1
|
Syed Mohammed RD, Gutierrez Luque L, Maurer MC. Factor XIII Activation Peptide Residues Play Important Roles in Stability, Activation, and Transglutaminase Activity. Biochemistry 2024; 63:2830-2841. [PMID: 39422351 DOI: 10.1021/acs.biochem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca2+ cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca2+ concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37-G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233-425, glutamine-substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A2 stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.
Collapse
Affiliation(s)
- Rameesa D Syed Mohammed
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Lianay Gutierrez Luque
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
2
|
Li B, Billur R, Maurer MC, Kohler HP, Raddatz Müller P, Alberio L, Schroeder V. Proline 36 of the Factor XIII Activation Peptide Plays a Crucial Role in Substrate Recognition and Zymogen Activation. Thromb Haemost 2018; 118:2037-2045. [PMID: 30419598 DOI: 10.1055/s-0038-1675600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activation peptide of blood coagulation factor XIII (AP-FXIII) has important functions in stabilizing the FXIII-A2 dimer and regulating FXIII activation. Contributions of many of its 37 amino acids to these functions have been described. However, the role of proline 36, which is adjacent to the thrombin cleavage site at Arg37, has not yet been studied in detail. We approached this question when we came across a patient with congenital FXIII deficiency in whom we detected a novel Pro36Ser mutation. We expressed the mutant FXIII-A Pro36Ser protein in Chinese hamster ovary cells and found that this mutation does not influence FXIII-A expression but significantly inhibits proteolytic activation by thrombin. The enzymatic transglutaminase activity is not affected as it can be induced in the presence of high Ca2+ concentrations. We performed nuclear magnetic resonance analysis to investigate AP-FXIII-thrombin interactions, which showed that the mutant Ser36 peptide binds less well to the thrombin surface than the native Pro36 peptide. The Arg37 at the P1 position still makes strong interactions with the active site cleft but the P4-P2 residues (34VVS36) appear to be less well positioned to contact the neighbouring thrombin active site region. In conclusion, we have characterized a novel mutation in AP-FXIII representing only the fourth case of the rare FXIII-A type II deficiency. This case served as a perfect in vivo model to shed light on the crucial role of Pro36 in the proteolytic activation of FXIII-A. Our results contribute to the understanding of structure-function relationship in FXIII.
Collapse
Affiliation(s)
- Bojun Li
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramya Billur
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States
| | - Hans P Kohler
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascale Raddatz Müller
- Division of Haematology and Central Haematology Laboratory, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Lorenzo Alberio
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital, Lausanne, Switzerland.,Faculté de Biologie et Médecine, University of Lausanne, Lausanne, Switzerland
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Jadhav MA, Goldsberry WN, Zink SE, Lamb KN, Simmons KE, Riposo CM, Anokhin BA, Maurer MC. Screening cleavage of Factor XIII V34X Activation Peptides by thrombin mutants: A strategy for controlling fibrin architecture. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1246-1254. [PMID: 28687225 DOI: 10.1016/j.bbapap.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
In blood coagulation, thrombin converts fibrinogen into fibrin monomers that polymerize into a clot network. Thrombin also activates Factor XIII by cleaving the R37-G38 peptide bond of the Activation Peptide (AP) segment. The resultant transglutaminase introduces covalent crosslinks into the fibrin clot. A strategy to modify clot architecture would be to design FXIII AP sequences that are easier or more difficult to be thrombin-cleaved thus controlling initiation of crosslinking. To aid in this design process, FXIII V34X (28-41) Activation Peptides were kinetically ranked for cleavage by wild-type thrombin and several anticoagulant mutants. Thrombin-catalyzed hydrolysis of aromatic FXIII F34, W34, and Y34 APs was compared with V34 and L34. Cardioprotective FXIII L34 remained the variant most readily cleaved by wild-type thrombin. The potent anticoagulant thrombins W215A and W215A/E217A (missing a key substrate platform for binding fibrinogen) were best able to hydrolyze FXIII F34 and W34 APs. Thrombin I174A and L99A could effectively accommodate FXIII W34 and Y34 APs yielding kinetic parameters comparable to FXIII AP L34 with wild-type thrombin. None of the aromatic FXIII V34X APs could be hydrolyzed by thrombin Y60aA. FXIII F34 and W34 are promising candidates for FXIII - anticoagulant thrombin systems that could permit FXIII-catalyzed crosslinking in the presence of reduced fibrin formation. By contrast, FXIII Y34 with thrombin (Y60aA or W215A/E217A) could help assure that both fibrin clot formation and protein crosslinking are hindered. Regulating the activation of FXIII is predicted to be a strategy for helping to control fibrin clot architecture and its neighboring environments.
Collapse
Affiliation(s)
- Madhavi A Jadhav
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Whitney N Goldsberry
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Sara E Zink
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Kelsey N Lamb
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Katelyn E Simmons
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Carmela M Riposo
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Boris A Anokhin
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA
| | - Muriel C Maurer
- Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
| |
Collapse
|
4
|
Jadhav MA, Lucas RC, Goldsberry WN, Maurer MC. Design of Factor XIII V34X activation peptides to control ability to interact with thrombin mutants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1955-63. [PMID: 21798378 DOI: 10.1016/j.bbapap.2011.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Thrombin helps to activate Factor XIII (FXIII) by hydrolyzing the R37-G38 peptide bond. The resultant transglutaminase introduces cross-links into the fibrin clot. With the development of therapeutic coagulation factors, there is a need to better understand interactions involving FXIII. Such knowledge will help predict ability to activate FXIII and thus ability to promote/hinder the generation of transglutaminase activity. Kinetic parameters have been determined for a series of thrombin species hydrolyzing the FXIII (28-41) V34X activation peptides (V34, V34L, V34F, and V34P). The V34P substitution introduces PAR4 character into the FXIII, and the V34F exhibits important similarities to the cardioprotective V34L. FXIII activation peptides containing V34, V34L, or V34P could each be accommodated by alanine mutants of thrombin lacking either the W60d or Y60a residue in the 60-insertion loop. By contrast, FXIII V34F AP could be cleaved by thrombin W60dA but not by Y60aA. FXIII V34P is highly reliant on the thrombin W215 platform for its strong substrate properties whereas FXIII V34F AP becomes the first segment that can maintain its K(m) upon loss of the critical thrombin W215 residue. Interestingly, FXIII V34F AP could also be readily accommodated by thrombin L99A and E217A. Hydrolysis of FXIII V34F AP by thrombin W217A/E217A (WE) was similar to that of FXIII V34L AP whereas WE could not effectively cleave FXIII V34P AP. FXIII V34F and V34P AP show promise for designing FXIII activation systems that are either tolerant of or greatly hindered by the presence of anticoagulant thrombins.
Collapse
Affiliation(s)
- Madhavi A Jadhav
- Chemistry Department, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
5
|
Jadhav MA, Isetti G, Trumbo TA, Maurer MC. Effects of introducing fibrinogen Aalpha character into the factor XIII activation peptide segment. Biochemistry 2010; 49:2918-24. [PMID: 20218626 DOI: 10.1021/bi902127u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a blood clot involves the interplay of thrombin, fibrinogen, and Factor XIII. Thrombin cleaves fibrinopeptides A and B from the N-termini of the fibrinogen Aalpha and Bbeta chains. Fibrin monomers are generated that then polymerize into a noncovalently associated network. By hydrolyzing the Factor XIII activation peptide segment at the R37-G38 peptide bond, thrombin assists in activating the transglutaminase FXIIIa that incorporates cross-links into the fibrin clot. In this work, the kinetic effects of introducing fibrinogen Aalpha character into the FXIII AP segment were examined. Approximately 25% of fibrinogen Aalpha is phosphorylated at Ser3, producing a segment with improved binding to thrombin. FXIII AP ((22)AEDDL(26)) has sequence properties in common with Fbg Aalpha ((1)ADSpGE(5)). Kinetic benefits to FXIII AP cleavage were explored by extending FXIII AP (28-41) to FXIII AP (22-41) and examining peptides with D24, D24S, D24Sp, and D24Sp P27G. These modifications did not provide the same kinetic advantages that were observed with Fbg Aalpha (1-20) S3p. Such results further emphasize that FXIII AP derives most of its substrate specificity from the P(9)-P(1) segment. To enhance the kinetic properties of FXIII AP (28-41), we introduced substitutions at the P(9), P(4), and P(3) positions. Studies reveal that FXIII AP (28-41) V29F, V34G, V35G exhibits kinetic improvements that are comparable to those of FXIII AP V29F, V34L and approach those of Fbg Aalpha (7-20). Selective changes to the FXIII AP segment sequence may be used to design FXIII species that can be activated more or less readily.
Collapse
Affiliation(s)
- Madhavi A Jadhav
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
6
|
Maurer MC, Trumbo TA, Isetti G, Turner BT. Probing interactions between the coagulants thrombin, Factor XIII, and fibrin(ogen). Arch Biochem Biophys 2005; 445:36-45. [PMID: 16364233 DOI: 10.1016/j.abb.2005.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.
Collapse
Affiliation(s)
- Muriel C Maurer
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|