1
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
2
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Hobbs KF, Propp J, Vance NR, Kalenkiewicz A, Witkin KR, Ashley Spies M. Allosteric Tuning of Caspase-7: Establishing the Nexus of Structure and Catalytic Power. Chemistry 2023; 29:e202300872. [PMID: 37005499 PMCID: PMC11596327 DOI: 10.1002/chem.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).
Collapse
Affiliation(s)
- Kathryn F Hobbs
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Jonah Propp
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Nicholas R Vance
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - Andrew Kalenkiewicz
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Katie R Witkin
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| | - M Ashley Spies
- Biochemistry and Molecular Biology Department, University of Iowa, 51 Newton Road, 4-403 Bowen Science Building, Iowa City, IA, 52242, USA
- Pharmaceutics and Experimental Therapeutics Department, Medicinal and Natural Products Chemistry Division, University of Iowa, 180 South Grand Avenue, Iowa City, IA, 52242, USA
| |
Collapse
|
4
|
Joglekar I, Clark AC. Sequential Unfolding Mechanisms of Monomeric Caspases. Biochemistry 2023; 62:1878-1889. [PMID: 37337671 DOI: 10.1021/acs.biochem.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Caspases are evolutionarily conserved cysteinyl proteases that are integral in cell development and apoptosis. All apoptotic caspases evolved from a common ancestor into two distinct subfamilies with either monomeric (initiators) or dimeric (effectors) oligomeric states. The regulation of apoptosis is influenced by the activation mechanism of the two subfamilies, but the evolution of the well-conserved caspase-hemoglobinase fold into the two subfamilies is not well understood. We examined the folding landscape of monomeric caspases from two coral species over a broad pH range of 3-10.5. On an evolutionary timescale, the two coral caspases diverged from each other approximately 300 million years ago, and they diverged from human caspases about 600 million years ago. Our results indicate that both proteins have overall high stability, ∼15 kcal mol-1, near the physiological pH range (pH 6-8) and unfold via two partially folded intermediates, I1 and I2*, that are in equilibrium with the native and the unfolded state. Like the dimeric caspases, the monomeric coral caspases undergo a pH-dependent conformational change resulting from the titration of an evolutionarily conserved site. Data from molecular dynamics simulations paired with limited proteolysis and MALDI-TOF mass spectrometry show that the small subunit of the monomeric caspases is unstable and unfolds prior to the large subunit. Overall, the data suggest that all caspases share a conserved folding landscape, that a conserved allosteric site can be fine-tuned for species-specific regulation, and that the subfamily of stable dimers may have evolved to stabilize the small subunit.
Collapse
Affiliation(s)
- Isha Joglekar
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Nag M, Clark AC. Conserved folding landscape of monomeric initiator caspases. J Biol Chem 2023; 299:103075. [PMID: 36858199 PMCID: PMC10074801 DOI: 10.1016/j.jbc.2023.103075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The apoptotic caspase subfamily evolved into two subfamilies-monomeric initiators and dimeric effectors; both subfamilies share a conserved caspase-hemoglobinase fold with a protease domain containing a large subunit and a small subunit. Sequence variations in the conserved caspase-hemoglobinase fold resulted in changes in oligomerization, enzyme specificity, and regulation, making caspases an excellent model for examining the mechanisms of molecular evolution in fine-tuning structure, function, and allosteric regulation. We examined the urea-induced equilibrium folding/unfolding of two initiator caspases, monomeric caspase-8 and cFLIPL, over a broad pH range. Both proteins unfold by a three-state equilibrium mechanism that includes a partially folded intermediate. In addition, both proteins undergo a conserved pH-dependent conformational change that is controlled by an evolutionarily conserved mechanism. We show that the conformational free energy landscape of the caspase monomer is conserved in the monomeric and dimeric subfamilies. Molecular dynamics simulations in the presence or the absence of urea, coupled with limited trypsin proteolysis and mass spectrometry, show that the small subunit is unstable in the protomer and unfolds prior to the large subunit. In addition, the unfolding of helix 2 in the large subunit results in disruption of a conserved allosteric site. Because the small subunit forms the interface for dimerization, our results highlight an important driving force for the evolution of the dimeric caspase subfamily through stabilizing the small subunit.
Collapse
Affiliation(s)
- Mithun Nag
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
6
|
Joglekar I, Clark AC. Sequential unfolding mechanisms of monomeric caspases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522771. [PMID: 36711547 PMCID: PMC9881926 DOI: 10.1101/2023.01.04.522771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Caspases are evolutionarily conserved cysteinyl proteases that are integral in cell development and apoptosis. All apoptotic caspases evolved from a common ancestor into two distinct subfamilies with either monomeric (initiators) or dimeric (effectors) oligomeric states. The regulation of apoptosis is influenced by the activation mechanism of the two subfamilies, but the evolution of the well-conserved caspase-hemoglobinase fold into the two subfamilies is not well understood. We examined the folding landscape of monomeric caspases from two coral species over a broad pH range of 3 to 10.5. On an evolutionary timescale, the two coral caspases diverged from each other approximately 300 million years ago, and they diverged from human caspases about 600 million years ago. Our results indicate that both proteins have overall high stability, ∼ 15 kcal mol -1 near the physiological pH range (pH 6 to pH 8), and unfold via two partially folded intermediates, I 1 and I 2 , that are in equilibrium with the native and the unfolded state. Like the dimeric caspases, the monomeric coral caspases undergo a pH-dependent conformational change resulting from the titration of an evolutionarily conserved site. Data from molecular dynamics simulations paired with limited proteolysis and MALDI-TOF mass spectrometry show that the small subunit of the monomeric caspases is unstable and unfolds prior to the large subunit. Overall, the data suggest that all caspases share a conserved folding landscape, that a conserved allosteric site can be fine-tuned for species-specific regulation, and that the subfamily of stable dimers may have evolved to stabilize the small subunit.
Collapse
Affiliation(s)
- Isha Joglekar
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - A. Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019,Corresponding author: A. Clay Clark,
| |
Collapse
|
7
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
8
|
Yao L, Clark A. Comparing the folding landscapes of evolutionarily divergent procaspase-3. Biosci Rep 2022; 42:BSR20220119. [PMID: 35670809 PMCID: PMC9208311 DOI: 10.1042/bsr20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.
Collapse
Affiliation(s)
- Liqi Yao
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| | - A. Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, U.S.A
| |
Collapse
|
9
|
Li M, Park BM, Dai X, Xu Y, Huang J, Sun F. Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein. Nat Commun 2022; 13:3197. [PMID: 35680863 PMCID: PMC9184582 DOI: 10.1038/s41467-022-30933-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022] Open
Abstract
Membraneless organelles (MLOs) formed via protein phase separation have great implications for both physiological and pathological processes. However, the inability to precisely control the bioactivities of MLOs has hindered our understanding of their roles in biology, not to mention their translational applications. Here, by combining intrinsically disordered domains such as RGG and mussel-foot proteins, we create an in cellulo protein phase separation system, of which various biological activities can be introduced via metal-mediated protein immobilization and further controlled by the water-soluble chlorophyll protein (WSCP)-a remarkably stable, red-light-responsive singlet oxygen generator. The WSCP-laden protein condensates undergo a liquid-to-solid phase transition on light exposure, due to oxidative crosslinking, providing a means to control catalysis within synthetic MLOs. Moreover, these photoresponsive condensates, which retain the light-induced phase-transition behavior in living cells, exhibit marked membrane localization, reminiscent of the semi-membrane-bound compartments like postsynaptic densities in nervous systems. Together, this engineered system provides an approach toward controllable synthetic MLOs and, alongside its light-induced phase transition, may well serve to emulate and explore the aging process at the subcellular or even molecular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Byung Min Park
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Hong Kong Science Park, Hong Kong, China
| | - Yingjie Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
- HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Shrestha S, Clark AC. Evolution of the folding landscape of effector caspases. J Biol Chem 2021; 297:101249. [PMID: 34592312 PMCID: PMC8628267 DOI: 10.1016/j.jbc.2021.101249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/07/2022] Open
Abstract
Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases [PCPs]) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor, whereas others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor (CA) into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their CA. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (PCP-7, CA) or dimeric (PCP-6) intermediate. In comparison, the unfolding pathway of PCP-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the CA and was retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase–hemoglobinase fold.
Collapse
Affiliation(s)
- Suman Shrestha
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
11
|
Santovito D, Egea V, Bidzhekov K, Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen C, Horckmans M, Hristov M, Geerlof A, Lutgens E, Daemen MJAP, Hackeng T, Ries C, Chavakis T, Morawietz H, Naumann R, von Hundelshausen P, Steffens S, Duchêne J, Megens RTA, Sattler M, Weber C. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci Transl Med 2021; 12:12/546/eaaz2294. [PMID: 32493793 DOI: 10.1126/scitranslmed.aaz2294] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are versatile regulators of gene expression with profound implications for human disease including atherosclerosis, but whether they can exert posttranslational functions to control cell adaptation and whether such noncanonical features harbor pathophysiological relevance is unknown. Here, we show that miR-126-5p sustains endothelial integrity in the context of high shear stress and autophagy. Bound to argonaute-2 (Ago2), miR-126-5p forms a complex with Mex3a, which occurs on the surface of autophagic vesicles and guides its transport into the nucleus. Mutational studies and biophysical measurements demonstrate that Mex3a binds to the central U- and G-rich regions of miR-126-5p with nanomolar affinity via its two K homology domains. In the nucleus, miR-126-5p dissociates from Ago2 and binds to caspase-3 in an aptamer-like fashion with its seed sequence, preventing dimerization of the caspase and inhibiting its activity to limit apoptosis. The antiapoptotic effect of miR-126-5p outside of the RNA-induced silencing complex is important for endothelial integrity under conditions of high shear stress promoting autophagy: ablation of Mex3a or ATG5 in vivo attenuates nuclear import of miR-126-5p, aggravates endothelial apoptosis, and exacerbates atherosclerosis. In human plaques, we found reduced nuclear miR-126-5p and active caspase-3 in areas of disturbed flow. The direct inhibition of caspase-3 by nuclear miR-126-5p reveals a noncanonical mechanism by which miRNAs can modulate protein function.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany
| | - André Mourão
- Institute of Structural Biolology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, Netherlands
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany
| | - Coy Brunßen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine, TU Dresden, D-01307 Dresden, Germany
| | - Michael Horckmans
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles (ULB), B-1070 Brussels, Belgium
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Arie Geerlof
- Institute of Structural Biolology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany.,Department of Medical Biochemistry and Pathology, Amsterdam University Medical Centers, Amsterdam School of Cardiovascular Sciences (ACS), 1081HZ Amsterdam, Netherlands
| | - Mat J A P Daemen
- Department of Medical Biochemistry and Pathology, Amsterdam University Medical Centers, Amsterdam School of Cardiovascular Sciences (ACS), 1081HZ Amsterdam, Netherlands
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, Netherlands
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine, TU Dresden, D-01307 Dresden, Germany
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, Netherlands
| | - Michael Sattler
- Institute of Structural Biolology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, D-80336 Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, Netherlands.,Munich Cluster for Systems Neurology (SyNergy), D-81377 Munich, Germany
| |
Collapse
|
12
|
Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Biosci Rep 2021; 41:227600. [PMID: 33448281 PMCID: PMC7846959 DOI: 10.1042/bsr20203495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Caspase (or cysteinyl-aspartate specific proteases) enzymes play important roles in apoptosis and inflammation, and the non-identical but overlapping specificity profiles (that is, cleavage recognition sequence) direct cells to different fates. Although all caspases prefer aspartate at the P1 position of the substrate, the caspase-6 subfamily shows preference for valine at the P4 position, while caspase-3 shows preference for aspartate. In comparison with human caspases, caspase-3a from zebrafish has relaxed specificity and demonstrates equal selection for either valine or aspartate at the P4 position. In the context of the caspase-3 conformational landscape, we show that changes in hydrogen bonding near the S3 subsite affect selection of the P4 amino acid. Swapping specificity with caspase-6 requires accessing new conformational space, where each landscape results in optimal binding of DxxD (caspase-3) or VxxD (caspase-6) substrate and simultaneously disfavors binding of the other substrate. Within the context of the caspase-3 conformational landscape, substitutions near the active site result in nearly equal activity against DxxD and VxxD by disrupting a hydrogen bonding network in the substrate binding pocket. The converse substitutions in zebrafish caspase-3a result in increased selection for P4 aspartate over valine. Overall, the data show that the shift in specificity that results in a dual function protease, as in zebrafish caspase-3a, requires fewer amino acid substitutions compared with those required to access new conformational space for swapping substrate specificity, such as between caspases-3 and -6.
Collapse
|
13
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
14
|
Thomas ME, Grinshpon R, Swartz P, Clark AC. Modifications to a common phosphorylation network provide individualized control in caspases. J Biol Chem 2018; 293:5447-5461. [PMID: 29414778 DOI: 10.1074/jbc.ra117.000728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Caspase-3 activation and function have been well-defined during programmed cell death, but caspase activity, at low levels, is also required for developmental processes such as lymphoid proliferation and erythroid differentiation. Post-translational modification of caspase-3 is one method used by cells to fine-tune activity below the threshold required for apoptosis, but the allosteric mechanism that reduces activity is unknown. Phosphorylation of caspase-3 at a conserved allosteric site by p38-MAPK (mitogen-activated protein kinase) promotes survival in human neutrophils, and the modification of the loop is thought to be a key regulator in many developmental processes. We utilized phylogenetic, structural, and biophysical studies to define the interaction networks that facilitate the allosteric mechanism in caspase-3. We show that, within the modified loop, Ser150 evolved with the apoptotic caspases, whereas Thr152 is a more recent evolutionary event in mammalian caspase-3. Substitutions at Ser150 result in a pH-dependent decrease in dimer stability, and localized changes in the modified loop propagate to the active site of the same protomer through a connecting surface helix. Likewise, a cluster of hydrophobic amino acids connects the conserved loop to the active site of the second protomer. The presence of Thr152 in the conserved loop introduces a "kill switch" in mammalian caspase-3, whereas the more ancient Ser150 reduces without abolishing enzyme activity. These data reveal how evolutionary changes in a conserved allosteric site result in a common pathway for lowering activity during development or a more recent cluster-specific switch to abolish activity.
Collapse
Affiliation(s)
- Melvin E Thomas
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Robert Grinshpon
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Paul Swartz
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - A Clay Clark
- the Department of Biology, University of Texas, Arlington, Texas 76019
| |
Collapse
|
15
|
Chen LY, Huang YC, Huang ST, Hsieh YC, Guan HH, Chen NC, Chuankhayan P, Yoshimura M, Tai MH, Chen CJ. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Sci Rep 2018; 8:287. [PMID: 29321480 PMCID: PMC5762634 DOI: 10.1038/s41598-017-18510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
The human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal PWWP domain capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancers. We report the first crystal structures of the human HDGF PWWP domain (residues 1–100) in a complex with SMYD1 of 10 bp at 2.84 Å resolution and its apo form at 3.3 Å, respectively. The structure of the apo PWWP domain comprises mainly four β-strands and two α-helices. The PWWP domain undergoes domain swapping to dramatically transform its secondary structures, altering the overall conformation from monomeric globular folding into an extended dimeric structure upon DNA binding. The flexible loop2, as a hinge loop with the partially built structure in the apo PWWP domain, notably refolds into a visible and stable α-helix in the DNA complex. The swapped PWWP domain interacts with the minor grooves of the DNA through residues Lys19, Gly22, Arg79 and Lys80 in varied ways on loops 1 and 4 of the two chains, and the structure becomes more rigid than the apo form. These novel structural findings, together with physiological and activity assays of HDGF and the PWWP domain, provide new insights into the DNA-binding mechanism of HDGF during nucleosomal functions.
Collapse
Affiliation(s)
- Li-Ying Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan. .,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
16
|
Chao KL, Kulakova L, Herzberg O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc Natl Acad Sci U S A 2017; 114:E1128-E1137. [PMID: 28154144 PMCID: PMC5321033 DOI: 10.1073/pnas.1616783114] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88DNVD91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.
Collapse
Affiliation(s)
- Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
17
|
Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proc Natl Acad Sci U S A 2016; 113:E6080-E6088. [PMID: 27681633 DOI: 10.1073/pnas.1603549113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.
Collapse
|
18
|
Abstract
The role of caspase proteases in regulated processes such as apoptosis and inflammation has been studied for more than two decades, and the activation cascades are known in detail. Apoptotic caspases also are utilized in critical developmental processes, although it is not known how cells maintain the exquisite control over caspase activity in order to retain subthreshold levels required for a particular adaptive response while preventing entry into apoptosis. In addition to active site-directed inhibitors, caspase activity is modulated by post-translational modifications or metal binding to allosteric sites on the enzyme, which stabilize inactive states in the conformational ensemble. This review provides a comprehensive global view of the complex conformational landscape of caspases and mechanisms used to select states in the ensemble. The caspase structural database provides considerable detail on the active and inactive conformations in the ensemble, which provide the cell multiple opportunities to fine tune caspase activity. In contrast, the current database on caspase modifications is largely incomplete and thus provides only a low-resolution picture of global allosteric communications and their effects on the conformational landscape. In recent years, allosteric control has been utilized in the design of small drug compounds or other allosteric effectors to modulate caspase activity.
Collapse
Affiliation(s)
- A Clay Clark
- Department of Biology, University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
19
|
Cade C, Swartz P, MacKenzie SH, Clark AC. Modifying caspase-3 activity by altering allosteric networks. Biochemistry 2014; 53:7582-95. [PMID: 25343534 PMCID: PMC4263430 DOI: 10.1021/bi500874k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases have several allosteric sites that bind small molecules or peptides. Allosteric regulators are known to affect caspase enzyme activity, in general, by facilitating large conformational changes that convert the active enzyme to a zymogen-like form in which the substrate-binding pocket is disordered. Mutations in presumed allosteric networks also decrease activity, although large structural changes are not observed. Mutation of the central V266 to histidine in the dimer interface of caspase-3 inactivates the enzyme by introducing steric clashes that may ultimately affect positioning of a helix on the protein surface. The helix is thought to connect several residues in the active site to the allosteric dimer interface. In contrast to the effects of small molecule allosteric regulators, the substrate-binding pocket is intact in the mutant, yet the enzyme is inactive. We have examined the putative allosteric network, in particular the role of helix 3, by mutating several residues in the network. We relieved steric clashes in the context of caspase-3(V266H), and we show that activity is restored, particularly when the restorative mutation is close to H266. We also mimicked the V266H mutant by introducing steric clashes elsewhere in the allosteric network, generating several mutants with reduced activity. Overall, the data show that the caspase-3 native ensemble includes the canonical active state as well as an inactive conformation characterized by an intact substrate-binding pocket, but with an altered helix 3. The enzyme activity reflects the relative population of each species in the native ensemble.
Collapse
Affiliation(s)
- Christine Cade
- Department of Molecular and Structural Biochemistry and ‡Center for Comparative Medicine and Translational Research, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
20
|
Yan H, He L, Zhao W, Li J, Xiao Y, Yang R, Tan W. Poly β-Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Anal Chem 2014; 86:11440-50. [DOI: 10.1021/ac503546r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huijuan Yan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Leiliang He
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Wenjie Zhao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Jishan Li
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Yue Xiao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Ronghua Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Weihong Tan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
21
|
Ma C, MacKenzie SH, Clark AC. Redesigning the procaspase-8 dimer interface for improved dimerization. Protein Sci 2014; 23:442-53. [PMID: 24442640 DOI: 10.1002/pro.2426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 01/04/2023]
Abstract
Caspase-8 is a cysteine directed aspartate-specific protease that is activated at the cytosolic face of the cell membrane upon receptor ligation. A key step in the activation of caspase-8 depends on adaptor-induced dimerization of procaspase-8 monomers. Dimerization is followed by limited autoproteolysis within the intersubunit linker (IL), which separates the large and small subunits of the catalytic domain. Although cleavage of the IL stabilizes the dimer, the uncleaved procaspase-8 dimer is sufficiently active to initiate apoptosis, so dimerization of the zymogen is an important mechanism to control apoptosis. In contrast, the effector caspase-3 is a stable dimer under physiological conditions but exhibits little enzymatic activity. The catalytic domains of caspases are structurally similar, but it is not known why procaspase-8 is a monomer while procaspase-3 is a dimer. To define the role of the dimer interface in assembly and activation of procaspase-8, we generated mutants that mimic the dimer interface of effector caspases. We show that procaspase-8 with a mutated dimer interface more readily forms dimers. Time course studies of refolding also show that the mutations accelerate dimerization. Transfection of HEK293A cells with the procaspase-8 variants, however, did not result in a significant increase in apoptosis, indicating that other factors are required in vivo. Overall, we show that redesigning the interface of procaspase-8 to remove negative design elements results in increased dimerization and activity in vitro, but increased dimerization, by itself, is not sufficient for robust activation of apoptosis.
Collapse
Affiliation(s)
- Chunxiao Ma
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, 27695
| | | | | |
Collapse
|
22
|
Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Methods Enzymol 2014; 544:215-49. [PMID: 24974292 DOI: 10.1016/b978-0-12-417158-9.00009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most promising and as yet underutilized means of regulating protein function is exploitation of allosteric sites. All caspases catalyze the same overall reaction, but they perform different biological roles and are differentially regulated. It is our hypothesis that many allosteric sites exist on various caspases and that understanding both the distinct and overlapping mechanisms by which each caspase can be allosterically controlled should ultimately enable caspase-specific inhibition. Here we describe the ongoing work and methods for compiling a comprehensive map of apoptotic caspase allostery. Central to this approach are the use of (i) the embedded record of naturally evolved allosteric sites that are sensitive to zinc-mediated inhibition, phosphorylation, and other posttranslational modifications, (ii) structural and mutagenic approaches, and (iii) novel binding sites identified by both rationally-designed and screening-derived small-molecule inhibitors.
Collapse
Affiliation(s)
- Kevin Dagbay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Scott J Eron
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Banyuhay P Serrano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Yunlong Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Di Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sravanti Vaidya
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
23
|
Li J, Li X, Shi X, He X, Wei W, Ma N, Chen H. Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle-quantum dot pair mediated by an inner-filter effect. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9798-9802. [PMID: 24015837 DOI: 10.1021/am4029735] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe here a simple fluorometric assay for the highly sensitive detection of caspase-3 activities on the basis of the inner-filter effect of gold nanoparticles (AuNPs) on CdTe quantum dots (QDs). The method takes advantage of the high molar absorptivity of the plasmon band of gold nanoparticles as well as the large absorption band shift from 520 to 680 nm upon nanoparticle aggregation. When labeled with a peptide possessing the caspase-3 cleavage sequence (DEVD), the monodispersed Au-Ps (peptide-modified AuNPs) exhibited a tendency to aggregate when exposed to caspase-3, which induced the absorption band transition from 520 to 680 nm and turned on the fluorescence of the CdTe QDs for caspase-3 sensing. Under optimum conditions, a high sensitivity towards caspase-3 was achieved with a detection limit as low as 18 pM, which was much lower than the corresponding assays based on absorbance or other approaches. Overall, we demonstrated a facile and sensitive approach for caspase-3 detection, and we expected that this method could be potentially generalized to design more fluorescent assays for sensing other bioactive entities.
Collapse
Affiliation(s)
- Jingwen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|
25
|
MacKenzie SH, Schipper JL, England EJ, Thomas ME, Blackburn K, Swartz P, Clark AC. Lengthening the intersubunit linker of procaspase 3 leads to constitutive activation. Biochemistry 2013; 52:6219-31. [PMID: 23941397 DOI: 10.1021/bi400793s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The conformational ensemble of procaspase 3, the primary executioner in apoptosis, contains two major forms, inactive and active, with the inactive state favored in the native ensemble. A region of the protein known as the intersubunit linker (IL) is cleaved during maturation, resulting in movement of the IL out of the dimer interface and subsequent active site formation (activation-by-cleavage mechanism). We examined two models for the role of the IL in maintaining the inactive conformer, an IL-extension model versus a hydrophobic cluster model, and we show that increasing the length of the IL by introducing 3-5 alanines results in constitutively active procaspases. Active site labeling and subsequent analyses by mass spectrometry show that the full-length zymogen is enzymatically active. We also show that minor populations of alternately cleaved procaspase result from processing at D169 when the normal cleavage site, D175, is unavailable. Importantly, the alternately cleaved proteins have little to no activity, but increased flexibility of the linker increases the exposure of D169. The data show that releasing the strain of the short IL, in and of itself, is not sufficient to populate the active conformer of the native ensemble. The IL must also allow for interactions that stabilize the active site, possibly from a combination of optimal length, flexibility in the IL, and specific contacts between the IL and interface. The results provide further evidence that substantial energy is required to shift the protein to the active conformer. As a result, the activation-by-cleavage mechanism dominates in the cell.
Collapse
Affiliation(s)
- Sarah H MacKenzie
- Department of Molecular and Structural Biochemistry and ‡Center for Comparative Medicine and Translational Research, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Vickers CJ, González-Páez GE, Wolan DW. Selective detection and inhibition of active caspase-3 in cells with optimized peptides. J Am Chem Soc 2013; 135:12869-76. [PMID: 23915420 DOI: 10.1021/ja406399r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caspases are a family of cysteine-aspartyl proteases that are well recognized for their essential roles in apoptosis and inflammation. Recently, caspases have also been linked to the promotion of other biologically important phenomena, such as cellular differentiation and proliferation. Dysregulation of the multifaceted and indispensable activities of caspases has been globally linked to several diseases, including cancer and neurodegenerative disorders; however, the specific caspase members responsible for these diseases have yet to be assigned. Activity-based probes (ABPs) and peptide-based inhibitors are instrumental in the detection and control of protease activity and serve as alternative methods to genetic approaches. Such molecules aid in the interrogation of specific proteases within cellular and animal models as well as help elucidate aberrant proteolytic function correlated to disease phenotypes. No ABPs or inhibitors have been discovered that specifically target one of the eleven human caspases in a cellular context. Therefore, ascribing distinct contributions to an individual caspase activity within naturally occurring biological systems is not possible. Herein, we describe a peptide series optimized for the selective detection and inhibition of active caspase-3 in cells. These compounds exhibit low nanomolar potency against caspase-3 with >120-fold selectivity over caspase-7 which shares 77% active site identity. Our ability to individually target wild-type active caspase-3 for detection and cell permeable inhibition is a valuable proof-of-concept methodology that can be readily employed to probe the significance of caspase-3 in apoptosis, neurological disorders, cardiovascular diseases, and sepsis.
Collapse
Affiliation(s)
- Chris J Vickers
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
27
|
Vickers CJ, González-Páez GE, Wolan DW. Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids. ACS Chem Biol 2013; 8:1558-66. [PMID: 23614665 DOI: 10.1021/cb400209w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caspases are required for essential biological functions, most notably apoptosis and pyroptosis, but also cytokine production, cell proliferation, and differentiation. One of the most well studied members of this cysteine protease family includes executioner caspase-3, which plays a central role in cell apoptosis and differentiation. Unfortunately, there exists a dearth of chemical tools to selectively monitor caspase-3 activity under complex cellular and in vivo conditions due to its close homology with executioner caspase-7. Commercially available activity-based probes and substrates rely on the canonical DEVD tetrapeptide sequence, which both caspases-3 and -7 recognize with similar affinity, and thus the individual contributions of caspase-3 and/or -7 toward important cellular processes are irresolvable. Here, we analyzed a variety of permutations of the DEVD peptide sequence in order to discover peptides with biased activity and recognition of caspase-3 versus caspases-6, -7, -8, and -9. Through this study, we identify fluorescent and biotinylated probes capable of selective detection of caspase-3 using key unnatural amino acids. Likewise, we determined the X-ray crystal structures of caspases-3, -7, and -8 in complex with our lead peptide inhibitor to elucidate the binding mechanism and active site interactions that promote the selective recognition of caspase-3 over other highly homologous caspase family members.
Collapse
Affiliation(s)
- Chris J. Vickers
- Departments of Molecular
and Experimental Medicine
and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gonzalo E. González-Páez
- Departments of Molecular
and Experimental Medicine
and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis W. Wolan
- Departments of Molecular
and Experimental Medicine
and Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Kang HJ, Lee YM, Bae KH, Kim SJ, Chung SJ. Structural asymmetry of procaspase-7 bound to a specific inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1514-21. [PMID: 23897474 DOI: 10.1107/s0907444913010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/14/2013] [Indexed: 02/26/2023]
Abstract
Caspase-7 is expressed as a proenzyme and is activated by initiator caspases upon the transmission of cell-death signals. Despite extensive structural and biochemical analyses, many questions regarding the mechanism of caspase-7 activation remain unanswered. Caspase-7 is auto-activated during overexpression in Escherichia coli, even in the absence of initiator caspases, indicating that procaspase-7 has intrinsic catalytic activity. When variants of procaspase-7 with altered L2 loops were prepared, a variant with six inserted amino acids showed meaningful catalytic activity which was inhibited by Ac-DEVD-CHO. The kinetic constants of the procaspase-7 variant were determined and its three-dimensional structure was solved with and without bound inhibitor. The homodimeric procaspase-7 bound to the inhibitor revealed an asymmetry. One monomer formed a complete active site bound to the inhibitor in collaboration with the L2 loop from the other monomer, whereas the other monomer had an incomplete active site despite the bound inhibitor. Consequently, the two L2 loops in homodimeric procaspase-7 served as inherent L2 and L2' loops forming one complete active site. These data represent the first three-dimensional structure of a procaspase-7 variant bound to a specific inhibitor, Ac-DEVD-CHO, and provide insight into the folding mechanism during caspase-7 activation and the basal activity level of procaspase-7.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Department of Chemistry, College of Natural Science, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
MacKenzie SH, Clark AC. Slow Folding and Assembly of a Procaspase-3 Interface Variant. Biochemistry 2013; 52:3415-27. [DOI: 10.1021/bi400115n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sarah H. MacKenzie
- Department
of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - A. Clay Clark
- Department
of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
30
|
Abstract
Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine-histidine are positioned 3.5 Å apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles.
Collapse
Affiliation(s)
- Witold A Witkowski
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
31
|
Zorn JA, Wolan DW, Agard NJ, Wells JA. Fibrils colocalize caspase-3 with procaspase-3 to foster maturation. J Biol Chem 2012; 287:33781-95. [PMID: 22872644 DOI: 10.1074/jbc.m112.386128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1-40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >10(7)-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.
Collapse
Affiliation(s)
- Julie A Zorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
32
|
Phillipps HR, Hurst PR. XIAP: a potential determinant of ovarian follicular fate. Reproduction 2012; 144:165-76. [DOI: 10.1530/rep-12-0142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis protein family, is involved in regulating a number of functions including receptor-mediated intracellular signalling and early development. Its role as an endogenous caspase inhibitor, however, is the most highly characterised. Consequently, this protein has been implicated as an anti-apoptotic factor in the ovary.In vitroandin vivostudies have begun dissecting the stimuli and signalling networks that lead to XIAP upregulation in granulosa cells. The objective of this review is to briefly summarise the current knowledge concerning XIAP and its interactions with different caspases. Furthermore, XIAP's emerging role in the mammalian ovary will be explored and comparison is made with its functions in the mammary gland. Finally, the idea that XIAP may act as a molecular signalling switch in granulosa cells following detachment from underlying layers to promote follicular atresia will be introduced.
Collapse
|
33
|
Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3. Cell Death Dis 2012; 3:e347. [PMID: 22785533 PMCID: PMC3406584 DOI: 10.1038/cddis.2012.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D3A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D3A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D3A was seen in vitro. Mass spectrometry-based quantitative analysis for post-translational modifications using both 16O/18O- and 14N/15N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D3A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.
Collapse
|
34
|
Boucher D, Blais V, Denault JB. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 2012; 109:5669-74. [PMID: 22451931 PMCID: PMC3326497 DOI: 10.1073/pnas.1200934109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During apoptosis, hundreds of proteins are cleaved by caspases, most of them by the executioner caspase-3. However, caspase-7, which shares the same substrate primary sequence preference as caspase-3, is better at cleaving poly(ADP ribose) polymerase 1 (PARP) and Hsp90 cochaperone p23, despite a lower intrinsic activity. Here, we identified key lysine residues (K(38)KKK) within the N-terminal domain of caspase-7 as critical elements for the efficient proteolysis of these two substrates. Caspase-7's N-terminal domain binds PARP and improves its cleavage by a chimeric caspase-3 by ∼30-fold. Cellular expression of caspase-7 lacking the critical lysine residues resulted in less-efficient PARP and p23 cleavage compared with cells expressing the wild-type peptidase. We further showed, using a series of caspase chimeras, the positioning of p23 on the enzyme providing us with a mechanistic insight into the binding of the exosite. In summary, we have uncovered a role for the N-terminal domain (NTD) and the N-terminal peptide of caspase-7 in promoting key substrate proteolysis.
Collapse
Affiliation(s)
- Dave Boucher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Véronique Blais
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Jean-Bernard Denault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
35
|
Schipper JL, MacKenzie SH, Sharma A, Clark AC. A bifunctional allosteric site in the dimer interface of procaspase-3. Biophys Chem 2011; 159:100-9. [PMID: 21645959 PMCID: PMC3166964 DOI: 10.1016/j.bpc.2011.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 02/06/2023]
Abstract
The dimer interface of caspase-3 contains a bifunctional allosteric site in which the enzyme can be activated or inactivated, depending on the context of the protein. In the mature caspase-3, the binding of allosteric inhibitors to the interface results in an order-to-disorder transition in the active site loops. In procaspase-3, by contrast, the binding of allosteric activators to the interface results in a disorder-to-order transition in the active site. We have utilized the allosteric site to identify a small molecule activator of procaspase and to characterize its binding to the protease. The data suggest that an efficient activator must stabilize the active conformer of the zymogen by expelling the intersubunit linker from the interface, and it must interact with active site residues found in the allosteric site. Small molecule activators that fulfill the two requirements should provide scaffolds for drug candidates as a therapeutic strategy for directly promoting procaspase-3 activation in cancer cells.
Collapse
Affiliation(s)
- Joshua L. Schipper
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sarah H. MacKenzie
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Anil Sharma
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
36
|
Walters J, Swartz P, Mattos C, Clark AC. Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Arch Biochem Biophys 2011; 508:31-8. [PMID: 21266160 PMCID: PMC3070916 DOI: 10.1016/j.abb.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 12/31/2022]
Abstract
Interactions between loops 2, 2' and 4, known as the loop bundle, stabilize the active site of caspase-3. Loop 4 (L4) is of particular interest due to its location between the active site and the dimer interface. We have disrupted a salt bridge between K242 and E246 at the base of L4 to determine its role in overall conformational stability and in maintaining the active site environment. Stability measurements show that only the K242A single mutant decreases stability of the dimer, whereas both single mutants and the double mutant demonstrate much lower activity compared to wild-type caspase-3. Structural studies of the caspase-3 variants show the involvement of K242 in hydrophobic interactions that stabilize helix 5, near the dimer interface, and the role of E246 appears to be to neutralize the positive charge of K242 within the hydrophobic cluster. Overall, the results suggest E246 and K242 are important in procaspase-3 for their interaction with neighboring residues, not with one another. Conversely, formation of the K242-E246 salt bridge in caspase-3 is needed for an accurate, stable conformation of loop L4 and proper active site formation in the mature enzyme.
Collapse
Affiliation(s)
- Jad Walters
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Carla Mattos
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
37
|
Vaidya S, Velázquez-Delgado EM, Abbruzzese G, Hardy JA. Substrate-induced conformational changes occur in all cleaved forms of caspase-6. J Mol Biol 2011; 406:75-91. [PMID: 21111746 PMCID: PMC3030624 DOI: 10.1016/j.jmb.2010.11.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/23/2022]
Abstract
Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.
Collapse
Affiliation(s)
- Sravanti Vaidya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | | | | | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
38
|
Abstract
Caspases are vital to apoptosis and exist in the cell as inactive zymogens. Dimerization is central to procaspase activation because the active sites are comprised of loops from both monomers. Although initiator procaspases are stable monomers until activated on cell death scaffolds, the effector caspases, such as procaspase-3, are stable dimers. The activation mechanisms are reasonably well understood in terms of polypeptide chain cleavage and subsequent active site rearrangements in the dimer, but the mechanisms that govern dimer assembly are not known. To further understand procaspase dimerization, we examined the folding and assembly of procaspase-3 by fluorescence emission, circular dichroism, differential quenching by acrylamide, anisotropy, and enzyme activity assays. Single-mixing stopped-flow refolding studies showed a complex burst phase in which multiple monomeric species form rapidly. At longer times, the monomer folds through several intermediates, some of which appear to be off-pathway or misfolded, before eventually forming a dimerization-competent species. Enzyme activity studies demonstrated a slow rate of dimerization (approximately 70 M(-1) s(-1)). In addition, single-mixing stopped-flow unfolding studies revealed a complex unfolding process with a slow rate of dimer dissociation. Interestingly, multiple dimeric species were observed in the burst phase for unfolding, suggesting that the native ensemble consists of at least two major conformations. Collectively, these results demonstrate complex folding and unfolding behavior for procaspase-3 and suggest that slow dimerization results from the lack of stabilizing native contacts in the initial encounter complex.
Collapse
Affiliation(s)
- Sara L Milam
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
39
|
Abstract
The caspase-3 zymogen has essentially zero activity until it is cleaved by initiator caspases during apoptosis. However, a mutation of V266E in the dimer interface activates the protease in the absence of chain cleavage. We show that low concentrations of the pseudo-activated procaspase-3 kill mammalian cells rapidly and, importantly, this protein is not cleaved nor is it inhibited efficiently by the endogenous regulator XIAP (X-linked inhibitor of apoptosis). The 1.63 Å (1 Å = 0.1 nm) structure of the variant demonstrates that the mutation is accommodated at the dimer interface to generate an enzyme with substantially the same activity and specificity as wild-type caspase-3. Structural modelling predicts that the interface mutation prevents the intersubunit linker from binding in the dimer interface, allowing the active sites to form in the procaspase in the absence of cleavage. The direct activation of procaspase-3 through a conformational switch rather than by chain cleavage may lead to novel therapeutic strategies for inducing cell death.
Collapse
|
40
|
Self-activation of Caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:592-601. [PMID: 19133298 DOI: 10.1016/j.bbamcr.2008.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/29/2008] [Accepted: 12/03/2008] [Indexed: 11/22/2022]
Abstract
Caspase-6 (Casp6) is a short pro-domain caspase that is activated early in Alzheimer disease, yet, little is known on the mechanism of activation of this caspase. In this study, critical proteolytic processing events required for Casp6 activation in vitro and in vivo were evaluated by site directed mutagenesis of the D23 pro-domain, and D179 and D193 linker processing sites. We found that (1) Casp6 was self-processed and activated in vitro and in vivo, (2) uncleavable Casp6 possessed low activity in vitro but not in vivo, (3) the pro-domain of Casp6 entirely prevented self-processing and activation in vivo but not in vitro, (4) removal of the pro-domain promoted Casp6 activation, (5) cleavage at either D179 or D193 was sufficient to generate activity in vitro and in vivo, and (6) Casp6 activity did not induce cell death in HEK293T cells. We conclude that the Casp6 is activated through proteolytic cleavage, as are the effector Caspase-3 and -7. However, unlike other effector caspases, Casp6 can be entirely self-activated and its activation does not necessarily induce cell death.
Collapse
|
41
|
Abstract
Cytotoxic approaches to killing tumor cells, such as chemotherapeutic agents, gamma-irradiation, suicide genes or immunotherapy, have been shown to induce cell death through apoptosis. The intrinsic apoptotic pathway is activated following treatment with cytotoxic drugs, and these reactions ultimately lead to the activation of caspases, which promote cell death in tumor cells. In addition, activation of the extrinsic apoptotic pathway with death-inducing ligands leads to an increased sensitivity of tumor cells toward cytotoxic stimuli, illustrating the interplay between the two cell death pathways. In contrast, tumor resistance to cytotoxic stimuli may be due to defects in apoptotic signaling. As a result of their importance in killing cancer cells, a number of apoptotic molecules are implicated in cancer therapy. The knowledge gleaned from basic research into apoptotic pathways from cell biological, structural, biochemical, and biophysical approaches can be used in strategies to develop novel compounds that eradicate tumor cells. In addition to current drug targets, research into molecules that activate procaspase-3 directly may show the direct activation of the executioner caspase to be a powerful therapeutic strategy in the treatment of many cancers.
Collapse
Affiliation(s)
- Sarah H. MacKenzie
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
42
|
Milam SL, Nicely NI, Feeney B, Mattos C, Clark AC. Rapid folding and unfolding of Apaf-1 CARD. J Mol Biol 2007; 369:290-304. [PMID: 17408690 PMCID: PMC2020445 DOI: 10.1016/j.jmb.2007.02.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 11/20/2022]
Abstract
Caspase recruitment domains (CARDs) are members of the death domain superfamily and contain six antiparallel helices in an alpha-helical Greek key topology. We have examined the equilibrium and kinetic folding of the CARD of Apaf-1 (apoptotic protease activating factor 1), which consists of 97 amino acid residues, at pH 6 and pH 8. The results showed that an apparent two state equilibrium mechanism is not adequate to describe the folding of Apaf-1 CARD at either pH, suggesting the presence of intermediates in equilibrium unfolding. Interestingly, the results showed that the secondary structure is less stable than the tertiary structure, based on the transition mid-points for unfolding. Single mixing and sequential mixing stopped-flow studies showed that Apaf-1 CARD folds and unfolds rapidly and suggest a folding mechanism that contains parallel channels with two unfolded conformations folding to the native conformation. Kinetic simulations show that a slow folding phase is described by a third conformation in the unfolded ensemble that interconverts with one or both unfolded species. Overall, the native ensemble is formed rapidly upon refolding. This is in contrast to other CARDs in which folding appears to be dominated by formation of kinetic traps.
Collapse
Affiliation(s)
- Sara L Milam
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
43
|
Feeney B, Pop C, Swartz P, Mattos C, Clark AC. Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3. Biochemistry 2006; 45:13249-63. [PMID: 17073446 PMCID: PMC3119718 DOI: 10.1021/bi0611964] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During maturation, procaspase-3 is cleaved at D175, which resides in a linker that connects the large and small subunits. The intersubunit linker also connects two active site loops that rearrange following cleavage and, in part, form the so-called loop bundle. As a result of chain cleavage, new hydrogen bonds and van der Waals contacts form among three active site loops. The new interactions are predicted to stabilize the active site. One unresolved issue is the extent to which the loop bundle residues also stabilize the procaspase active site. We examined the effects of replacing four loop bundle residues (E167, D169, E173, and Y203) on the biochemical and structural properties of the (pro)caspase. We show that replacing the residues affects the activity of the procaspase as well as the mature caspase, with D169A and E167A replacements having the largest effects. Replacement of D169 prevents caspase-3 autoactivation, and its cleavage at D175 no longer leads to an active enzyme. In addition, the E173A mutation, when coupled to a second mutation in the procaspase, D175A, may alter the substrate specificity of the procaspase. The mutations affected the active site environment as assessed by changes in fluorescence emission, accessibility to quencher, and cleavage by either trypsin or V8 proteases. High-resolution X-ray crystallographic structures of E167A, D173A, and Y203F caspases show that changes in the active site environment may be due to the increased flexibility of several residues in the N-terminus of the small subunit. Overall, the results show that these residues are important for stabilizing the procaspase active site as well as that of the mature caspase.
Collapse
Affiliation(s)
- Brett Feeney
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Paul Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Carla Mattos
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
44
|
Denault JB, Békés M, Scott FL, Sexton KMB, Bogyo M, Salvesen GS. Engineered hybrid dimers: tracking the activation pathway of caspase-7. Mol Cell 2006; 23:523-33. [PMID: 16916640 DOI: 10.1016/j.molcel.2006.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 06/07/2006] [Indexed: 11/18/2022]
Abstract
Caspase-7 is an obligate dimer of catalytic domains, with generation of activity requiring limited proteolysis within a region that separates the large and small chains of each domain. Using hybrid dimers we distinguish the relative contribution of each domain to catalysis by the whole molecule. We demonstrate that the zymogen arises from direct dimerization and not domain swapping. In contrast to previous conclusions, we show that only one of the catalytic domains must be proteolyzed to enable activation. The processed domain of this singly cleaved zymogen has the same catalytic activity as a domain of fully active caspase-7. A transient intermediate of singly cleaved dimeric caspase-7 can be found in a cell-free model of apoptosis induction. However, we see no evidence for an analogous intermediate of the related executioner caspase-3. Our study demonstrates the efficiency by which the executioner caspases are activated in vivo.
Collapse
Affiliation(s)
- Jean-Bernard Denault
- The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell 2006; 22:269-75. [PMID: 16630894 DOI: 10.1016/j.molcel.2006.03.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 02/02/2006] [Accepted: 03/03/2006] [Indexed: 11/30/2022]
Abstract
The apical protease of the human intrinsic apoptotic pathway, caspase-9, is activated in a polymeric activation platform known as the apoptosome. The mechanism has been debated, and two contrasting hypotheses have been suggested. One of these postulates an allosteric activation of monomeric caspase-9; the other postulates a dimer-driven assembly at the surface of the apoptosome--the "induced proximity" model. We show that both Hofmeister salts and a reconstituted mini-apoptosome activate caspase-9 by a second-order process, compatible with a conserved dimer-driven process. Significantly, replacement of the recruitment domain of the apical caspase of the extrinsic apoptotic pathway, caspase-8, by that of caspase-9 allows activation of this hybrid caspase by the apoptosome. Consequently, apical caspases can be activated simply by directing their zymogens to the apoptosome, ruling out the requirement for allosteric activation and supporting an induced proximity dimerization model for apical caspase activation in vivo.
Collapse
Affiliation(s)
- Cristina Pop
- Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
46
|
Feeney B, Soderblom EJ, Goshe MB, Clark AC. Novel protein purification system utilizing an N-terminal fusion protein and a caspase-3 cleavable linker. Protein Expr Purif 2006; 47:311-8. [PMID: 16289916 PMCID: PMC3110655 DOI: 10.1016/j.pep.2005.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/04/2005] [Accepted: 10/04/2005] [Indexed: 11/17/2022]
Abstract
Coupled with over-expression in host organisms, fusion protein systems afford economical methods to obtain large quantities of target proteins in a fast and efficient manner. Some proteases used for these purposes cleave C-terminal to their recognition sequences and do not leave extra amino acids on the target. However, they are often inefficient and are frequently promiscuous, resulting in non-specific cleavages of the target protein. To address these issues, we created a fusion protein system that utilizes a highly efficient enzyme and leaves no residual amino acids on the target protein after removal of the affinity tag. We designed a glutathione S-transferase (GST)-fusion protein vector with a caspase-3 consensus cleavage sequence located between the N-terminal GST tag and a target protein. We show that the enzyme efficiently cleaves the fusion protein without leaving excess amino acids on the target protein. In addition, we used an engineered caspase-3 enzyme that is highly stable, has increased activity relative to the wild-type enzyme, and contains a poly-histidine tag that allows for efficient removal of the enzyme after cleavage of the fusion protein. Although we have developed this system using a GST tag, the system is amenable to any commercially available affinity tag.
Collapse
Affiliation(s)
- Brett Feeney
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Erik J. Soderblom
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
47
|
Dalal K, Pio F. Thermodynamics and stability of the PAAD/DAPIN/PYRIN domain of IFI-16. FEBS Lett 2006; 580:3083-90. [PMID: 16678172 DOI: 10.1016/j.febslet.2006.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/22/2022]
Abstract
The PAAD domain is a conserved domain recently identified in more than 35 human proteins that are involved in apoptosis and inflammatory signaling pathways. Structural studies have confirmed that this domain belongs to the death domain superfamily which includes PAAD/CARD/DED/DD families. Recently, the 3D structures determined by NMR of NALP1 and ASC PAAD domain, members of the PAAD family, have shown that it is composed of a 6 helix bundle as with other death domain family members. However, helix-3 in the solved structures is unordered in solution. In this study we compare the thermodynamic, folding and stability properties of different members of the PAAD and CARD families and investigate structural conformational changes induced by the helix inducers trifluoroethanol and SDS on the PAAD domain of IFI16 and on the CARD domain of RAIDD. We show that inside the PAAD and CARD families, members have similar thermodynamic properties, however, the DeltaG of folding for PAAD and CARD members are, respectively, -1.4 and -5.5 kcal mol(-1). This difference is attributed to less alpha helical content for PAAD due to the unfolding of helix-3 that lowers bonded energy and increases disorder when compared to CARD members. Despite identical fold between PAAD and CARD families but limited sequence identity, there are striking differences in the thermodynamics of both families.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | |
Collapse
|
48
|
Yin Q, Park HH, Chung JY, Lin SC, Lo YC, da Graca LS, Jiang X, Wu H. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol Cell 2006; 22:259-68. [PMID: 16630893 PMCID: PMC2904439 DOI: 10.1016/j.molcel.2006.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/27/2006] [Accepted: 03/30/2006] [Indexed: 11/21/2022]
Abstract
Caspase-9 activation is critical for intrinsic cell death. The activity of caspase-9 is increased dramatically upon association with the apoptosome, and the apoptosome bound caspase-9 is the caspase-9 holoenzyme (C9Holo). In this study, we use quantitative enzymatic assays to fully characterize C9Holo and a leucine-zipper-linked dimeric caspase-9 (LZ-C9). We surprisingly show that LZ-C9 is more active than C9Holo for the optimal caspase-9 peptide substrate LEHD-AFC but is much less active than C9Holo for the physiological substrate procaspase-3. The measured Km values of C9Holo and LZ-C9 for LEHD-AFC are similar, demonstrating that dimerization is sufficient for catalytic activation of caspase-9. The lower activity of C9Holo against LEHD-AFC may be attributed to incomplete C9Holo assembly. However, the measured Km of C9Holo for procaspase-3 is much lower than that of LZ-C9. Therefore, in addition to dimerization, the apoptosome activates caspase-9 by enhancing its affinity for procaspase-3, which is important for procaspase-3 activation at the physiological concentration.
Collapse
Affiliation(s)
- Qian Yin
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
- Tri-institutional Training Program in Chemical Biology, Weill Medical College of Cornell University, New York, NY 10021
| | - Hyun Ho Park
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
- Graduate School of Medical Sciences, Weill Medical College of Cornell University, New York, NY 10021
| | - Jee Y. Chung
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Su-Chang Lin
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Yu-Chih Lo
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Li S. da Graca
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Hao Wu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
- Tri-institutional Training Program in Chemical Biology, Weill Medical College of Cornell University, New York, NY 10021
- Graduate School of Medical Sciences, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
49
|
Abstract
Changes in ionic homeostasis are early events leading up to the commitment to apoptosis. Although the direct effects of cations on caspase-3 activity have been examined, comparable studies on procaspase-3 are lacking. In addition, the effects of salts on caspase structure have not been examined. We have studied the effects of cations on the activities and conformations of caspase-3 and an uncleavable mutant of procaspase-3 that is enzymatically active. The results show that caspase-3 is more sensitive to changes in pH and ion concentrations than is the zymogen. This is due to the loss of both an intact intersubunit linker and the prodomain. The results show that, although the caspase-3 subunits reassemble to the heterotetramer, the activity return is low after the protein is incubated at or below pH 4.5 and then returned to pH 7.5. The data further show that the irreversible step in assembly results from heterotetramer rather than heterodimer dissociation and demonstrate that the active site does not form properly following reassembly. However, active-site formation is fully reversible when reassembly occurs in the presence of the prodomain, and this effect is specific for the propeptide of caspase-3. The data show that the prodomain facilitates both dimerization and active-site formation in addition to stabilizing the native structure. Overall, the results show that the prodomain acts as an intramolecular chaperone during assembly of the (pro)caspase subunits and increases the efficiency of formation of the native conformation.
Collapse
Affiliation(s)
- Brett Feeney
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - A. Clay Clark
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| |
Collapse
|
50
|
Feeney B, Pop C, Tripathy A, Clark A. Ionic interactions near the loop L4 are important for maintaining the active-site environment and the dimer stability of (pro)caspase 3. Biochem J 2005; 384:515-25. [PMID: 15312047 PMCID: PMC1134137 DOI: 10.1042/bj20040693] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have examined the role of a salt bridge between Lys242 and Glu246 in loop L4 of procaspase 3 and of mature caspase 3, and we show that the interactions are required for stabilizing the active site. Replacing either of the residues with an alanine residue results in a complete loss of procaspase 3 activity. Although both mutants are active in the context of the mature caspase 3, the mutations result in an increase in K(m) and a decrease in kcat when compared with the wild-type caspase 3. In addition, the mutations result in an increase in the pK(a) value associated with a change in kcat with pH, but does not affect the transition observed for Km versus pH. The mutations also affect the accessibility of the active-site solvent as measured by tryptophan fluorescence emission in the presence of quenching agents and as a function of pH. We show that, as the pH is lowered, the (pro)caspase dissociates, and the mutations increase the pH-dependent instability of the dimer. Overall, the results suggest that the contacts lost in the procaspase as a result of replacing Lys242 and Glu246 are compensated partially in the mature caspase as a result of new contacts that are known to form on zymogen processing
Collapse
Affiliation(s)
- Brett Feeney
- *Department of Molecular and Structural Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622, U.S.A
| | - Cristina Pop
- *Department of Molecular and Structural Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622, U.S.A
| | - Ashutosh Tripathy
- †Macromolecular Interactions Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - A. Clay Clark
- *Department of Molecular and Structural Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|