1
|
Machonkin TE, Maker MS, Ganjoloo N, Conkin DF. Characterization of the substrate specificity and regioselectivity of ring-cleavage of Pseudomonas putida DLL-E4 hydroquinone 1,2-dioxygenase (PnpC1C2). J Biol Inorg Chem 2025; 30:35-51. [PMID: 39960525 DOI: 10.1007/s00775-025-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 03/18/2025]
Abstract
PnpC1C2 is an enzyme from the soil bacterium Pseudomonas putida DLL-E4 that is in the pathway for the oxidative catabolism of 4-nitrophenol. PnpC1C2 oxidatively cleaves hydroquinone into γ-hydroxymuconic semialdehyde. It belongs to the type II hydroquinone dioxygenase family, a relatively uncharacterized group of mononuclear non-heme Fe(II)-dependent enzymes that catalyze oxidative ring-cleavage reactions, which includes the well-studied catechol extradiol dioxygenases as well as the structurally unrelated 2,6-dichlorohydroquinone dioxygenase (PcpA). Steady-state kinetics studies using UV/Vis spectroscopy were performed to characterize the enzyme specificity towards various substituted hydroquinones. In addition to its native substrate, PnpC1C2 was active towards a variety of monosubstituted hydroquinones. Methyl- and methoxyhydroquinone showed a moderately higher K mA app , and chloro- and bromohydroquinone showed a moderately lower k cat app , but all had ak cat app k cat app K mA app K mA app within an order of magnitude of unsubstituted hydroquinone. Likewise, only small differences in the rates of mechanism-based inactivation were observed among these substrates. Among disubstituted hydroquinones, only 2,6- and 2,5-dimethylhydroquinone showed any activity, with the latter only barely detectable. A variety of para-substituted phenols were found to be good inhibitors of PnpC1C2. NMR studies were performed to determine the regioselectivity of ring-cleavage with monosubstituted hydroquinones. All monosubstituted hydroquinones tested (methyl-, chloro-, bromo-, and methoxyhydroquinone) yielded exclusively the 1,6-cleavage product. Thus, PnpC1C2 shows notable differences in both its substrate specificity and the ring-cleavage regioselectivity compared to that of PcpA. These results provide an important basis for future comparison of structure-function correlations among the hydroquinone ring-cleaving dioxygenases.
Collapse
Affiliation(s)
- Timothy E Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA.
| | - Madeleine S Maker
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Nandin Ganjoloo
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Drew F Conkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| |
Collapse
|
2
|
Devkota L, Xiong J, Fischer AA, Murphy K, Kumar P, Balensiefen EL, Lindeman SV, Popescu CV, Fiedler AT. Observation of oxygenated intermediates in functional mimics of aminophenol dioxygenase. J Inorg Biochem 2024; 259:112632. [PMID: 38950482 DOI: 10.1016/j.jinorgbio.2024.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.
Collapse
Affiliation(s)
- Laxmi Devkota
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne A Fischer
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Kate Murphy
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States
| | - Praveen Kumar
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Ellie L Balensiefen
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States.
| |
Collapse
|
3
|
Campbell J, Wang Y. Observing extradiol dioxygenases in action through a crystalline lens. Methods Enzymol 2024; 704:3-25. [PMID: 39300653 DOI: 10.1016/bs.mie.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extradiol dioxygenases are a class of non-heme iron-dependent enzymes found in eukaryotes and prokaryotes that play a vital role in the aerobic catabolism of aromatic compounds. They are generally divided into three evolutionarily independent superfamilies with different protein folds. Our recent studies have shed light on the catalytic mechanisms and structure-function relationships of two specific extradiol dioxygenases: 3-hydroxyanthranilate-3,4-dioxygenase, a Type III enzyme essential in mammals for producing a precursor for nicotinamide adenine dinucleotide, and L-3,4-dihydroxyphenylalanine dioxygenase, an uncommon form of Type I enzymes involved in natural product biosynthesis. This work details the expression and isolation methods for these extradiol dioxygenases and introduces approaches to achieve homogeneity and high occupancy of the enzyme metal centers. Techniques such as ultraviolet-visible and electron paramagnetic resonance spectroscopies, as well as oxygen electrode measurements, are discussed for probing the interaction of the non-heme iron center with ligands and characterizing enzymatic activities. Moreover, protein crystallization has been demonstrated as a powerful tool to study these enzymes. We highlight in crystallo reactions and single-crystal spectroscopic methods to further elucidate enzymatic functions and protein dynamics.
Collapse
Affiliation(s)
- Jackson Campbell
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Kass D, Larson VA, Corona T, Kuhlmann U, Hildebrandt P, Lohmiller T, Bill E, Lehnert N, Ray K. Trapping of a phenoxyl radical at a non-haem high-spin iron(II) centre. Nat Chem 2024; 16:658-665. [PMID: 38216752 DOI: 10.1038/s41557-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 11/17/2023] [Indexed: 01/14/2024]
Abstract
The activation of dioxygen at haem and non-haem metal centres, and subsequent functionalization of unactivated C‒H bonds, has been a focal point of much research. In iron-mediated oxidation reactions, O2 binding at an iron(II) centre is often accompanied by an oxidation of the iron centre. Here we demonstrate dioxygen activation by sodium tetraphenylborate and protons in the presence of an iron(II) complex to form a reactive radical species, whereby the iron oxidation state remains unaltered in the presence of a highly oxidizing phenoxyl radical and O2. This complex, containing an unusual iron(II)-phenoxyl radical motif, represents an elusive example of a spectroscopically characterized oxygen-derived iron(II)-reactive intermediate during chemical and biological dioxygen activation at haem and non-haem iron active centres. The present report opens up strategies for the stabilization of a phenoxyl radical cofactor, with its full oxidizing capabilities, to act as an independent redox centre next to an iron(II) site during substrate oxidation reactions.
Collapse
Affiliation(s)
- Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Teresa Corona
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Kuhlmann
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Thomas Lohmiller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Eppinger E, Stolz A, Ferraroni M. Crystal structure of the monocupin ring-cleaving dioxygenase 5-nitrosalicylate 1,2-dioxygenase from Bradyrhizobium sp. Acta Crystallogr D Struct Biol 2023; 79:632-640. [PMID: 37326584 PMCID: PMC10306065 DOI: 10.1107/s2059798323004199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
5-Nitrosalicylate 1,2-dioxygenase (5NSDO) is an iron(II)-dependent dioxygenase involved in the aerobic degradation of 5-nitroanthranilic acid by the bacterium Bradyrhizobium sp. It catalyzes the opening of the 5-nitrosalicylate aromatic ring, a key step in the degradation pathway. Besides 5-nitrosalicylate, the enzyme is also active towards 5-chlorosalicylate. The X-ray crystallographic structure of the enzyme was solved at 2.1 Å resolution by molecular replacement using a model from the AI program AlphaFold. The enzyme crystallized in the monoclinic space group P21, with unit-cell parameters a = 50.42, b = 143.17, c = 60.07 Å, β = 107.3°. 5NSDO belongs to the third class of ring-cleaving dioxygenases. Members of this family convert para-diols or hydroxylated aromatic carboxylic acids and belong to the cupin superfamily, which is one of the most functionally diverse protein classes and is named on the basis of a conserved β-barrel fold. 5NSDO is a tetramer composed of four identical subunits, each folded as a monocupin domain. The iron(II) ion in the enzyme active site is coordinated by His96, His98 and His136 and three water molecules with a distorted octahedral geometry. The residues in the active site are poorly conserved compared with other dioxygenases of the third class, such as gentisate 1,2-dioxygenase and salicylate 1,2-dioxygenase. Comparison with these other representatives of the same class and docking of the substrate into the active site of 5NSDO allowed the identification of residues which are crucial for the catalytic mechanism and enzyme selectivity.
Collapse
Affiliation(s)
- Erik Eppinger
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Marta Ferraroni
- Dipartimento di Chimica ‘Ugo Schiff’, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
6
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
7
|
Abstract
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme-substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme-substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Zhao S, Liu R, Lai Q, Shao Z. Muricauda aurea sp. nov. and Muricauda profundi sp. nov., two marine bacteria isolated from deep sea sediment of Pacific Ocean. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative, aerobic, rod-shaped, carotenoid-pigmented and non-flagellated bacteria, designated BC31-1-A7T and BC31-3-A3T, were isolated from polyethylene-terephthalate-degrading bacterial consortia enriched from deep-sea sediment collected in the Pacific Ocean. Optimal growth of both strains was observed at 28–32 °C, at pH 7.5 and in the presence of 3–4% (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that strains BC31-1-A7T and BC31-3-A3T were closely related to
Muricauda aquimarina
JCM 11811T,
Muricauda lutimaris
KCTC 22173T,
Muricauda ruestringensis
DSM 13258T,
Muricauda zhangzhouensis
DSM 25030T,
Muricauda oceani
JCM 33902T and
Muricauda oceanensis
KCTC 72200T with 96.8–98.9% sequence similarity. The 16S rRNA gene sequence similarity between strains BC31-1-A7T and BC31-3-A3T was 97.5%. The genomic G+C contents of strains BC31-1-A7T and BC31-3-A3T were 42.1 and 41.6 mol%, respectively. The average nucleotide identity and digital DNA–DNA hybridization values between strain BC31-3-A3T, strain BC31-1-A7T and their six closely related type strains were 77.6–84.3% and 20.5–27.9%, respectively. Menaquinone-6 was detected as the major isoprenoid quinone in all strains. Their major fatty acids were iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. The major polar lipids of strains BC31-1-A7T and BC31-3-A3T were identified as one phosphatidylethanolamine, some unidentified polar lipids and one aminolipid. Based on their distinct taxonomic characteristics, strains BC31-1-A7T and BC31-3-A3T represent two novel species in the genus
Muricauda
. The names proposed to accommodate these two strains are Muricauda aurea sp. nov. and Muricauda profundi sp. nov., and the type strains are BC31-1-A7T (=MCCC M23246T=KCTC 82569T) and BC31-3-A3T (=MCCC M23216T=KCTC 82302T), respectively.
Collapse
Affiliation(s)
- Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
- School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
| | - Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
- School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
9
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
10
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Szot JO, Slavotinek A, Chong K, Brandau O, Nezarati M, Cueto-González AM, Patel MS, Devine WP, Rego S, Acyinena AP, Shannon P, Myles-Reid D, Blaser S, Mieghem TV, Yavuz-Kienle H, Skladny H, Miller K, Riera MDT, Martínez SA, Tizzano EF, Dupuis L, James Stavropoulos D, McNiven V, Mendoza-Londono R, Elliott AM, Phillips RS, Chapman G, Dunwoodie SL. New cases that expand the genotypic and phenotypic spectrum of Congenital NAD Deficiency Disorder. Hum Mutat 2021; 42:862-876. [PMID: 33942433 DOI: 10.1002/humu.24211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in over 400 cellular reactions. During embryogenesis, mammals synthesize NAD de novo from dietary l -tryptophan via the kynurenine pathway. Biallelic, inactivating variants in three genes encoding enzymes of this biosynthesis pathway (KYNU, HAAO, and NADSYN1) disrupt NAD synthesis and have been identified in patients with multiple malformations of the heart, kidney, vertebrae, and limbs; these patients have Congenital NAD Deficiency Disorder HAAO and four families with biallelic variants in KYNU. These patients present similarly with multiple malformations of the heart, kidney, vertebrae, and limbs, of variable severity. We show that each variant identified in these patients results in loss-of-function, revealed by a significant reduction in NAD levels via yeast genetic complementation assays. For the first time, missense mutations are identified as a cause of malformation and shown to disrupt enzyme function. These missense and frameshift variants cause moderate to severe NAD deficiency in yeast, analogous to insufficient synthesized NAD in patients. We hereby expand the genotypic and corresponding phenotypic spectrum of Congenital NAD Deficiency Disorder.
Collapse
Affiliation(s)
- Justin O Szot
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Anne Slavotinek
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Karen Chong
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Marjan Nezarati
- Genetics Program, North York General Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anna M Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Millan S Patel
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Walter P Devine
- Department of Anatomic Pathology, University of California, San Francisco, California, USA
| | - Shannon Rego
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Alicia P Acyinena
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Patrick Shannon
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Diane Myles-Reid
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Susan Blaser
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tim V Mieghem
- Fetal Medicine Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Kristen Miller
- Genetics Program, North York General Hospital, Toronto, Ontario, Canada
| | - Miereia D T Riera
- Metabolic Unit and Pediatric Neurology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Silvia A Martínez
- Fetal Medicine Unit and Obstetrics Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucie Dupuis
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri James Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanda McNiven
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Phillips
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nat Commun 2021; 12:1301. [PMID: 33637718 PMCID: PMC7910607 DOI: 10.1038/s41467-021-21567-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Biodegradation of aromatic and heterocyclic compounds requires an oxidative ring cleavage enzymatic step. Extensive biochemical research has yielded mechanistic insights about catabolism of aromatic substrates; yet much less is known about the reaction mechanisms underlying the cleavage of heterocyclic compounds such as pyridine-ring-containing ones like 2,5-hydroxy-pyridine (DHP). 2,5-Dihydroxypyridine dioxygenase (NicX) from Pseudomonas putida KT2440 uses a mononuclear nonheme Fe(II) to catalyze the oxidative pyridine ring cleavage reaction by transforming DHP into N-formylmaleamic acid (NFM). Herein, we report a crystal structure for the resting form of NicX, as well as a complex structure wherein DHP and NFM are trapped in different subunits. The resting state structure displays an octahedral coordination for Fe(II) with two histidine residues (His265 and His318), a serine residue (Ser302), a carboxylate ligand (Asp320), and two water molecules. DHP does not bind as a ligand to Fe(II), yet its interactions with Leu104 and His105 function to guide and stabilize the substrate to the appropriate position to initiate the reaction. Additionally, combined structural and computational analyses lend support to an apical dioxygen catalytic mechanism. Our study thus deepens understanding of non-heme Fe(II) dioxygenases.
Collapse
|
13
|
Chatterjee S, Banerjee S, Jana RD, Bhattacharya S, Chakraborty B, Jannuzzi SAV. Tuning the stereoelectronic factors of iron(II)-2-aminophenolate complexes for the reaction with dioxygen: oxygenolytic C-C bond cleavage vs. oxidation of complex. Dalton Trans 2021; 50:1901-1912. [PMID: 33475662 DOI: 10.1039/d0dt03316b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative C-C bond cleavage of 2-aminophenols mediated by transition metals and dioxygen is a topic of great interest. While the oxygenolytic C-C bond cleavage reaction relies on the inherent redox non-innocent property of 2-aminophenols, the metal complexes of 2-aminophenolates often undergo 1e-/2e- oxidation events (metal or ligand oxidation), instead of the direct addition of O2 for subsequent C-C bond cleavage. In this work, we report the isolation, characterization and dioxygen reactivity of a series of ternary iron(ii)-2-aminophenolate complexes [(TpPh,Me)FeII(X)], where X = 2-amino-4-tert-butylphenolate (4-tBu-HAP) (1); X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP) (2); X = 2-amino-4-nitrophenolate (4-NO2-HAP)(3); and X = 2-anilino-4,6-di-tert-butylphenolate (NH-Ph-4,6-di-tBu-HAP) (4) supported by a facial tridentate nitrogen donor ligand (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate). Another facial N3 ligand (TpPh2 = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate) has been used to isolate an iron(ii)-2-anilino-4,6-di-tert-butylphenolate complex (5) for comparison. Both [(TpPh,Me)FeII(4-tBu-HAP)] (1) and [(TpPh,Me)FeII(4,6-di-tBu-HAP)] (2) undergo regioselective oxidative aromatic ring fission reaction of the coordinated 2-aminophenols to the corresponding 2-picolinic acids in the reaction with dioxygen. In contrast, complex [(TpPh,Me)FeII(4-NO2-HAP)] (3) displays metal based oxidation to form an iron(iii)-2-amidophenolate complex. Complexes [(TpPh,Me)FeII(NH-Ph-4,6-di-tBu-HAP)] (4) and [(TpPh2)FeII(NH-Ph-4,6-di-tBu-HAP)] (5) react with dioxygen to undergo 2e- oxidation with the formation of the corresponding iron(iii)-2-iminobenzosemiquinonato radical species implicating the importance of the -NH2 group in directing the C-C bond cleavage reactivity of 2-aminophenols. The systematic study presented in this work unravels the effect of the electronic and structural properties of the redox non-innocent 2-aminophenolate ring and the supporting ligand on the C-C bond cleavage reactivity vs. the metal/ligand oxidation of the complexes. The study further reveals that proper modulation of the stereoelectronic factors enables us to design a well synchronised proton transfer (PT) and dioxygen binding events for complexes 1 and 2 that mimic the structure and function of the nonheme enzyme 2-aminophenol-1,6-dioxygenase (APD).
Collapse
Affiliation(s)
- Sayanti Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | |
Collapse
|
14
|
Wang Y, Liu KF, Yang Y, Davis I, Liu A. Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens. Proc Natl Acad Sci U S A 2020; 117:19720-19730. [PMID: 32732435 PMCID: PMC7443976 DOI: 10.1073/pnas.2005327117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved in crystallo reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yu Yang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249;
| |
Collapse
|
15
|
Wang Y, Shin I, Fu Y, Colabroy KL, Liu A. Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Biochemistry 2019; 58:5339-5350. [PMID: 31180203 DOI: 10.1021/acs.biochem.9b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extradiol dioxygenases are essential biocatalysts for breaking down catechols. The vicinal oxygen chelate (VOC) superfamily contains a large number of extradiol dioxygenases, most of which are found as part of catabolic pathways degrading a variety of natural and human-made aromatic rings. The l-3,4-dihydroxyphenylalanine (L-DOPA) extradiol dioxygenases compose a multitude of pathways that produce various antibacterial or antitumor natural products. The structural features of these dioxygenases are anticipated to be distinct from those of other VOC extradiol dioxygenases. Herein, we identified a new L-DOPA dioxygenase from the thermophilic bacterium Streptomyces sclerotialus (SsDDO) through a sequence and genome context analysis. The activity of SsDDO was kinetically characterized with L-DOPA using an ultraviolet-visible spectrophotometer and an oxygen electrode. The optimal temperature of the assay was 55 °C, at which the Km and kcat of SsDDO were 110 ± 10 μM and 2.0 ± 0.1 s-1, respectively. We determined the de novo crystal structures of SsDDO in the ligand-free form and as a substrate-bound complex, refined to 1.99 and 2.31 Å resolution, respectively. These structures reveal that SsDDO possesses a form IV arrangement of βαβββ modules, the first characterization of this assembly from among the VOC/type I extradiol dioxygenase protein family. Electron paramagnetic resonance spectra of Fe-NO adducts for the resting and substrate-bound enzyme were obtained. This work contributes to our understanding of a growing class of topologically distinct VOC dioxygenases, and the obtained structural features will improve our understanding of the extradiol cleavage reaction within the VOC superfamily.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Inchul Shin
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Yizhi Fu
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Keri L Colabroy
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| |
Collapse
|
16
|
Joo SH, Pemble CW, Yang EG, Raetz CRH, Chung HS. Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O 2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO). J Mol Biol 2018; 430:4036-4048. [PMID: 30092253 DOI: 10.1016/j.jmb.2018.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022]
Abstract
During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 β strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, South Korea
| | - Charles W Pemble
- Duke Macromolecular Crystallography Center, Duke University Medical Center, Durham, NC 27710, USA; Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hak Suk Chung
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
17
|
Catharina L, Carels N. Specific enzyme functionalities of Fusarium oxysporum compared to host plants. Gene 2018; 676:219-226. [PMID: 29981422 DOI: 10.1016/j.gene.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/14/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
Abstract
The genus Fusarium contains some of the most studied and important species of plant pathogens that economically affect world agriculture and horticulture. Fusarium spp. are ubiquitous fungi widely distributed in soil, plants as well as in different organic substrates and are also considered as opportunistic human pathogens. The identification of specific enzymes essential to the metabolism of these fungi is expected to provide molecular targets to control the diseases they induce to their hosts. Through applications of traditional techniques of sequence homology comparison by similarity search and Markov modeling, this report describes the characterization of enzymatic functionalities associated to protein targets that could be considered for the control of root rots induced by Fusarium oxysporum. From the analysis of 318 F. graminearum enzymes, we retrieved 30 enzymes that are specific of F. oxysporum compared to 15 species of host plants. By comparing these 30 specific enzymes of F. oxysporum with the genome of Arabidopsis thaliana, Brassica rapa, Glycine max, Jatropha curcas and Ricinus communis, we found 7 key specific enzymes whose inhibition is expected to affect significantly the development of the fungus and 5 specific enzymes that were considered here to be secondary because they are inserted in pathways with alternative routes.
Collapse
Affiliation(s)
- Larissa Catharina
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Yang Y, Liu F, Liu A. Adapting to oxygen: 3-Hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities. J Biol Chem 2018; 293:10415-10424. [PMID: 29784877 DOI: 10.1074/jbc.ra118.002698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
3-Hydroxyanthranilate 3,4-dioxygenase (HAO) is an iron-dependent protein that activates O2 and inserts both oxygen atoms into 3-hydroxyanthranilate (3-HAA). An intriguing question is how HAO can rapidly bind O2, even though local O2 concentrations and diffusion rates are relatively low. Here, a close inspection of the HAO structures revealed that substrate- and inhibitor-bound structures exhibit a closed conformation with three hydrophobic loop regions moving toward the catalytic iron center, whereas the ligand-free structure is open. We hypothesized that these loop movements enhance O2 binding to the binary complex of HAO and 3-HAA. We found that the carboxyl end of 3-HAA triggers changes in two loop regions and that the third loop movement appears to be driven by an H-bond interaction between Asn27 and Ile142 Mutational analyses revealed that N27A, I142A, and I142P variants cannot form a closed conformation, and steady-state kinetic assays indicated that these variants have a substantially higher Km for O2 than WT HAO. This observation suggested enhanced hydrophobicity at the iron center resulting from the concerted loop movements after the binding of the primary substrate, which is hydrophilic. Given that O2 is nonpolar, the increased hydrophobicity at the iron center of the binary complex appears to be essential for rapid O2 binding and activation, explaining the reason for the 3-HAA-induced loop movements. Because substrate binding-induced open-to-closed conformational changes are common, the results reported here may help further our understanding of how oxygen is enriched in nonheme iron-dependent dioxygenases.
Collapse
Affiliation(s)
- Yu Yang
- From the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249 and
| | - Fange Liu
- the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Aimin Liu
- From the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249 and
| |
Collapse
|
19
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
20
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|
21
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
22
|
McGonigle TA, Keane KN, Ghaly S, Carter KW, Anderson D, Scott NM, Goodridge HS, Dwyer A, Greenland E, Pixley FJ, Newsholme P, Hart PH. UV Irradiation of Skin Enhances Glycolytic Flux and Reduces Migration Capabilities in Bone Marrow-Differentiated Dendritic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2046-2059. [PMID: 28708972 DOI: 10.1016/j.ajpath.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 01/06/2023]
Abstract
A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice.
Collapse
Affiliation(s)
- Terence A McGonigle
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, Western Australia, Australia
| | - Simon Ghaly
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Kim W Carter
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Amy Dwyer
- Department of Pharmacology, University of Western Australia, West Perth, Western Australia, Australia
| | - Eloise Greenland
- Department of Pharmacology, University of Western Australia, West Perth, Western Australia, Australia
| | - Fiona J Pixley
- Department of Pharmacology, University of Western Australia, West Perth, Western Australia, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia.
| |
Collapse
|
23
|
Pidugu LSM, Neu H, Wong TL, Pozharski E, Molloy JL, Michel SLJ, Toth EA. Crystal structures of human 3-hydroxyanthranilate 3,4-dioxygenase with native and non-native metals bound in the active site. Acta Crystallogr D Struct Biol 2017; 73:340-348. [PMID: 28375145 PMCID: PMC8493610 DOI: 10.1107/s2059798317002029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
3-Hydroxyanthranilate 3,4-dioxygenase (3HAO) is an enzyme in the microglial branch of the kynurenine pathway of tryptophan degradation. 3HAO is a non-heme iron-containing, ring-cleaving extradiol dioxygenase that catalyzes the addition of both atoms of O2 to the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3-HANA) to form quinolinic acid (QUIN). QUIN is a highly potent excitotoxin that has been implicated in a number of neurodegenerative conditions, making 3HAO a target for pharmacological downregulation. Here, the first crystal structure of human 3HAO with the native iron bound in its active site is presented, together with an additional structure with zinc (a known inhibitor of human 3HAO) bound in the active site. The metal-binding environment is examined both structurally and via inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy (XRF) and electron paramagnetic resonance spectroscopy (EPR). The studies identified Met35 as the source of potential new interactions with substrates and inhibitors, which may prove useful in future therapeutic efforts.
Collapse
Affiliation(s)
- Lakshmi Swarna Mukhi Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Heather Neu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tin Lok Wong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - John L. Molloy
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8391, Gaithersburg, MD 20899-8391, USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
24
|
Ferraroni M, Da Vela S, Kolvenbach BA, Corvini PFX, Scozzafava A. The crystal structures of native hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 and of substrate and inhibitor complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:520-530. [PMID: 28232026 DOI: 10.1016/j.bbapap.2017.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two β of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four β subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each β subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, FI, Italy.
| | - Stefano Da Vela
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, FI, Italy.
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland.
| | - Philippe F X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland.
| | - Andrea Scozzafava
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
25
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
26
|
Wang Y, Li J, Liu A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J Biol Inorg Chem 2017; 22:395-405. [PMID: 28084551 DOI: 10.1007/s00775-017-1436-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
27
|
Fischer AA, Lindeman SV, Fiedler AT. Spectroscopic and computational studies of reversible O2 binding by a cobalt complex of relevance to cysteine dioxygenase. Dalton Trans 2017; 46:13229-13241. [DOI: 10.1039/c7dt01600j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spectroscopic and computational studies of reversible O2 binding by a cobalt active-site mimic shed light on the catalytic mechanism of cysteine dioxygenases.
Collapse
|
28
|
González Esquivel D, Ramírez-Ortega D, Pineda B, Castro N, Ríos C, Pérez de la Cruz V. Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology 2017; 112:331-345. [DOI: 10.1016/j.neuropharm.2016.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 11/27/2022]
|
29
|
Paul GC, Banerjee S, Mukherjee C. Dioxygen Reactivity of an Iron Complex of 2-Aminophenol-Appended Ligand: Crystallographic Evidence of the Aromatic Ring Cleavage Product of the 2-Aminophenol Unit. Inorg Chem 2016; 56:729-736. [PMID: 28005345 DOI: 10.1021/acs.inorgchem.6b01474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Aminophenol appended pentadentate ligand H2GanAP was synthesized by mixing equimolar amounts of 2-[bis(2-pyridylmethyl)aminomethyl]aniline (A) and 3,5-di-tert-butyl catechol in hexane in the presence of Et3N under air. The ligand reacted with Fe(ClO4)2·6H2O or Fe(ClO4)3·6H2O in the presence of tetrabutylammonium perchlorate, and Et3N under air and provided a μ2 oxo-bridged dinuclear iron complex (1). X-ray single-crystal analysis of complex 1 revealed the presence of a furan derivative, resulting from the oxidative aromatic C-C bond cleavage product of 2-aminophenol derivative, in the coordination sphere of each iron center. Mechanistic investigation for the formation of complex 1 established that in the absence of molecular oxygen no oxidation of the appended 2-amidophenolate unit took place. An iron(III)-amidophenolate complex, formed initially, further reacted with molecular oxygen and caused oxidative aromatic C-C bond cleavage via a putative alkylperoxo species.
Collapse
Affiliation(s)
- Ganesh Chandra Paul
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam India
| | - Sridhar Banerjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam India
| |
Collapse
|
30
|
Dong G, Ryde U. O2 Activation in Salicylate 1,2-Dioxygenase: A QM/MM Study Reveals the Role of His162. Inorg Chem 2016; 55:11727-11735. [DOI: 10.1021/acs.inorgchem.6b01732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
31
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
32
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Fülöp F, Toldi J, Vécsei L. Inhibitors of the kynurenine pathway as neurotherapeutics: a patent review (2012–2015). Expert Opin Ther Pat 2016; 26:815-32. [DOI: 10.1080/13543776.2016.1189531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Lakshman TR, Chatterjee S, Chakraborty B, Paine TK. Substrate-dependent aromatic ring fission of catechol and 2-aminophenol with O2 catalyzed by a nonheme iron complex of a tripodal N4 ligand. Dalton Trans 2016; 45:8835-44. [PMID: 27148606 DOI: 10.1039/c5dt04541j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic reactivity of an iron(ii) complex [(TPA)Fe(II)(CH3CN)2](2+) (1) (TPA = tris(2-pyridylmethyl)amine) towards oxygenative aromatic C-C bond cleavage of catechol and 2-aminophenol is presented. Complex 1 exhibits catalytic and regioselective C-C bond cleavage of 3,5-di-tert-butylcatechol (H2DBC) to form intradiol products, whereas it catalyzes extradiol-type C-C bond cleavage of 2-amino-4,6-di-tert-butylphenol (H2AP). The catalytic reactions are found to be pH-dependent and the complex exhibits maximum turnovers at pH 5 in acetonitrile-phthalate buffer. An iron(iii)-catecholate complex [(TPA)Fe(III)(DBC)](+) (2) is formed in the ring cleavage of catechol. In the extradiol-type cleavage of H2AP, an iron(iii)-2-iminobenzosemiquinonate complex [(TPA)Fe(III)(ISQ)](2+) (3) (ISQ = 4,6-di-tert-butyl-2-iminobenzosemiquinonate radical anion) is observed in the reaction pathway. This work shows the importance of the nature of 'redox non-innocent' substrates in governing the mode of ring fission reactivity.
Collapse
Affiliation(s)
- Triloke Ranjan Lakshman
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | | | | | | |
Collapse
|
34
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
35
|
Liu S, Su T, Zhang C, Zhang WM, Zhu D, Su J, Wei T, Wang K, Huang Y, Guo L, Xu S, Zhou NY, Gu L. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases. J Biol Chem 2015; 290:24547-60. [PMID: 26304122 DOI: 10.1074/jbc.m115.673558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe(3+), and PnpCD-Cd(2+)-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases.
Collapse
Affiliation(s)
- Shiheng Liu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Tiantian Su
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Cong Zhang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Wen-Mao Zhang
- the Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071
| | - Deyu Zhu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Jing Su
- the College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, and
| | - Tiandi Wei
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Kang Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Yan Huang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Liming Guo
- the Rizhao Center for Diseases Prevention and Control, Rizhao Health Bureau, Rizhao, Shandong 276826, China
| | - Sujuan Xu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Ning-Yi Zhou
- the Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, the State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240,
| | - Lichuan Gu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100,
| |
Collapse
|
36
|
Davis I, Liu A. What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurother 2015; 15:719-21. [PMID: 26004930 DOI: 10.1586/14737175.2015.1049999] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kynurenine pathway has received increasing attention as its connection to inflammation, the immune system and neurological conditions has become more apparent. It is the primary route for tryptophan catabolism in the liver and the starting point for the synthesis of nicotinamide adenine dinucleotide in mammals. Dysregulation or overactivation of this pathway can lead to immune system activation and accumulation of potentially neurotoxic compounds. These aspects make the kynurenine pathway a promising target for therapeutic development to treat inflammation and disease with neurological aspects, especially in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry, Atlanta, GA 30303, USA
| | | |
Collapse
|
37
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015; 54:7336-9. [DOI: 10.1002/anie.201502367] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/25/2022]
|
39
|
One-pot synthesis of 3-hydroxyanthranilate derivatives using furans, bromoalkyne, and secondary amines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, Liu A. An Iron Reservoir to the Catalytic Metal: THE RUBREDOXIN IRON IN AN EXTRADIOL DIOXYGENASE. J Biol Chem 2015; 290:15621-15634. [PMID: 25918158 DOI: 10.1074/jbc.m115.650259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 01/06/2023] Open
Abstract
The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site.
Collapse
Affiliation(s)
- Fange Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303.
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303.
| | - Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Arghya Barman
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Ian Davis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303; Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303
| | - Aimin Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303; Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303.
| |
Collapse
|
41
|
Chatterjee S, Paine TK. Oxygenative Aromatic Ring Cleavage of 2-Aminophenol with Dioxygen Catalyzed by a Nonheme Iron Complex: Catalytic Functional Model of 2-Aminophenol Dioxygenases. Inorg Chem 2015; 54:1720-7. [DOI: 10.1021/ic502658p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sayanti Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
42
|
Brkić H, Kovačević B, Tomić S. Human 3-hydroxyanthranilate 3,4-dioxygenase () dynamics and reaction, a multilevel computational study. MOLECULAR BIOSYSTEMS 2015; 11:898-907. [PMID: 25588817 DOI: 10.1039/c4mb00668b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Hydroxyanthranilate 3,4-dioxygenase () is a non-heme iron dependent enzyme. It catalyses the cleavage of the benzene ring of 3-hydroxyanthranilic acid (3-Ohaa), an intermediate in the kynurenine pathway, and therefore represents a potential target in treating numerous disorders related to the concentration of quinolinic acid (QUIN), the kynurenine pathway product, in tissues. The stability and behaviour of the enzyme in nearly physiological conditions, studied by the empirical molecular modelling methods enabled us to determine the influence of several, for the enzyme activity relevant, point mutations (Arg43Ala, Arg95Ala and Glu105Ala) on the protein structure, particularly on the active site architecture and the metal ion environment, as well as on the substrate, 3-Ohaa, binding. Besides, the water population of the active site, and the protein flexibility as well as the amino acid residues interaction networks relevant for the enzyme activity were determined for the 3-Ohaa complexes with the native and mutated enzyme variants. Finally, using the hybrid quantum-mechanics/molecular-mechanics (QM/MM) calculations the catalysed 3-Ohaa oxidation into 2-amino-3-carboxymuconic acid semialdehyde was elucidated.
Collapse
Affiliation(s)
- H Brkić
- Faculty of Medicine, J. Huttlera 4, HR-31000 Osijek, Croatia
| | | | | |
Collapse
|
43
|
Chakraborty B, Bhunya S, Paul A, Paine TK. Reactivity of Biomimetic Iron(II)-2-aminophenolate Complexes toward Dioxygen: Mechanistic Investigations on the Oxidative C–C Bond Cleavage of Substituted 2-Aminophenols. Inorg Chem 2014; 53:4899-912. [DOI: 10.1021/ic403043e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sourav Bhunya
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, ‡Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
44
|
Fielding AJ, Lipscomb JD, Que L. A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases. J Biol Inorg Chem 2014; 19:491-504. [PMID: 24615282 DOI: 10.1007/s00775-014-1122-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Abstract
Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved.
Collapse
Affiliation(s)
- Andrew J Fielding
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
45
|
Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:607-14. [DOI: 10.1016/j.bbapap.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/11/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022]
|
46
|
Banerjee S, Halder P, Paine TK. Probing the Reactivity of Redox-Active 2-Aminophenolates on Iron Complexes of a Carbanionic N3C Donor Ligand. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Vallerini GP, Amori L, Beato C, Tararina M, Wang XD, Schwarcz R, Costantino G. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. J Med Chem 2013; 56:9482-95. [PMID: 24274468 DOI: 10.1021/jm401249c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxyanthranilic acid 3,4-dioxygenase (3-HAO) is the enzyme responsible for the production of the neurotoxic tryptophan metabolite quinolinic acid (QUIN). Elevated brain levels of QUIN are observed in several neurodegenerative diseases, but pharmacological investigation on its role in the pathogenesis of these conditions is difficult because only one class of substrate-analogue 3-HAO inhibitors, with poor chemical stability, has been reported so far. Here we describe the design, synthesis, and biological evaluation of a novel class of chemically stable inhibitors based on the 2-aminonicotinic acid 1-oxide nucleus. After the preliminary in vitro evaluation of newly synthesized compounds using brain tissue homogenate, we selected the most active inhibitor and showed its ability to acutely reduce the production of QUIN in the rat brain in vivo. These findings provide a novel pharmacological tool for the study of the mechanisms underlying the onset and propagation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gian Paolo Vallerini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Rajagopalan A, Lara M, Kroutil W. Oxidative Alkene Cleavage by Chemical and Enzymatic Methods. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300882] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Uberto R, Moomaw EW. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily. PLoS One 2013; 8:e74477. [PMID: 24040257 PMCID: PMC3765361 DOI: 10.1371/journal.pone.0074477] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.
Collapse
Affiliation(s)
- Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Ellen W. Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
- * E-mail:
| |
Collapse
|
50
|
Bittner MM, Kraus D, Lindeman SV, Popescu CV, Fiedler AT. Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases. Chemistry 2013; 19:9686-98. [PMID: 23744733 PMCID: PMC3965334 DOI: 10.1002/chem.201300520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/17/2013] [Indexed: 11/10/2022]
Abstract
The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.
Collapse
Affiliation(s)
- Michael M. Bittner
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - David Kraus
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|