1
|
Yan YH, Li YQ, Zou MJ, Yu LJ, Zhang JP. Structural integrity and near-infrared absorption of the LH1 complex of Thermochromatium tepidum: Influence from the C-terminal lysine residues of LH1 α-polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149545. [PMID: 39933687 DOI: 10.1016/j.bbabio.2025.149545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
The light-harvesting complex 1-reaction center (LH1-RC) photosystem of the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum exhibits a near-infrared LH1-Qy absorption band at 915 nm as regulated by binding calcium ions (Ca2+). To further explore the possible involvement of the C-terminal lysine residues of the LH1 α-polypeptide, we have genetically engineered a Rhodospirillum rubrum mutant strain to yield the site-directed modifications of the terminal α-Lys60 and α-Lys61 residues of Tch. tepidum LH1 α-polypeptide. Four of the LH1 mutants exhibit a subtle blue shift of 3 nm upon deletion or substitution of the lysine residues, however, they display over 40 nm blue shifts upon Ca2+ removal by ethylene diamine tetraacetic acid (EDTA) treatment. Spectral properties of native Tch. tepidum LH1-RC, the LH1-only, and the mutant LH1-only complexes are compared on a structural basis, which allows us to conclude that the C-terminal lysine residues and the Ca2+ binding synergistically affect the structural integrity and the LH1-Qy spectral shift. This work demonstrates a methodology for the genetic manipulation of photosynthetic proteins lacking mutagenesis information, and may shed light on understanding the detailed structural factors involved in tuning the LH1-Qy absorption.
Collapse
Affiliation(s)
- Yi-Hao Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Qian Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
2
|
Kawato S, Sato S, Kitoh-Nishioka H, Saga Y. Spectral changes of light-harvesting complex 2 lacking B800 bacteriochlorophyll a under neutral pH conditions. Photochem Photobiol Sci 2024; 23:871-879. [PMID: 38564166 DOI: 10.1007/s43630-024-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Exchange of B800 bacteriochlorophyll (BChl) a in light-harvesting complex 2 (LH2) is promising for a better understanding of the mechanism on intracomplex excitation energy transfer of this protein. Structural and spectroscopic properties of LH2 lacking B800 BChl a (B800-depleted LH2), which is an important intermediate protein in the B800 exchange, will be useful to tackle the energy transfer mechanism in LH2 by the B800 exchange strategy. In this study, we report a unique spectral change of B800-depleted LH2, in which the Qy absorption band of B800 BChl a is automatically recovered under neutral pH conditions. This spectral change was facilitated by factors for destabilization of LH2, namely, a detergent, lauryl dimethylamine N-oxide, and an increase in temperature. Spectral analyses in the preparation of an LH2 variant denoted as B800-recovered LH2 indicated that most BChl a that was released by decomposition of part of B800-depleted LH2 was a source of the production of B800-recovered LH2. Characterization of purified B800-recovered LH2 demonstrated that its spectroscopic and structural features was quite similar to those of native LH2. The current results indicate that the recovery of the B800 Qy band of B800-depleted LH2 originates from the combination of decomposition of part of B800-depleted LH2 and in situ reconstitution of BChl a into the B800 binding pockets of residual B800-depleted LH2, resulting in the formation of stable B800-recovered LH2.
Collapse
Affiliation(s)
- Shota Kawato
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shinichi Sato
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hirotaka Kitoh-Nishioka
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitaka Saga
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
3
|
Kimura Y, Kawakami T, Arikawa T, Li Y, Yu LJ, Ohno T, Madigan MT, Wang-Otomo ZY. C-terminal cleavage of the LH1 α-polypeptide in the Sr 2+-cultured Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2018; 135:23-31. [PMID: 28493058 DOI: 10.1007/s11120-017-0393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The light-harvesting 1 reaction center (LH1-RC) complex in the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum binds Ca ions as cofactors, and Ca-binding is largely involved in its characteristic Q y absorption at 915 nm and enhanced thermostability. Ca2+ can be biosynthetically replaced by Sr2+ in growing cultures of Tch. tepidum. However, the resulting Sr2+-substituted LH1-RC complexes in such cells do not display the absorption maximum and thermostability of those from Ca2+-grown cells, signaling that inherent structural differences exist in the LH1 complexes between the Ca2+- and Sr2+-cultured cells. In this study, we examined the effects of the biosynthetic Sr2+-substitution and limited proteolysis on the spectral properties and thermostability of the Tch. tepidum LH1-RC complex. Preferential truncation of two consecutive, positively charged Lys residues at the C-terminus of the LH1 α-polypeptide was observed for the Sr2+-cultured cells. A proportion of the truncated LH1 α-polypeptide increased during repeated subculturing in the Sr2+-substituted medium. This result suggests that the truncation is a biochemical adaptation to reduce the electrostatic interactions and/or steric repulsion at the C-terminus when Sr2+ substitutes for Ca2+ in the LH1 complex. Limited proteolysis of the native Ca2+-LH1 complex with lysyl protease revealed selective truncations at the Lys residues in both C- and N-terminal extensions of the α- and β-polypeptides. The spectral properties and thermostability of the partially digested native LH1-RC complexes were similar to those of the biosynthetically Sr2+-substituted LH1-RC complexes in their Ca2+-bound forms. Based on these findings, we propose that the C-terminal domain of the LH1 α-polypeptide plays important roles in retaining proper structure and function of the LH1-RC complex in Tch. tepidum.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | | - Teruhisa Arikawa
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Yong Li
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Takashi Ohno
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | | |
Collapse
|
4
|
Kimura Y, Yura Y, Hayashi Y, Li Y, Onoda M, Yu LJ, Wang-Otomo ZY, Ohno T. Spectroscopic and Thermodynamic Characterization of the Metal-Binding Sites in the LH1–RC Complex from Thermophilic Photosynthetic Bacterium Thermochromatium tepidum. J Phys Chem B 2016; 120:12466-12473. [DOI: 10.1021/acs.jpcb.6b10068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yukihiro Kimura
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuki Yura
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yusuke Hayashi
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yong Li
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Moe Onoda
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Long-Jiang Yu
- Graduate
School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | - Takashi Ohno
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang JP, Wang ZY, Ohno T. Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1022-9. [DOI: 10.1016/j.bbabio.2012.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/07/2012] [Accepted: 03/11/2012] [Indexed: 11/16/2022]
|
6
|
Magis GJ, Olsen JD, Reynolds NP, Leggett GJ, Hunter CN, Aartsma TJ, Frese RN. Use of Engineered Unique Cysteine Residues to Facilitate Oriented Coupling of Proteins Directly to a Gold Substrate. Photochem Photobiol 2011; 87:1050-7. [DOI: 10.1111/j.1751-1097.2011.00948.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Janosi L, Keer H, Cogdell RJ, Ritz T, Kosztin I. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations. Proteins 2011; 79:2306-15. [PMID: 21604304 DOI: 10.1002/prot.23056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/17/2011] [Accepted: 03/31/2011] [Indexed: 11/11/2022]
Abstract
Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
8
|
Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1465-9. [DOI: 10.1016/j.bbabio.2010.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/28/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
|
9
|
Escalante M, Lenferink A, Zhao Y, Tas N, Huskens J, Hunter CN, Subramaniam V, Otto C. Long-range energy propagation in nanometer arrays of light harvesting antenna complexes. NANO LETTERS 2010; 10:1450-1457. [PMID: 20232894 DOI: 10.1021/nl1003569] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam reveals long-range transport of excitation energy over micrometer distances, which is much larger than required in the parent bacterial system. The transport was established from the influence of active energy-guiding layers on the observed fluorescence emission. We speculate that such an extent of energy migration occurs as a result of efficient coupling between many hundreds of LH2 molecules. These results demonstrate the potential for long-range energy propagation in hybrid systems composed of natural light harvesting antenna molecules from photosynthetic organisms.
Collapse
Affiliation(s)
- Maryana Escalante
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Janosi L, Keer H, Kosztin I, Ritz T. Influence of subunit structure on the oligomerization state of light-harvesting complexes: A free energy calculation study. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Rutkauskas D, Novoderezhkin V, Gall A, Olsen J, Cogdell RJ, Hunter CN, van Grondelle R. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified redfield simulations. Biophys J 2006; 90:2475-85. [PMID: 16399834 PMCID: PMC1403191 DOI: 10.1529/biophysj.105.075903] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these complexes varies as a function of time as was described in earlier work. For each type of complex, we observe a pronounced and well-reproducible characteristic relationship between the fluorescence spectral parameters of the peak wavelength, width, and asymmetry. This dependence for the LH2 complexes can be quantitatively explained on the basis of a disordered exciton model by varying the static disorder and phonon coupling parameters. In addition, a correlation of the pigment site energies has to be assumed to interpret the behavior of the LH1 complex.
Collapse
Affiliation(s)
- Danielis Rutkauskas
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rutkauskas D, Olsen J, Gall A, Cogdell RJ, Hunter CN, van Grondelle R. Comparative study of spectral flexibilities of bacterial light-harvesting complexes: structural implications. Biophys J 2006; 90:2463-74. [PMID: 16399835 PMCID: PMC1403163 DOI: 10.1529/biophysj.105.075895] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents a comparative study of the frequencies of spectral jumping of individual light-harvesting complexes of six different types: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum; LH1 of Rhodobacter sphaeroides; and two "domain swap mutants" of LH2 of Rhodobacter sphaeroides: PACLH1 and PACLH2mol, in which the alpha-polypeptide C-terminus is exchanged with the corresponding sequence from LH1 of Rhodobacter sphaeroides or LH2 of Rhodospirillum molischianum, respectively. The quasistable states of fluorescence peak wavelength that were previously observed for the LH2 of Rps. acidophila were confirmed for other species. We also observed occurrences of extremely blue-shifted spectra, which were associated with reversible bleaching of one of the chromophore rings. Different jumping behavior is observed for single complexes of different types investigated with the same equivalent excitation intensity. The differences in spectral diffusion are associated with subtle differences of the binding pocket of B850 pigments and the structural flexibility of the different types of complexes.
Collapse
Affiliation(s)
- Danielis Rutkauskas
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Rätsep M, Hunter CN, Olsen JD, Freiberg A. Band structure and local dynamics of excitons in bacterial light-harvesting complexes revealed by spectrally selective spectroscopy. PHOTOSYNTHESIS RESEARCH 2005; 86:37-48. [PMID: 16172924 DOI: 10.1007/s11120-005-2749-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 02/21/2005] [Indexed: 05/04/2023]
Abstract
Hole-burned absorption and line-narrowed fluorescence spectra are studied at 5 K in wild type and mutant LH1 and LH2 antenna preparations from the photosynthetic purple bacterium Rhodobacter sphaeroides. Evidence was found in all samples, even in intact membranes, of the presence of a broad distribution of bacteriochlorophyll species that are unable to communicate energy between each other and to the exciton states of functional antenna complexes. The distribution maximum of these localized species determined by zero phonon hole action spectroscopy is at 783.5 nm in purified LH1 complexes and at 786.8 nm in B850-only mutant LH2 complexes. A well-resolved peak at 807 nm in LH1 complexes is assigned to the exciton band structure of functional core antenna complexes. Similar structure in LH2 complexes overlaps with the distribution of localized species. Off-diagonal (structural) disorder may be responsible for this exciton band structure. Our data also imply that pair-wise inter-chlorophyll couplings determine the resonance fluorescence lineshape of excitonic polarons.
Collapse
Affiliation(s)
- Margus Rätsep
- Institute of Physics, University of Tartu, Riia 142, Tartu, 51014, Estonia
| | | | | | | |
Collapse
|
15
|
Timpmann K, Trinkunas G, Olsen JD, Neil Hunter C, Freiberg A. Bandwidth of excitons in LH2 bacterial antenna chromoproteins. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.09.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|