1
|
Chai J, Wu J, Li J, Liao H, Lu W, Guo R, Shao Z, Jmel MA, Martins LA, Hackeng T, Ippel H, Dijkgraaf I, Kotsyfakis M, Xu X. Novel Amphibian Bowman-Birk-Like Inhibitor with Antioxidant and Anticoagulant Effects Ameliorates Pancreatitis Symptoms in Mice. J Med Chem 2023; 66:11869-11880. [PMID: 37610210 DOI: 10.1021/acs.jmedchem.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact β-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.
Collapse
Affiliation(s)
- Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinqiao Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zuoyan Shao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Larissa Almeida Martins
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hans Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013 Heracklion, Crete, Greece
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Dahal A, Subramanian V, Shrestha P, Liu D, Gauthier T, Jois S. Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions. Pept Sci (Hoboken) 2023; 115:e24328. [PMID: 38188985 PMCID: PMC10769001 DOI: 10.1002/pep2.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 01/09/2024]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) structure is used for designing grafted peptides as a possible therapeutic agent. The grafted peptide exhibits multiple conformations in solution due to the presence of proline in the structure of the peptide. To lock the grafted peptide into a major conformation in solution, a dibenzofuran moiety (DBF) was incorporated in the peptide backbone structure, replacing the Pro-Pro sequence. NMR studies indicated a major conformation of the grafted peptide in solution. Detailed structural studies suggested that SFTI-DBF adopts a twisted beta-strand structure in solution. The surface plasmon resonance analysis showed that SFTI-DBF binds to CD58 protein. A model for the protein-SFTI-DBF complex was proposed based on docking studies. These studies suggested that SFTI-1 grafted peptide can be used to design stable peptides for therapeutic purposes by grafting organic functional groups and amino acids. However, when a similar strategy was used with another grafted peptide, the resulting peptide did not produce a single major conformation, and its biological activity was lost. Thus, conformational constraints depend on the sequence of amino acids used for SFTI-1 grafting.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
| | - Vivekanandan Subramanian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| | - Dong Liu
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Ted Gauthier
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| |
Collapse
|
3
|
Dahal A, Parajuli P, Singh SS, Shrestha L, Sonju JJ, Shrestha P, Chatzistamou I, Jois S. Targeting protein–protein interaction for immunomodulation: A sunflower trypsin inhibitor analog peptidomimetic suppresses RA progression in CIA model. J Pharmacol Sci 2022; 149:124-138. [PMID: 35641025 PMCID: PMC9208026 DOI: 10.1016/j.jphs.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology (PMI), School of Medicine, USC, SC 6439 Garners Ferry Rd, Columbia, SC, 29208, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA.
| |
Collapse
|
4
|
Singh SS, Mattheolabakis G, Gu X, Withers S, Dahal A, Jois S. A grafted peptidomimetic for EGFR heterodimerization inhibition: Implications in NSCLC models. Eur J Med Chem 2021; 216:113312. [PMID: 33667849 PMCID: PMC8044046 DOI: 10.1016/j.ejmech.2021.113312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Among the lung cancers, approximately 85% are histologically classified as non-small-cell lung cancer (NSCLC), a leading cause of cancer deaths worldwide. Epidermal growth factor receptors (EGFRs) are known to play a crucial role in lung cancer. HER2 overexpression is detected by immunohistochemistry in 2.4%-38% of NSCLC samples. EGFRs have been targeted with three generations of tyrosine kinase inhibitors (TKIs), and drug resistance has become a major issue; HER2 dimerization with EGFR also plays a major role in the development of resistance to TKI therapy. We have designed grafted peptides to bind to the HER2 extracellular domain (ECD) and inhibit protein-protein interactions of EGFR:HER2 and HER2:HER3. A sunflower trypsin inhibitor (SFTI-1) template was used to graft a peptidomimetic compound. Among several grafted peptides, SFTI-G5 exhibited antiproliferative activity in HER2-positive NSCLC cell lines such as Calu-3 cells with an IC50 value of 0.073 μM. SFTI-G5 was shown to bind to ECD of HER2 and inhibit EGFR:HER2 and HER2:HER3 dimerization and inhibit the phosphorylation of HER2 and downstream signaling proteins. As a proof-of-concept, the in vivo activity of SFTI-G5 was evaluated in two NSCLC mouse models. SFTI-G5 was able to inhibit tumor growth in both models. Furthermore, SFTI-G5 was shown to inhibit EGFR dimerization in tissue samples obtained from in vivo models. These grafted peptides can be used as novel dual inhibitors of EGFR dimerization in NSCLC.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - George Mattheolabakis
- School of Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| | - Sita Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Achyut Dahal
- School of Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA
| | - Seetharama Jois
- School of Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
5
|
Isolation and functional diversity of Bowman-Birk type serine proteinase inhibitors from Hyacinthus orientalis. Biochem J 2021; 478:1287-1301. [PMID: 33666645 DOI: 10.1042/bcj20201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are plant-derived serine proteinase inhibitors. Endogenously, they function as defense molecules against pathogens and insects, but they also have been explored for applications in cancer treatment and inflammatory disorders. Here, we isolated 15 novel BBIs from the bulb of Hyacinthus orientalis (termed HOSPIs). These isoinhibitors consisted of two or three chains, respectively, that are linked by disulfides bonds based on proposed cleavage sites in the canonical BBI reactive site loop. They strongly inhibited trypsin (Ki = 0.22-167 nM) and α-chymotrypsin (Ki = 19-1200 nM). Notably, HOSPI-B4 contains a six-residue reactive loop, which appears to be the smallest such motif discovered in BBIs to date. HOSPI-A6 and -A7 contain an unusual reactive site, i.e. Leu-Met at the P1-P1' position and have strong inhibitory activity against trypsin, α-chymotrypsin, and elastase. Analysis of the cDNA encoding HOSPIs revealed that the precursors have HOSPI-like domains repeated at least twice with a defined linker sequence connecting individual domains. Lastly, mutational analysis of HOSPIs suggested that the linker sequence does not affect the inhibitory activity, and a Thr residue at the P2 site and a Pro at the P3' site are crucial for elastase inhibition. Using mammalian proteases as representative model system, we gain novel insight into the sequence diversity and proteolytic activity of plant BBI. These results may aid the rational design of BBI peptides with potent and distinct inhibitory activity against human, pathogen, or insect serine proteinases.
Collapse
|
6
|
Lupinus albus γ-Conglutin, a Protein Structurally Related to GH12 Xyloglucan-Specific Endo-Glucanase Inhibitor Proteins (XEGIPs), Shows Inhibitory Activity against GH2 β-Mannosidase. Int J Mol Sci 2020; 21:ijms21197305. [PMID: 33022933 PMCID: PMC7583008 DOI: 10.3390/ijms21197305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
γ-conglutin (γC) is a major protein of Lupinus albus seeds, but its function is still unknown. It shares high structural similarity with xyloglucan-specific endo-glucanase inhibitor proteins (XEGIPs) and, to a lesser extent, with Triticum aestivum endoxylanase inhibitors (TAXI-I), active against fungal glycoside hydrolases GH12 and GH11, respectively. However, γC lacks both these inhibitory activities. Since β-galactomannans are major components of the cell walls of endosperm in several legume plants, we tested the inhibitory activity of γC against a GH2 β-mannosidase (EC 3.2.1.25). γC was actually able to inhibit the enzyme, and this effect was enhanced by the presence of zinc ions. The stoichiometry of the γC/enzyme interaction was 1:1, and the calculated Ki was 1.55 μM. To obtain further insights into the interaction between γC and β-mannosidase, an in silico structural bioinformatic approach was followed, including some docking analyses. By and large, this work describes experimental findings that highlight new scenarios for understanding the natural role of γC. Although structural predictions can leave space for speculative interpretations, the full complexity of the data reported in this work allows one to hypothesize mechanisms of action for the basis of inhibition. At least two mechanisms seem plausible, both involving lupin-γC-peculiar structures.
Collapse
|
7
|
Li CY, de Veer SJ, White AM, Chen X, Harris JM, Swedberg JE, Craik DJ. Amino Acid Scanning at P5' within the Bowman-Birk Inhibitory Loop Reveals Specificity Trends for Diverse Serine Proteases. J Med Chem 2019; 62:3696-3706. [PMID: 30888159 DOI: 10.1021/acs.jmedchem.9b00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) is a 14-amino acid cyclic peptide that shares an inhibitory loop with a sequence and structure similar to a larger family of serine protease inhibitors, the Bowman-Birk inhibitors. Here, we focus on the P5' residue in the Bowman-Birk inhibitory loop and produce a library of SFTI variants to characterize the P5' specificity of 11 different proteases. We identify seven amino acids that are generally preferred by these enzymes and also correlate with P5' sequence diversity in naturally occurring Bowman-Birk inhibitors. Additionally, we show that several enzymes have divergent specificities that can be harnessed in engineering studies. By optimizing the P5' residue, we improve the potency or selectivity of existing inhibitors for kallikrein-related peptidase 5 and show that a variant with substitutions at 7 of the scaffold's 14 residues retains a similar structure to SFTI-1. These findings provide new insights into P5' specificity requirements for the Bowman-Birk inhibitory loop.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Andrew M White
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Xingchen Chen
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| |
Collapse
|
8
|
Chand A, Chettiyankandy P, Chowdhuri S. Behaviour of cis- and trans-N-methylformamide in liquid mixture: Dynamical properties at varying pressure and temperature, and ion solvation scenario. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Sable R, Durek T, Taneja V, Craik DJ, Pallerla S, Gauthier T, Jois S. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction. ACS Chem Biol 2016; 11:2366-74. [PMID: 27337048 DOI: 10.1021/acschembio.6b00486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the cell-cell adhesion proteins CD2 and CD58 plays a crucial role in lymphocyte recruitment to inflammatory sites, and inhibitors of this interaction have potential as immunomodulatory drugs in autoimmune diseases. Peptides from the CD2 adhesion domain were designed to inhibit CD2:CD58 interactions. To improve the stability of the peptides, β-sheet epitopes from the CD2 region implicated in CD58 recognition were grafted into the cyclic peptide frameworks of sunflower trypsin inhibitor and rhesus theta defensin. The designed multicyclic peptides were evaluated for their ability to modulate cell-cell interactions in three different cell adhesion assays, with one candidate, SFTI-a, showing potent activity in the nanomolar range (IC50: 51 nM). This peptide also suppresses the immune responses in T cells obtained from mice that exhibit the autoimmune disease rheumatoid arthritis. SFTI-a was resistant to thermal denaturation, as judged by circular dichroism spectroscopy and mass spectrometry, and had a half-life of ∼24 h in human serum. Binding of this peptide to CD58 was predicted by molecular docking studies and experimentally confirmed by surface plasmon resonance experiments. Our results suggest that cyclic peptides from natural sources are promising scaffolds for modulating protein-protein interactions that are typically difficult to target with small-molecule compounds.
Collapse
Affiliation(s)
- Rushikesh Sable
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Thomas Durek
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Veena Taneja
- Department
of Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - David J. Craik
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Sandeep Pallerla
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Ted Gauthier
- LSU-Ag
Center, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Seetharama Jois
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
10
|
Dantzger M, Vasconcelos IM, Scorsato V, Aparicio R, Marangoni S, Macedo MLR. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential. PHYTOCHEMISTRY 2015; 118:224-235. [PMID: 26330217 DOI: 10.1016/j.phytochem.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development.
Collapse
Affiliation(s)
- Miriam Dantzger
- Department of Biochemistry, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil; Department of Food Technology and Public Health, Centre for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, University of Ceara, Fortaleza 60451-970, CE, Brazil
| | - Valéria Scorsato
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil; Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Ricardo Aparicio
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Maria Lígia Rodrigues Macedo
- Department of Biochemistry, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil; Department of Food Technology and Public Health, Centre for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.
| |
Collapse
|
11
|
Filiz E, Tombuloglu H, Koc I, Osma E. Characterization of wound-induced serine protease inhibitor (wip1) genes and proteins in Turkish maize varieties. BIOCHEMISTRY (MOSCOW) 2015; 79:836-44. [PMID: 25365494 DOI: 10.1134/s0006297914080124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protease inhibitors (PIs) are generally small proteins that have been identified in plants. The wip1 gene codes for wound-induced protein, which is similar to serine PIs of the Bowman-Birk family (BBIs). In this study, we analyzed 10 wip1 genes of Turkish maize varieties to understand the structure and characteristics of the wip1 genes and proteins in maize. We found that genetic variability of wip1 genes was higher (π: 0.0173) than reported in previous studies. Tajima's D value was found to be positive (1.73), suggesting over-dominant selection in these loci. According to phylogenetic analysis of wip1 proteins, monocot and dicot BBIs were separated independently, and Turkish varieties were clustered with each other generally. The 3D structures of wip1 proteins indicated that several wip1 proteins had structural divergence in active loops, containing various numbers of cysteine residues ranging between 7 and 9. Particularly, Cys74 was identified in Kocbey and Gozdem varieties, whereas Cys98 was only in the Gozdem variety. Also, a critical serine residue (Ser98) was observed in two varieties - Antbey and Batem Efe. These results can contribute to understanding the role of wip1 genes and corresponding proteins in maize.
Collapse
Affiliation(s)
- E Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, Cilimli, Duzce, 81750, Turkey.
| | | | | | | |
Collapse
|
12
|
In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization. Antimicrob Agents Chemother 2015; 59:2113-21. [PMID: 25624332 DOI: 10.1128/aac.04324-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.
Collapse
|
13
|
Das S, Ramakumar S, Pal D. Identifying functionally important cis-peptide containing segments in proteins and their utility in molecular function annotation. FEBS J 2014; 281:5602-21. [PMID: 25291238 DOI: 10.1111/febs.13100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/21/2014] [Accepted: 10/03/2014] [Indexed: 01/09/2023]
Abstract
Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve > 0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.
Collapse
Affiliation(s)
- Sreetama Das
- Department of Physics, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
14
|
Krzywda S, Jaskolski M, Rolka K, Stawikowski MJ. Structure of a proteolytically resistant analogue of (NLys)5SFTI-1 in complex with trypsin: evidence for the direct participation of the Ser214 carbonyl group in serine protease-mediated proteolysis. ACTA ACUST UNITED AC 2014; 70:668-75. [PMID: 24598736 DOI: 10.1107/s1399004713032252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
Peptide-peptoid hybrids are found to be potent inhibitors of serine proteases. These engineered peptidomimetics benefit from both types of units of the biopolymeric structure: the natural inhibitor part serves as a good binding template, while the P1-positioned peptoid component provides complete resistance towards proteolysis. In this report, the mechanism of proteolytic resistance of a P1 peptoid-containing analogue is postulated based on the crystal structure of the (NLys)(5)-modified sunflower trypsin inhibitor SFTI-1 in complex with bovine trypsin solved at 1.29 Å resolution. The structural differences between the (NLys)(5)SFTI-1-trypsin complex and the native SFTI-1-trypsin complex are surprisingly small and reveal the key role of the carbonyl group of the Ser214 residue of the enzyme, which is crucial for binding of the inhibitor and plays a crucial role in proteolysis mediated by serine proteases. The incorporated NLys5 peptoid residue prevents Ser214 from forming a hydrogen bond to the P1 residue, and in turn Gln192 does not form a hydrogen bond to the carbonyl group of the P2 residue. It also increases the distance between the Ser214 carbonyl group and the Ser195 residue, thus preventing proteolysis. The hybrid inhibitor structure reported here provides insight into protein-protein interaction, which can be efficiently and selectively probed with the use of peptoids incorporated within endogenous peptide ligands.
Collapse
Affiliation(s)
- Szymon Krzywda
- Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krzysztof Rolka
- Faculty of Chemistry, University of Gdansk, Stwosza 63, 80-952 Gdansk, Poland
| | - Maciej J Stawikowski
- Torrey Pines Institute For Molecular Studies, 11350 SW Village Parkway, Port St Lucie, FL 34987, USA
| |
Collapse
|
15
|
Ganguly HK, Kaur H, Basu G. Local control of cis-peptidyl-prolyl bonds mediated by CH···π interactions: the Xaa-Pro-Tyr motif. Biochemistry 2013; 52:6348-57. [PMID: 23941357 DOI: 10.1021/bi4007918] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to generic peptide bonds, the peptidyl-prolyl bond shows a strong propensity for the cis conformer. The presence of a sequence-contiguous aromatic (Aro) residue can further stabilize the cis conformer, as observed for the Aro-Pro motif. The cis propensity of the reverse sequence motif, Pro-Aro, is not so well understood, especially the effect of N-capping the Pro-Aro motif with different amino acid residues. From a comparative nuclear magnetic resonance study of two peptide series with the general sequences Ac-Xaa-Pro-Tyr-NH2 and Ac-Xaa-Pro-Ala-NH2, we present a relative thermodynamic scale that reflects how the nature of the Xaa side chain influences the cis propensity of the Xaa-Pro-Tyr motif, with Gly, Pro, and Ala at position Xaa giving the greatest enhancement of the cis-peptidyl-prolyl population. We also show that CH···π interaction between Xaa and Tyr is responsible for the enhanced cis population. However, the mere presence of the CH···π interaction does not guarantee that the peptidyl-prolyl bond will have a higher cis content in Xaa-Pro-Tyr than in Xaa-Pro-Ala. Xaa-dependent intramolecular interactions present in Xaa-trans-Pro-Tyr can nullify favorable CH···π interactions in Xaa-cis-Pro-Tyr. The relative cis-peptidyl-prolyl stabilizing propensities of Xaa (Xaa-Pro-Tyr) in proteins and in our peptide series show strong linear correlation except when Xaa is aromatic. We also explore the Xaa-Pro-Gly-Tyr sequence motif and show that mediated by a Pro-Tyr CH···π interaction, the cis-peptidyl-prolyl bond in the motif is stabilized when Xaa is Pro.
Collapse
Affiliation(s)
- Himal K Ganguly
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | | | | |
Collapse
|
16
|
Stolze SC, Meltzer M, Ehrmann M, Kaiser M. Ahp cyclodepsipeptides: the impact of the Ahp residue on the "canonical inhibition" of S1 serine proteases. Chembiochem 2013; 14:1301-8. [PMID: 23794257 DOI: 10.1002/cbic.201300180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 12/21/2022]
Abstract
S1 serine proteases are by far the largest and most diverse family of proteases encoded in the human genome. Although recent decades have seen an enormous increase in our knowledge, the biological functions of most of these proteases remain to be elucidated. Chemical inhibitors have proven to be versatile tools for studying the functions of proteases, but this approach is hampered by the limited availability of inhibitor scaffold structures with the potential to allow rapid discovery of selective, noncovalent small-molecule protease inhibitors. The natural product class of Ahp cyclodepsipeptides is an unusual class of small-molecule canonical inhibitors; the incorporation of protease cleavage sequences into their molecular scaffolds enables the design of specific small-molecule inhibitors that simultaneously target the S and S' subsites of the protease through noncovalent mechanisms. Their synthesis is tedious, however, so in this study we have investigated the relevance of the Ahp moiety for achieving potent inhibition. We found that although the Ahp residue plays an important role in inhibition potency, appropriate replacement with β-hydroxy amino acids results in structurally less complex derivatives that inhibit serine proteases in the low micromolar range.
Collapse
Affiliation(s)
- Sara C Stolze
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | | | | | | |
Collapse
|
17
|
Tischler M, Nasu D, Empting M, Schmelz S, Heinz DW, Rottmann P, Kolmar H, Buntkowsky G, Tietze D, Avrutina O. Peptid in Ketten: Einblicke in die Struktur-Aktivitäts-Beziehungen von Proteaseinhibitormimetika mit fixierten Amidkonformationen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Tischler M, Nasu D, Empting M, Schmelz S, Heinz DW, Rottmann P, Kolmar H, Buntkowsky G, Tietze D, Avrutina O. Braces for the peptide backbone: insights into structure-activity relationships of protease inhibitor mimics with locked amide conformations. Angew Chem Int Ed Engl 2012; 51:3708-12. [PMID: 22374650 DOI: 10.1002/anie.201108983] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 01/08/2023]
Affiliation(s)
- Marco Tischler
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Joseph AP, Srinivasan N, de Brevern AG. Cis-trans peptide variations in structurally similar proteins. Amino Acids 2012; 43:1369-81. [PMID: 22227866 DOI: 10.1007/s00726-011-1211-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 12/30/2022]
Abstract
The presence of energetically less favourable cis peptides in protein structures has been observed to be strongly associated with its structural integrity and function. Inter-conversion between the cis and trans conformations also has an important role in the folding process. In this study, we analyse the extent of conservation of cis peptides among similar folds. We look at both the amino acid preferences and local structural changes associated with such variations. Nearly 34% of the Xaa-Proline cis bonds are not conserved in structural relatives; Proline also has a high tendency to get replaced by another amino acid in the trans conformer. At both positions bounding the peptide bond, Glycine has a higher tendency to lose the cis conformation. The cis conformation of more than 30% of β turns of type VIb and IV are not found to be conserved in similar structures. A different view using Protein Block-based description of backbone conformation, suggests that many of the local conformational changes are highly different from the general local structural variations observed among structurally similar proteins. Changes between cis and trans conformations are found to be associated with the evolution of new functions facilitated by local structural changes. This is most frequent in enzymes where new catalytic activity emerges with local changes in the active site. Cis-trans changes are also seen to facilitate inter-domain and inter-protein interactions. As in the case of folding, cis-trans conversions have been used as an important driving factor in evolution.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, Université Denis Diderot-Paris 7, INTS, 6 rue Alexandre Cabanel, Paris Cedex 15, France
| | | | | |
Collapse
|
20
|
Bradshaw RT, Patel BH, Tate EW, Leatherbarrow RJ, Gould IR. Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction. Protein Eng Des Sel 2011; 24:197-207. [PMID: 20656696 DOI: 10.1093/protein/gzq047] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The central role of protein-protein interactions in a wide range of cellular processes makes them a target for research and drug discovery. A variety of methods, both experimental and theoretical, exist for probing protein interfaces for residues that affect activity and binding affinity. Using as an example a protein-protein complex between trypsin and a nine-residue synthetic peptide, we experimentally assay-binding affinities for a variety of mutants and determine their relative free energy of binding, ΔΔG, to rank the importance of interface residues to binding. We then compare how accurately, precisely and reliably computational methods for calculating ΔΔG can replicate these results. We find that a 'post-process alanine scanning' protocol of a single native complex trajectory gives results with better accuracy than running separate molecular dynamics (MD) trajectories for individual mutants. Compared across 10 independent simulations, we find that results from the post-process alanine scanning are also more precise and are obtained over five times faster than their equivalent with the 'full MD' protocol. These results suggest that, although not suitable in every case, post-process alanine scanning is a useful and reliable tool in predicting important residues at protein interfaces with potential for modulation.
Collapse
Affiliation(s)
- Richard T Bradshaw
- Department of Chemistry and Chemical Biology Centre, Imperial College London, South Kensington Campus, London SW72AZ, UK
| | | | | | | | | |
Collapse
|
21
|
Lęgowska A, Dębowski D, Lukajtis R, Wysocka M, Czaplewski C, Lesner A, Rolka K. Implication of the disulfide bridge in trypsin inhibitor SFTI-1 in its interaction with serine proteinases. Bioorg Med Chem 2010; 18:8188-93. [PMID: 21036622 DOI: 10.1016/j.bmc.2010.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 11/17/2022]
Abstract
Fourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor's side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by l-pencillamine (Pen), homo-l-cysteine (Hcy), N-sulfanylethylglycine (Nhcy) or combination of the three with Cys. As in the substrate specificity the P(1) position of the synthesized analogues Lys, Nlys [N-(4-aminobutyl)glycine], Phe or Nphe (N-benzylglycine) were present, and they were checked for trypsin and chymotrypsin inhibitory activity. The results clearly indicated that Pen and Nhcy were not acceptable at the position 3, yielding inactive analogues, whereas another residue (Cys11) could be substituted without any significant impact on the affinity towards proteinase. On the other hand, elongation of the Cys3 side chain by introduction of Hcy did not affect inhibitory activity, and an analogue with the Hcy-Hcy disulfide bridge was more than twice as effective as the reference compound ([Phe⁵] SFTI-1) in inhibition of bovine α-chymotrypsin.
Collapse
|
22
|
Kocsis A, Kékesi KA, Szász R, Végh BM, Balczer J, Dobó J, Závodszky P, Gál P, Pál G. Selective inhibition of the lectin pathway of complement with phage display selected peptides against mannose-binding lectin-associated serine protease (MASP)-1 and -2: significant contribution of MASP-1 to lectin pathway activation. THE JOURNAL OF IMMUNOLOGY 2010; 185:4169-78. [PMID: 20817870 DOI: 10.4049/jimmunol.1001819] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The complement system, an essential part of the innate immune system, can be activated through three distinct routes: the classical, the alternative, and the lectin pathways. The contribution of individual activation pathways to different biological processes can be assessed by using pathway-selective inhibitors. In this paper, we report lectin pathway-specific short peptide inhibitors developed by phage display against mannose-binding lectin-associated serine proteases (MASPs), MASP-1 and MASP-2. On the basis of the selected peptide sequences, two 14-mer peptides, designated as sunflower MASP inhibitor (SFMI)-1 and SFMI-2, were produced and characterized. SFMI-1 inhibits both MASP-1 and MASP-2 with a K(I) of 65 and 1030 nM, respectively, whereas SFMI-2 inhibits only MASP-2 with a K(I) of 180 nM. Both peptides block the lectin pathway activation completely while leaving the classical and the alternative routes intact and fully functional, demonstrating that of all complement proteases only MASP-1 and/or MASP-2 are inhibited by these peptides. In a C4 deposition inhibitor assay using preactivated MASP-2, SFMI-2 is 10-fold more effective than SFMI-1 in accordance with the fact that SFMI-2 is a more potent inhibitor of MASP-2. Surprisingly, however, out of the two peptides, SFMI-1 is much more effective in preventing C3 and C4 deposition when normal human serum containing zymogen MASPs is used. This suggests that MASP-1 has a crucial role in the initiation steps of lectin pathway activation most probably by activating MASP-2. Because the lectin pathway has been implicated in several life-threatening pathological states, these inhibitors should be considered as lead compounds toward developing lectin pathway blocking therapeutics.
Collapse
Affiliation(s)
- Andrea Kocsis
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Hull JJ, Copley KS, Schegg KM, Quilici DR, Schooley DA, Welch WH. De novo molecular modeling and biophysical characterization of Manduca sexta eclosion hormone. Biochemistry 2009; 48:9047-60. [PMID: 19670911 PMCID: PMC2792118 DOI: 10.1021/bi901078y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eclosion hormone (EH) is an integral component in the cascade regulating the behaviors culminating in emergence of an insect from its old exoskeleton. Little is known regarding the EH solution structure; consequently, we utilized a computational approach to generate a hypothetical structure for Manduca sexta EH. The de novo algorithm exploited the restricted conformational space of disulfide bonds (Cys14-Cys38, Cys18-Cys34, and Cys21-Cys49) and predicted secondary structure elements to generate a thermodynamically stable structure characterized by 55% helical content, an unstructured N-terminus, a helical C-terminus, and a solvent-exposed loop containing Trp28 and Phe29. Both the strain and pseudo energies of the predicted peptide compare favorably with those of known structures. The 62-amino acid peptide was synthesized, folded, assayed for activity, and structurally characterized to confirm the validity of the model. The helical content is supported by circular dichroism and hydrogen-deuterium exchange mass spectrometry. Fluorescence emission spectra and acrylamide quenching are consistent with the solvent exposure predicted for Trp28, which is shielded by Phe29. Furthermore, thermodynamically stable conformations that deviated only slightly from the predicted Manduca EH structure were generated in silico for the Bombyx mori and Drosophila melanogaster EHs, indicating that the conformation is not species-dependent. In addition, the biological activities of known mutants and deletion peptides were rationalized with the predicted Manduca EH structure, and we found that, on the basis of sequence conservation, functionally important residues map to two conserved hydrophobic clusters incorporating the C-terminus and the first loop.
Collapse
Affiliation(s)
| | | | | | | | - David A. Schooley
- Correspondence to: David A. Schooley, Dept. of Biochemistry, University of Nevada, Reno, Nevada 89557; ; Phone: (775)-784-4136; Fax: (775)-784-1419
| | | |
Collapse
|
25
|
Łęgowska A, Dębowski D, Lesner A, Wysocka M, Rolka K. Selection of peptomeric inhibitors of bovine α-chymotrypsin and cathepsin G based on trypsin inhibitor SFTI-1 using a combinatorial chemistry approach. Mol Divers 2009; 14:51-8. [DOI: 10.1007/s11030-009-9142-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
26
|
Sawano Y, Hatano KI, Miyakawa T, Tanokura M. Absolute side-chain structure at position 13 is required for the inhibitory activity of bromein. J Biol Chem 2008; 283:36338-43. [PMID: 18948264 DOI: 10.1074/jbc.m806748200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition.
Collapse
Affiliation(s)
- Yoriko Sawano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
27
|
Wang ML, Li WJ, Wang ML, Xu WB. Support vector machines for prediction of peptidyl prolyl cis/trans isomerization. ACTA ACUST UNITED AC 2008; 63:23-8. [PMID: 14984570 DOI: 10.1046/j.1399-3011.2004.00100.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new method for peptidyl prolyl cis/trans isomerization prediction based on the theory of support vector machines (SVM) was introduced. The SVM represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognition problems. In this study, six training datasets consisting of different length local sequence respectively were used. The polynomial kernel functions with different parameter d were chosen. The test for the independent testing dataset and the jackknife test were both carried out. When the local sequence length was 20-residue and the parameter d = 8, the SVM method archived the best performance with the correct rate for the cis and trans forms reaching 70.4 and 69.7% for the independent testing dataset, 76.7 and 76.6% for the jackknife test, respectively. Matthew's correlation coefficients for the jackknife test could reach about 0.5. The results obtained through this study indicated that the SVM method would become a powerful tool for predicting peptidyl prolyl cis/trans isomerization.
Collapse
Affiliation(s)
- M-L Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi 214036, China.
| | | | | | | |
Collapse
|
28
|
Scarafoni A, Consonni A, Galbusera V, Negri A, Tedeschi G, Rasmussen P, Magni C, Duranti M. Identification and characterization of a Bowman-Birk inhibitor active towards trypsin but not chymotrypsin in Lupinus albus seeds. PHYTOCHEMISTRY 2008; 69:1820-1825. [PMID: 18474386 DOI: 10.1016/j.phytochem.2008.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/20/2008] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
The paper describes the purification, structural characterization and inhibitory properties of a trypsin inhibitor from Lupinus albus L., a leguminous plant believed to be devoid of any protease inhibitor. The protein has been isolated by a newly set-up procedure and characterized by direct amino acid sequencing, MALDI-TOF mass spectroscopy and circular dichroism. Inhibitory properties toward bovine trypsin and chymotrypsin, as well as its thermal and pH stabilities, have been also assessed. The inhibitor is 63 amino acid long (Mr 6858; pI 8.22) and it is capable to inhibit two trypsin molecules simultaneously, with a Kd of 4.2+/-0.4 nM, but not chymotrypsin. BLAST search against UniProtKB/TrEMBL database indicates that the inhibitor belongs to the Bowman-Birk inhibitor (BBI) family. The interest in these serine-protease inhibitors arises from the ability to prevent or suppress carcinogen-induced transformation, as shown in various in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Department of Agri-Food Molecular Sciences, State University of Milan, via G. Celoria 2, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Exarchos KP, Papaloukas C, Exarchos TP, Troganis AN, Fotiadis DI. Prediction of cis/trans isomerization using feature selection and support vector machines. J Biomed Inform 2008; 42:140-9. [PMID: 18586558 DOI: 10.1016/j.jbi.2008.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/26/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
In protein structures the peptide bond is found to be in trans conformation in the majority of the cases. Only a small fraction of peptide bonds in proteins is reported to be in cis conformation. Most of these instances (>90%) occur when the peptide bond is an imide (X-Pro) rather than an amide bond (X-nonPro). Due to the implication of cis/trans isomerization in many biologically significant processes, the accurate prediction of the peptide bond conformation is of high interest. In this study, we evaluate the effect of a wide range of features, towards the reliable prediction of both proline and non-proline cis/trans isomerization. We use evolutionary profiles, secondary structure information, real-valued solvent accessibility predictions for each amino acid and the physicochemical properties of the surrounding residues. We also explore the predictive impact of a modified feature vector, which consists of condensed position-specific scoring matrices (PSSMX), secondary structure and solvent accessibility. The best discriminating ability is achieved using the first feature vector combined with a wrapper feature selection algorithm and a support vector machine (SVM). The proposed method results in 70% accuracy, 75% sensitivity and 71% positive predictive value (PPV) in the prediction of the peptide bond conformation between any two amino acids. The output of the feature selection stage is investigated in order to identify discriminatory features as well as the contribution of each neighboring residue in the formation of the peptide bond, thus, advancing our knowledge towards cis/trans isomerization.
Collapse
Affiliation(s)
- Konstantinos P Exarchos
- Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina, P.O. Box 1186, GR 45110 Ioannina, Greece
| | | | | | | | | |
Collapse
|
30
|
Zabłotna E, Jaśkiewicz A, Łegowska A, Miecznikowska H, Lesner A, Rolka K. Design of serine proteinase inhibitors by combinatorial chemistry using trypsin inhibitor SFTI-1 as a starting structure. J Pept Sci 2008; 13:749-55. [PMID: 17828796 DOI: 10.1002/psc.887] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A small peptide library of monocyclic SFTI-1 trypsin inhibitor from sunflower seeds modified in positions P(1) and P(4)' was synthesized using a portioning-mixing method. The peptide library was deconvoluted by the iterative approach in solution. Two trypsin ([Met(9)]-SFTI-1 and [Arg(5), Abu(9)]-SFTI-1), one chymotrypsin ([Phe(5)]-SFTI-1) and one human elastase ([Leu(5), Trp(9)]-SFTI-1) inhibitors were selected and resynthesized. The values of their association equilibrium constants (K(a)) with target enzymes indicate that they are potent inhibitors. In addition, the last two analoges belong to the most active inhibitors of this size. The results obtained show that the conserved Pro(9) residue in the Bowman-Birk inhibitor (BBI)s is not essential for inhibitory activity.
Collapse
Affiliation(s)
- Ewa Zabłotna
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Brauer ABE, McBride JD, Kelly G, Matthews SJ, Leatherbarrow RJ. Resisting degradation by human elastase: commonality of design features shared by 'canonical' plant and bacterial macrocyclic protease inhibitor scaffolds. Bioorg Med Chem 2007; 15:4618-28. [PMID: 17470393 DOI: 10.1016/j.bmc.2007.03.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 03/26/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
A previously unexplained difference in the resistance to enzymatic hydrolysis of 11-mer Bowman-Birk-type inhibitors of human leukocyte elastase that differ in P1 is found to correlate with the strength of a particular intramolecular hydrogen bond within the inhibitor. This transannular hydrogen bond stabilizes the side chain of the conserved P2 Thr in a 'canonical' +60 degrees -rotamer chi(1) conformation and thereby directs it for a close interaction with the enzyme's catalytic His. As the implications of this NMR analysis are neither limited to this macrocyclic scaffold derived from plant proteins nor to a particular serine protease, we present a unified analysis with inhibitory bacterial depsipeptides of 7-12 residues in length that share key design features for which we propose communal functional explanations.
Collapse
Affiliation(s)
- Arnd B E Brauer
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
32
|
Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol 2006; 13:1069-77. [PMID: 17099698 PMCID: PMC3326531 DOI: 10.1038/nsmb1172] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/25/2006] [Indexed: 11/09/2022]
Abstract
Small ubiquitin-like modifier (SUMO)-specific protease SENP1 processes SUMO-1, SUMO-2 and SUMO-3 to mature forms and deconjugates them from modified proteins. To establish the proteolytic mechanism, we determined structures of catalytically inactive SENP1 bound to SUMO-1-modified RanGAP1 and to unprocessed SUMO-1. In each case, the scissile peptide bond is kinked at a right angle to the C-terminal tail of SUMO-1 and has the cis configuration of the amide nitrogens. SENP1 preferentially processes SUMO-1 over SUMO-2, but binding thermodynamics of full-length SUMO-1 and SUMO-2 to SENP1 and K(m) values for processing are very similar. However, k(cat) values differ by 50-fold. Thus, discrimination between unprocessed SUMO-1 and SUMO-2 by SENP1 is based on a catalytic step rather than substrate binding and is likely to reflect differences in the ability of SENP1 to correctly orientate the scissile bonds in SUMO-1 and SUMO-2.
Collapse
Affiliation(s)
- Linnan Shen
- Centre for Interdisciplinary Research, School of Life Science, University of Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
33
|
Costa JR, Yaliraki SN. Role of Rigidity on the Activity of Proteinase Inhibitors and Their Peptide Mimics. J Phys Chem B 2006; 110:18981-8. [PMID: 16986893 DOI: 10.1021/jp0575299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bowman-Birk inhibitors (BBIs) are a family of proteins that share a canonical loop structure whose presence in a conserved conformation is linked to their inhibitory activity. We study the conformational properties of the canonical loop using a graph theoretical approach as implemented in the floppy inclusions and rigid substructure topography (FIRST). We find that the canonical loop is an independent rigid cluster in the natural inhibitors. We have further used this technique to identify residues that play an important role in the structural rigidity of the protein by quantifying their contribution to the overall rigidity of the inhibitor. We find that the conserved elements among the natural and synthetic peptides are the ones that contribute the most to rigidity, even if they are located far from the active site, as rigidity effects are nonlinear and hence nonlocal. The results help to elucidate why certain mutations in the loop of the BBI produce peptides that fail to have the designed inhibitory activity.
Collapse
Affiliation(s)
- Joao R Costa
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
34
|
Meng HY, Thomas KM, Lee AE, Zondlo NJ. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation. Biopolymers 2006; 84:192-204. [PMID: 16208767 DOI: 10.1002/bip.20382] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.
Collapse
Affiliation(s)
- Hai Yun Meng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
35
|
Daly NL, Chen YK, Foley FM, Bansal PS, Bharathi R, Clark RJ, Sommerhoff CP, Craik DJ. The absolute structural requirement for a proline in the P3'-position of Bowman-Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold. J Biol Chem 2006; 281:23668-75. [PMID: 16766795 DOI: 10.1074/jbc.m601426200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp14 was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro13 and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.
Collapse
Affiliation(s)
- Norelle L Daly
- Institute for Molecular Bioscience and Australian Research Council Special Research Centre for Functional and Applied Genomics, the University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu B, Schofield CJ, Wilmouth RC. Structural analyses on intermediates in serine protease catalysis. J Biol Chem 2006; 281:24024-35. [PMID: 16754679 DOI: 10.1074/jbc.m600495200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the subject of many studies, detailed structural information on aspects of the catalytic cycle of serine proteases is lacking. Crystallographic analyses were performed in which an acyl-enzyme complex, formed from elastase and a peptide, was reacted with a series of nucleophilic dipeptides. Multiple analyses led to electron density maps consistent with the formation of a tetrahedral species. In certain cases, apparent peptide bond formation at the active site was observed, and the electron density maps suggested production of a cis-amide rather than a trans-amide. Evidence for a cis-amide configuration was also observed in the noncovalent complex between elastase and an alpha1-antitrypsin-derived tetrapeptide. Although there are caveats on the relevance of the crystallographic data to solution catalysis, the results enable detailed proposals for the pathway of the acylation step to be made. At least in some cases, it is proposed that the alcohol of Ser-195 may preferentially attack the carbonyl of the cis-amide form of the substrate, in a stereoelectronically favored manner, to give a tetrahedral oxyanion intermediate, which undergoes N-inversion and/or C-N bond rotation to enable protonation of the leaving group nitrogen. The mechanistic proposals may have consequences for protease inhibition, in particular for the design of high energy intermediate analogues.
Collapse
Affiliation(s)
- Bin Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
37
|
Abstract
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.
Collapse
|
38
|
Hilpert K, Hansen G, Wessner H, Volkmer-Engert R, Höhne W. Complete Substitutional Analysis of a Sunflower Trypsin Inhibitor with Different Serine Proteases. ACTA ACUST UNITED AC 2005; 138:383-90. [PMID: 16272132 DOI: 10.1093/jb/mvi140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Here we present a method to simultaneously characterize and/or optimize both the binding loop towards the protease and a cysteine-stabilized scaffold. The small peptidic sunflower trypsin inhibitor (SFTI-1) was chosen as a model system for these experiments. The inhibitor was investigated for positional specificity against trypsin, elastase and proteinase K using complete substitutional analyses based on cellulose-bound peptide spot synthesis. Inhibitor variants optimized for elastase or proteinase K inhibition by several rounds of substitutional analyses exhibit K(i) values in the micromolar range and high specificity for the corresponding protease. The results of this easy-to-perform assay can be used to design an improved peptide library using classical methods.
Collapse
Affiliation(s)
- Kai Hilpert
- Department of Biochemistry, Medical Faculty Charité, Humboldt University of Berlin, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
39
|
Jaulent AM, Brauer ABE, Matthews SJ, Leatherbarrow RJ. Solution structure of a novel C2-symmetrical bifunctional bicyclic inhibitor based on SFTI-1. JOURNAL OF BIOMOLECULAR NMR 2005; 33:57-62. [PMID: 16222558 DOI: 10.1007/s10858-005-1210-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/15/2005] [Indexed: 05/04/2023]
Abstract
A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of beta-hairpin structures.
Collapse
Affiliation(s)
- Agnès M Jaulent
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
40
|
Taniguchi M, Kamei K, Kanaori K, Koyama T, Yasui T, Takano R, Harada S, Tajima K, Imada C, Hara S. Relationship between temporary inhibition and structure of disulfide-linkage analogs of marinostatin, a natural ester-linked protein protease inhibitor. ACTA ACUST UNITED AC 2005; 66:49-58. [PMID: 16000118 DOI: 10.1111/j.1399-3011.2005.00271.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 12-residue marinostatin [MST(1-12): (1)FATMRYPSDSDE(12)] which contains two ester linkages of Thr(3)-Asp(9) and Ser(8)-Asp(11) strongly inhibits subtilisin. In order to study the relationship between the inhibitory activity, structure, and stability of MST, MST analogs were prepared by changing ester linkages to a disulfide linkages. The analogs without the disulfide linkage between 3 and 9 positions lost their inhibitory activity. The K(i) value of 1SS(C(3)-C(9)) ((1)FACMRYPSCSDE(12)), which has a single disulfide linkage of Cys(3)-Cys(9) was comparable with those of MST(1-12) and MST-2SS ((1)FACMRYPCCSCE(12)), a doubly linked analog of Cys(3)-Cys(9) and Cys(8)-Cys(11). However, 1SS(C(3)-C(9)) and MST-2SS showed temporary inhibition, but not MST(1-12): These analogs were inactivated after incubation with subtilisin for 30 min, and were specifically hydrolyzed at the reactive site. (1)H NMR study showed that 1SS(C(3)-C(9)) has two conformations, which contain a cis- (70%) or trans- (30%) Pro residue, while MST-2SS as well as MST(1-12) takes a single conformation containing only a cis-Pro residue. Hydrogen-deuterium exchange rate of the Arg(5) (P1') NH proton of the MST analogs was about 100 times faster than that of MST(1-12). These results indicate that the linkage between the positions 8 and 11 plays a role for fixing the cis-conformation of the Pro(7) residue, and that the linkage between 3 and 9 is indispensable for the inhibition, but not enough for stable protease-inhibitor complex.
Collapse
Affiliation(s)
- M Taniguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qi RF, Song ZW, Chi CW. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 2005; 37:283-92. [PMID: 15880256 DOI: 10.1111/j.1745-7270.2005.00048.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Bowman-Birk inhibitors (BBIs) are well-studied serine protease inhibitors that are abundant in dicotyledonous and monocotyledonous plants. BBIs from dicots usually have a molecular weight of 8k and are double-headed with two reactive sites, whereas those from monocots can be divided into two classes, one approximately 8 kDa in size with one reactive site (another reactive site was lost) and the other approximately 16 kDa in size with two reactive sites. The reactive site is located at unique exposed surfaces formed by a disulfide-linked beta-sheet loop that is highly conserved, rigid and mostly composed of nine residues. The structural features and molecular evolution of inhibitors are described, focusing on the conserved disulfide bridges. The sunflower trypsin inhibitor-1 (SFTI-1), with 14 amino acid residues, is a recently discovered bicyclic inhibitor, and is the most small and potent naturally occurring Bowman-Birk inhibitor. Recently, BBIs have become a hot topic because of their potential applications. BBIs are now used for defense against pathogens and insects in transgenic plants, which has advantages over using toxic and polluting insecticides. BBIs could also be applied in the prevention of cancer, Dengue fever, and inflammatory and allergic disorders, because of their inhibitory activity with respect to the serine proteases that play a pivotal role in the development and pathogenesis of these diseases. The canonical nine-residue loop of BBIs/STFI-1 provides an ideal template for drug design of specific inhibitors to target their respective proteases.
Collapse
Affiliation(s)
- Rui-Feng Qi
- College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| | | | | |
Collapse
|
42
|
Wang ML, Song JN, Xu WB, Li WJ. A novel method of analyzing proline synonymous codons in E. coli. FEBS Lett 2004; 576:336-8. [PMID: 15498558 DOI: 10.1016/j.febslet.2004.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2004] [Indexed: 11/23/2022]
Abstract
Proline is a special imino acid in protein and the isomerization of the prolyl peptide bond has notable biological significance and influences the final structure of protein greatly, so the correlation between proline synonymous codon usage and local amino acid, the correlation between proline synonymous codon usage and the isomerization of the prolyl peptide bond were both investigated in the Escherichia coli genome by using a novel method based on information theory. The results show that in peptide chain, the residue at the first position C-terminal influences the usage of proline synonymous codon greatly and proline synonymous codons contain some factors influencing the isomerization of the prolyl peptide bond.
Collapse
Affiliation(s)
- Ming-Lei Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi 214036, Jiangsu, China.
| | | | | | | |
Collapse
|
43
|
Brauer ABE, Leatherbarrow RJ. The conserved P1' Ser of Bowman-Birk-type proteinase inhibitors is not essential for the integrity of the reactive site loop. Biochem Biophys Res Commun 2003; 308:300-5. [PMID: 12901868 DOI: 10.1016/s0006-291x(03)01365-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isolated reactive site beta-hairpin loop of Bowman-Birk-type proteinase inhibitors has become a widely studied proteinomimetic because it retains the three-dimensional structure and much of the inhibitory potency of the corresponding region of the complete protein. Here we analyse the role of the P1' Ser residue which is highly conserved and intramolecularly hydrogen bonded in the complete proteins. A combined kinetic and structural analysis of variant proteinomimetic peptides demonstrates that the hydrogen-bond potential of the side-chain oxygen atom of the P1' Ser is not essential for the integrity of the reactive site loop and that it provides only a small contribution to the trypsin affinity and no apparent contribution to the stability against tryptic turnover. We conclude that the potential of the P1' side chain to engineer improved inhibition and selectivity for serine proteinases is best explored further in concert with the side chains of the P2 and P5' residues which may interact or compete for the same space.
Collapse
Affiliation(s)
- Arnd B E Brauer
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
44
|
Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003; 103:2475-532. [PMID: 12848578 DOI: 10.1021/cr0104375] [Citation(s) in RCA: 787] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christophe Dugave
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines (DIEP), Bâtiment 152, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
45
|
Brauer ABE, Nievo M, McBride JD, Leatherbarrow RJ. The structural basis of a conserved P2 threonine in canonical serine proteinase inhibitors. J Biomol Struct Dyn 2003; 20:645-56. [PMID: 12643767 DOI: 10.1080/07391102.2003.10506881] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are a well-studied family of canonical inhibitor proteins of serine proteinases. In nature, the active region of BBIs possesses a highly conserved Thr at the P2 position. The importance of this residue has been reemphasized by synthetic BBI reactive site loop proteinomimetics. In particular, this residue was exclusively identified for active chymotrypsin inhibitors selected from a BBI template-assisted combinatorial peptide library. A further kinetic analysis of 26 P2 variant peptides revealed that Thr provides both optimal binding affinity and optimal resistance against enzymatic turnover by chymotrypsin. Herein, we report the (1)H-NMR spectroscopic study of a 5-membered sub-set of these reactive site loop peptides representing a stepwise elimination of the Thr side-chain functionalities and inversion of its side-chain chirality. The P2 Thr variant adopts a three-dimensional structure that closely mimics the one of the corresponding region of the complete protein. This validates the use of this template for the investigation of structure-function relationships. While the overall backbone geometry is similar in all studied variants, conformational changes induced by the modification of the P2 side chain have now been identified and provide a rational explanation of the kinetically observed functional differences. Eliminating the gamma-methyl group has little structural effect, whereas the elimination of the gamma-oxygen atom or the inversion of the side-chain chirality results in characteristic changes to the intramolecular hydrogen bond network. We conclude that the transannular hydrogen bond between the P2 Thr side-chain hydroxyl and the P5' backbone amide is an important conformational constraint and directs the hydrophobic contact of the P2 Thr side chain with the enzyme surface in a functionally optimal geometry, both in the proteinomimetic and the native protein. In at least four canonical inhibitor protein families similar structural arrangements for a conserved P2 Thr have been observed, which suggests an analogous functional role. Substitutions at P2 of the proteinomimetic also affect the conformational balance between cis and trans isomers at a distant Pro-Pro motif (P3'-P4'). Presented with a mixture of cis/trans isomers chymotrypsin appears to interact preferably with the conformer that retains the cis-P3' Pro-trans-P4' Pro geometry found in the parent BBI protein.
Collapse
Affiliation(s)
- Arnd B E Brauer
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|