understand the relationship between the molecular structure and aggregate structure of amino acid amphiphiles and their partition abilities into the biomembranes.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Chen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiuling Ji
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
28
|
Cationic interaction with phosphatidylcholine in a lipid cubic phase studied with electrochemical impedance spectroscopy and small angle X-ray scattering. J Colloid Interface Sci 2018; 528:321-329. [PMID: 29860201 DOI: 10.1016/j.jcis.2018.05.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Electrochemical Impedance Spectroscopy (EIS) can be used to investigate cationic interaction with the choline headgroup in the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H2O). EXPERIMENTS EIS was used to estimate the resistance and capacitance of a freestanding membrane of a lipid cubic phase (LCP). The membrane was formed in a small cylindrical aperture separating two compartments, containing one Pt electrode each. The impedance experiments were carried out in a two electrode setup with electrolyte solutions made of KCl, CsCl, MgCl2 and CaCl2 filling the compartments at two different ionic strength. Small angle X-ray diffraction (SAXRD) was used to establish the structure and cell unit parameters of the LCP. FINDINGS The interpretation of ionic interaction with phosphatidylcholine was based on estimated membrane resistances and capacitances from EIS measurements. The magnitude of cationic interaction with the lipid headgroup in the water channels is correlated to the membrane resistance that increases in the order Cs+ < K+ < Mg2+ < Ca2+ following the Hofmeister direct series and also reflecting the order of intrinsic binding constants. The membrane capacitance and SAXRD results are discussed as an effect of cationic interaction and it was possible to observe both swelling and condensing effects. The stability of the cubic phase throughout the experiments was confirmed by SAXRD.
Collapse
|
29
|
Supramolecular Organization of Apolipoprotein-A-I-Derived Peptides within Disc-like Arrangements. Biophys J 2018; 115:467-477. [PMID: 30054032 DOI: 10.1016/j.bpj.2018.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023] Open
Abstract
Apolipoprotein A-I is the major protein component of high-density lipoproteins and fulfils important functions in lipid metabolism. Its structure consists of a chain of tandem domains of amphipathic helices. Using this protein as a template membrane scaffolding protein, class A amphipathic helical peptides were designed to support the amphipathic helix theory and later as therapeutic tools in biomedicine. Here, we investigated the lipid interactions of two apolipoprotein-A-I-derived class A amphipathic peptides, 14A (Ac-DYLKA FYDKL KEAF-NH2) and 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2), including the disc-like supramolecular structures they form with phospholipids. Thus, the topologies of 14A and 18A in phospholipid bilayers have been determined by oriented solid-state NMR spectroscopy. Whereas at a peptide-to-lipid ratio of 2 mol% the peptides align parallel to the bilayer surface, at 7.5 mol% disc-like structures are formed that spontaneously orient in the magnetic field of the NMR spectrometer. From a comprehensive data set of four 15N- or 2H-labeled positions of 14A, a tilt angle, which deviates from perfectly in-planar by 14°, and a model for the peptidic rim structure have been obtained. The tilt and helical pitch angles are well suited to cover the hydrophobic chain region of the bilayer when two peptide helices form a head-to-tail dimer. Thus, the detailed topology found in this work agrees with the peptides forming the rim of nanodiscs in a double belt arrangement.
Collapse
|
30
|
Hammer J, Tukker AM, Postma JF, Haftka JJH, Hermens JLM, de Voogt P, Kraak MHS. Solubility Constraints on Aquatic Ecotoxicity Testing of Anionic Surfactants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:99-104. [PMID: 29858623 PMCID: PMC6028843 DOI: 10.1007/s00128-018-2361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/14/2018] [Indexed: 05/03/2023]
Abstract
In order to develop models that can predict the environmental behavior and effects of chemicals, reliable experimental data are needed. However, for anionic surfactants the number of ecotoxicity studies is still limited. The present study therefore aimed to determine the aquatic ecotoxicity of three classes of anionic surfactants. To this purpose we subjected daphnids (Daphnia magna) for 48 h to alkyl carboxylates (CxCO2-), alkyl sulfonates (CxSO3-), and alkyl sulfates (CxSO4-) with different carbon chain lengths (x). However, all surfactants with x > 11 showed less than 50% immobility at water solubility. Hence, EC50 values for only few surfactants could be gathered: C9CO2- (16 mg L-1), C11CO2- (0.8 mg L-1) and C11SO4- (13.5 mg L-1). Data from these compounds showed an increase in ecotoxicity with a factor 4.5 per addition of a hydrocarbon unit to the alkyl chain, and a factor 20 when replacing the sulfate head group by a carboxylate head group. Unfortunately, we could not test carboxylates with a broader variety of chain lengths because solubility limited the range of chain length that can be tested.
Collapse
Affiliation(s)
- J Hammer
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands.
- Institute for Risk Assessment Sciences, Toxicology Division, Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands.
| | - A M Tukker
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
- Institute for Risk Assessment Sciences, Toxicology Division, Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands
| | - J F Postma
- Ecofide, Singel 105, 1381 AT, Weesp, The Netherlands
| | - J J-H Haftka
- Institute for Risk Assessment Sciences, Toxicology Division, Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands
| | - J L M Hermens
- Institute for Risk Assessment Sciences, Toxicology Division, Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands
| | - P de Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - M H S Kraak
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Kumar S, Scheidt HA, Kaur N, Kaur A, Kang TS, Huster D, Mithu VS. Amphiphilic Ionic Liquid-Induced Membrane Permeabilization: Binding Is Not Enough. J Phys Chem B 2018; 122:6763-6770. [DOI: 10.1021/acs.jpcb.8b03733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Anupreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Tejwant S. Kang
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 04109, Germany
| | - Venus S. Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
32
|
Melcr J, Martinez-Seara H, Nencini R, Kolafa J, Jungwirth P, Ollila OHS. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J Phys Chem B 2018; 122:4546-4557. [DOI: 10.1021/acs.jpcb.7b12510] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 117 20 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
33
|
|
34
|
Ghazvini S, Alonso R, Alhakamy N, Dhar P. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1159-1170. [PMID: 29019691 DOI: 10.1021/acs.langmuir.7b02803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P--N+ dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes electrostatic repulsion between the headgroups. Our results also show that active interfacial microrheology is a sensitive technique for detecting minute changes in the lipid headgroup orientation induced by changes in the local membrane environment, even in unsaturated phospholipids where the surface viscosity is close to the experimental detection limit.
Collapse
Affiliation(s)
| | | | - Nabil Alhakamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University , Jeddah, KSA
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | | |
Collapse
|
35
|
Kafle A, Misono T, Bhadani A, Akamatsu M, Sakai K, Kaise C, Kaneko T, Sakai H. Effects of β-Sitosteryl Sulfate on the Phase Behavior and Hydration Properties of Distearoylphosphatidylcholine: a Comparison with Dipalmitoylphosphatidylcholine. J Oleo Sci 2018. [DOI: 10.5650/jos.ess17182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ananda Kafle
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Takeshi Misono
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Avinash Bhadani
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | | | | | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
36
|
Roy B, Hajari A, Manna J, Sharma P. Supported ammonia borane decomposition through enhanced homopolar B–B coupling. Dalton Trans 2018; 47:6570-6579. [DOI: 10.1039/c8dt00789f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermolytic decomposition of ammonia borane (AB) is known to proceed through the polymeric coupling reaction between –BH3 and –NH3 sites of multiple ammonia borane molecules, which results in the release of hydrogen and other by-products, e.g., ammonia, diborane and borazine.
Collapse
Affiliation(s)
- Binayak Roy
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Animesh Hajari
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Joydev Manna
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Pratibha Sharma
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
37
|
Kafle A, Misono T, Bhadani A, Akamatsu M, Sakai K, Kaise C, Kaneko T, Sakai H. Effects of β-Sitosteryl Sulfate on the Hydration Behavior of Dipalmitoylphosphatidylcholine. J Oleo Sci 2018; 67:763-771. [DOI: 10.5650/jos.ess17225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ananda Kafle
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Takeshi Misono
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Avinash Bhadani
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | | | | | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
38
|
Bohinc K, Bossa GV, May S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interface Sci 2017; 249:220-233. [PMID: 28571611 DOI: 10.1016/j.cis.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
An electric double layer forms when the small mobile ions of an electrolyte interact with an extended charged object, a macroion. The competition between electrostatic attraction and translational entropy loss of the small ions results in a diffuse layer of partially immobilized ions in the vicinity of the macroion. Modeling structure and energy of the electric double layer has a long history that has lead to the classical Poisson-Boltzmann theory and numerous extensions that account for ion-ion correlations and structural ion and solvent properties. The present review focuses on approaches that instead of going beyond the mean-field character of Poisson-Boltzmann theory introduce structural details of the ions and the solvent into the Poisson-Boltzmann modeling framework. The former include not only excluded volume effects but also the presence of charge distributions on individual ions, spatially extended ions, and internal ionic degrees of freedom. The latter treat the solvent either explicitly as interacting Langevin dipoles or in the form of effective non-electrostatic interactions, in particular Yukawa interactions, that are added to the Coulomb potential. We discuss how various theoretical models predict structural properties of the electric double layer such as the differential capacitance and compare some of these predictions with computer simulations.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | | | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
39
|
Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Biophys J 2017; 113:1290-1300. [PMID: 28734478 DOI: 10.1016/j.bpj.2017.06.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023] Open
Abstract
The histidine-rich designer peptide LAH4-L1 exhibits antimicrobial and potent cell-penetrating activities for a wide variety of cargo including nucleic acids, polypeptides, adeno-associated viruses, and nanodots. The non-covalent complexes formed between the peptide and cargo enter the cell via an endosomal pathway where the pH changes from neutral to acidic. Here, we investigated the membrane interactions of the peptide with phospholipid bilayers and its membrane topology using static solid-state NMR spectroscopy. Oriented 15N solid-state NMR indicates that in membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) 3:1 mol/mole and at neutral pH, the peptide adopts transmembrane topologies. Furthermore, 31P and 2H solid-state NMR spectra show that liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and POPC/POPS 3:1 liposomes retain a bilayer macroscopic phase even at the highest peptide concentrations investigated, with an oblate orientational distribution of the phospholipids at a peptide/lipid ratio of 1:5. At pH 5, as it occurs in the endosome, the alignment of LAH4-L1 at a peptide/lipid ratio of 1:25 is predominantly parallel to POPC/POPS 3:1 bilayers (prolate deformation) when at the same time it induces a considerable decrease of the deuterium order parameter of POPC/2H31-POPS 3:1. In addition, when studied in mechanically supported lipid membranes, a pronounced disordering of the phospholipid alignment is observed. In the presence of even higher peptide concentrations, lipid spectra are observed that suggest the formation of magnetically oriented or isotropic bicelles. This membrane-disruptive effect is enhanced for gel phase DMPC membranes. By protonation of the four histidines in acidic environments, the overall charge and hydrophobic moment of LAH4-L1 considerably change, and much of the peptide is released from the cargo. Thus, the amphipathic peptide sequences become available to disrupt the endosomal membrane and to assure highly efficient release from this organelle.
Collapse
Affiliation(s)
- Justine Wolf
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Nicole Harmouche
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Jesus Raya
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Philippe Bertani
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Natalia Voievoda
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Regine Süss
- Albert-Ludwigs-Universität Freiburg, Pharmazeutische Technologie und Biopharmazie, Freiburg, Germany
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
40
|
Uhríková D, Teixeira J, Hubčík L, Búcsi A, Kondela T, Murugova T, Ivankov OI. Lipid based drug delivery systems: Kinetics by SANS. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/848/1/012007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Manconi M, Manca ML, Valenti D, Escribano E, Hillaireau H, Fadda AM, Fattal E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int J Pharm 2017; 525:203-210. [DOI: 10.1016/j.ijpharm.2017.04.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
|
42
|
Matthews JR, Shirazinejad CR, Isakson GA, Demers SME, Hafner JH. Structural Analysis by Enhanced Raman Scattering. NANO LETTERS 2017; 17:2172-2177. [PMID: 28166410 DOI: 10.1021/acs.nanolett.6b04509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gold nanostructures focus light to a molecular length scale at their surface, creating the possibility to visualize molecular structure. The high optical intensity leads to surface enhanced Raman scattering (SERS) from nearby molecules. SERS spectra contain information on molecular position and orientation relative to the surface but are difficult to interpret quantitatively. Here we describe a ratiometric analysis method that combines SERS and unenhanced Raman spectra with theoretical calculations of the optical field and molecular polarizability. When applied to the surfactant layer on gold nanorods, the alkane chain is found to be tilted 25° to the surface normal, which matches previous reports of the layer thickness. The analysis was also applied to fluid phase phospholipid bilayers that contain tryptophan on the surface of gold nanorods. The lipid double bond was found to be oriented normal to the bilayer and 13 Å from the nitrogen atom. Tryptophan was found to sit near the glycerol headgroup region with its indole ring 43° from the bilayer normal. This new method can determine specific interfacial structure under ambient conditions, with microscopic quantities of material, and without molecular labels.
Collapse
Affiliation(s)
- James R Matthews
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Cyna R Shirazinejad
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Grace A Isakson
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Steven M E Demers
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Jason H Hafner
- Department of Physics & Astronomy and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
43
|
dos Santos MC, Micheletto YMS, da Silveira NP, da Silva Pinto L, Giacomelli FC, de Lima VR, Frizon TEA, Dal-Bó AG. Self-assembled carbohydrate-based vesicles for lectin targeting. Colloids Surf B Biointerfaces 2016; 148:12-18. [DOI: 10.1016/j.colsurfb.2016.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022]
|
44
|
Rabe M, Aisenbrey C, Pluhackova K, de Wert V, Boyle AL, Bruggeman DF, Kirsch SA, Böckmann RA, Kros A, Raap J, Bechinger B. A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. Biophys J 2016; 111:2162-2175. [PMID: 27851940 PMCID: PMC5113151 DOI: 10.1016/j.bpj.2016.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022] Open
Abstract
A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands.
| | | | - Kristyna Pluhackova
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vincent de Wert
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Aimee L Boyle
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Didjay F Bruggeman
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Sonja A Kirsch
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Kros
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Jan Raap
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS UMR7177, Institut de Chimie, Strasbourg, France.
| |
Collapse
|
45
|
Mendes Ferreira T, Sood R, Bärenwald R, Carlström G, Topgaard D, Saalwächter K, Kinnunen PKJ, Ollila OHS. Acyl Chain Disorder and Azelaoyl Orientation in Lipid Membranes Containing Oxidized Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6524-33. [PMID: 27260273 DOI: 10.1021/acs.langmuir.6b00788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.
Collapse
Affiliation(s)
- Tiago Mendes Ferreira
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Rohit Sood
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| | - Ruth Bärenwald
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Göran Carlström
- Centre for Analysis and Synthesis, Lund University , SE-221 00 Lund, Sweden
| | - Daniel Topgaard
- Physical Chemistry, Lund University , SE-221 00 Lund, Sweden
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg , 06108 Halle, Germany
| | - Paavo K J Kinnunen
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| | - O H Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University , 02150 Espoo, Finland
| |
Collapse
|
46
|
Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2512-2528. [PMID: 26809025 DOI: 10.1016/j.bbamem.2016.01.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
47
|
Catte A, Girych M, Javanainen M, Loison C, Melcr J, Miettinen MS, Monticelli L, Määttä J, Oganesyan VS, Ollila OHS, Tynkkynen J, Vilov S. Molecular electrometer and binding of cations to phospholipid bilayers. Phys Chem Chem Phys 2016; 18:32560-32569. [DOI: 10.1039/c6cp04883h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular electrometer – reorientation of lipid head due to bound charge – allows direct quantitative vetting of simulations against noninvasive NMR experiments; most simulation models overestimated lipid–cation affinities.
Collapse
|
48
|
Botan A, Favela-Rosales F, Fuchs PFJ, Javanainen M, Kanduč M, Kulig W, Lamberg A, Loison C, Lyubartsev A, Miettinen MS, Monticelli L, Määttä J, Ollila OHS, Retegan M, Róg T, Santuz H, Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J Phys Chem B 2015; 119:15075-88. [PMID: 26509669 PMCID: PMC4677354 DOI: 10.1021/acs.jpcb.5b04878] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
Collapse
Affiliation(s)
- Alexandru Botan
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Fernando Favela-Rosales
- Departamento
de Física, Centro de Investigación
y de Estudios Avanzados del IPN, Apartado, Postal 14-740, Mexico City, 07000 México
D.F., México
| | - Patrick F. J. Fuchs
- Institut
Jacques Monod, UMR 7592 CNRS, Université Paris
Diderot, Sorbonne, Paris Cité, F-75205 Paris, France
| | - Matti Javanainen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Matej Kanduč
- Fachbereich
Physik, Freie Universität Berlin, Berlin, 14195 Germany
| | - Waldemar Kulig
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Antti Lamberg
- Department
of Chemical Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Claire Loison
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Alexander Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | - Luca Monticelli
- Institut
de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon 69 367, France
| | - Jukka Määttä
- Department of Chemistry, Aalto University, 00076 Aalto, Finland
| | - O. H. Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Marius Retegan
- Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Hubert Santuz
- INSERM, UMR_S 1134, DSIMB, Paris 75739, France
- Université
Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France
- Institut
National de la Transfusion Sanguine (INTS), Paris 75739, France
- Laboratoire d’Excellence GR-Ex, Paris 75015, France
| | - Joona Tynkkynen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| |
Collapse
|
49
|
Manca ML, Castangia I, Zaru M, Nácher A, Valenti D, Fernàndez-Busquets X, Fadda AM, Manconi M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015; 71:100-109. [PMID: 26321058 DOI: 10.1016/j.biomaterials.2015.08.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/08/2015] [Accepted: 08/14/2015] [Indexed: 02/02/2023]
Abstract
In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- M L Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - I Castangia
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - M Zaru
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | - A Nácher
- Icnoderm Srl, Sardegna Ricerche Ed.5, Pula, Cagliari, 09010, Italy; Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - D Valenti
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - X Fernàndez-Busquets
- Nanomalaria Unit, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Spain
| | - A M Fadda
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - M Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| |
Collapse
|
50
|
Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy. Biophys J 2015; 107:901-11. [PMID: 25140425 DOI: 10.1016/j.bpj.2014.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 01/10/2023] Open
Abstract
Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues.
Collapse
|