1
|
Hardy BJ, Curnow P. Computational design of de novo bioenergetic membrane proteins. Biochem Soc Trans 2024; 52:1737-1745. [PMID: 38958574 PMCID: PMC11668274 DOI: 10.1042/bst20231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The major energy-producing reactions of biochemistry occur at biological membranes. Computational protein design now provides the opportunity to elucidate the underlying principles of these processes and to construct bioenergetic pathways on our own terms. Here, we review recent achievements in this endeavour of 'synthetic bioenergetics', with a particular focus on new enabling tools that facilitate the computational design of biocompatible de novo integral membrane proteins. We use recent examples to showcase some of the key computational approaches in current use and highlight that the overall philosophy of 'surface-swapping' - the replacement of solvent-facing residues with amino acids bearing lipid-soluble hydrophobic sidechains - is a promising avenue in membrane protein design. We conclude by highlighting outstanding design challenges and the emerging role of AI in sequence design and structure ideation.
Collapse
Affiliation(s)
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, U.K
| |
Collapse
|
2
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Small-residue packing motifs modulate the structure and function of a minimal de novo membrane protein. Sci Rep 2020; 10:15203. [PMID: 32938984 PMCID: PMC7495484 DOI: 10.1038/s41598-020-71585-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022] Open
Abstract
Alpha-helical integral membrane proteins contain conserved sequence motifs that are known to be important in helix packing. These motifs are a promising starting point for the construction of artificial proteins, but their potential has not yet been fully explored. Here, we study the impact of introducing a common natural helix packing motif to the transmembrane domain of a genetically-encoded and structurally dynamic de novo membrane protein. The resulting construct is an artificial four-helix bundle with lipophilic regions that are defined only by the amino acids L, G, S, A and W. This minimal proto-protein could be recombinantly expressed by diverse prokaryotic and eukaryotic hosts and was found to co-sediment with cellular membranes. The protein could be extracted and purified in surfactant micelles and was monodisperse and stable in vitro, with sufficient structural definition to support the rapid binding of a heme cofactor. The reduction in conformational diversity imposed by this design also enhances the nascent peroxidase activity of the protein-heme complex. Unexpectedly, strains of Escherichia coli expressing this artificial protein specifically accumulated zinc protoporphyrin IX, a rare cofactor that is not used by natural metalloenzymes. Our results demonstrate that simple sequence motifs can rigidify elementary membrane proteins, and that orthogonal artificial membrane proteins can influence the cofactor repertoire of a living cell. These findings have implications for rational protein design and synthetic biology.
Collapse
|
4
|
Designing minimalist membrane proteins. Biochem Soc Trans 2020; 47:1233-1245. [PMID: 31671181 PMCID: PMC6824673 DOI: 10.1042/bst20190170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The construction of artificial membrane proteins from first principles is of fundamental interest and holds considerable promise for new biotechnologies. This review considers the potential advantages of adopting a strictly minimalist approach to the process of membrane protein design. As well as the practical benefits of miniaturisation and simplicity for understanding sequence-structure-function relationships, minimalism should also support the abstract conceptualisation of membrane proteins as modular components for synthetic biology. These ideas are illustrated with selected examples that focus upon α-helical membrane proteins, and which demonstrate how such minimalist membrane proteins might be integrated into living biosystems.
Collapse
|
5
|
Grayson KJ, Anderson JLR. Designed for life: biocompatible de novo designed proteins and components. J R Soc Interface 2019; 15:rsif.2018.0472. [PMID: 30158186 PMCID: PMC6127164 DOI: 10.1098/rsif.2018.0472] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo. Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK .,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Protein engineering: the potential of remote mutations. Biochem Soc Trans 2019; 47:701-711. [PMID: 30902926 DOI: 10.1042/bst20180614] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure-dynamics-function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.
Collapse
|
7
|
Solomon LA, Wood AR, Sykes ME, Diroll BT, Wiederrecht GP, Schaller RD, Fry HC. Microenvironment control of porphyrin binding, organization, and function in peptide nanofiber assemblies. NANOSCALE 2019; 11:5412-5421. [PMID: 30855041 DOI: 10.1039/c8nr09556f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To take peptide materials from predominantly structural to functional assemblies, variations in cofactor binding sites must be engineered and controlled. Here, we have employed the peptide sequence c16-AHX3K3-CO2H where X3 represents the aliphatic structural component of the peptide design that dictates β-sheet formation and upon self-assembly yields a change in the overall microenvironment surrounding the Zn protoporphyrin IX ((PPIX)Zn) binding site. All peptides studied yield β-sheet rich nanofibers highlighting the materials' resiliency to amino acid substitution. We highlight that the (PPIX)Zn binding constants correlate strongly with amino acid side chain volume, where X = L or I yields the lowest dissociation constant values (KD). The resulting microenvironment highlights the materials' ability to control interchromophore electronic interactions such that slip-stacked cofacial arrangements are observed via exciton splitting in UV/visible and circular dichroism spectroscopy. Steady state and time-resolved photoluminescence suggests that greater interchromophore packing yields larger excimer populations and corresponding longer excimer association lifetimes (τA) which directly translates to shorter exciton diffusion lengths. In comparison to synthetic porphyrin molecular assemblies, this work demonstrates the ability to employ the peptide assembly to modulate the degree of cofactor arrangement, extent of excimer formation, and the exciton hopping rates all while in a platform amenable for producing polymer-like materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lalaurie CJ, Dufour V, Meletiou A, Ratcliffe S, Harland A, Wilson O, Vamasiri C, Shoemark DK, Williams C, Arthur CJ, Sessions RB, Crump MP, Anderson JLR, Curnow P. The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity. Sci Rep 2018; 8:14564. [PMID: 30275547 PMCID: PMC6167376 DOI: 10.1038/s41598-018-31964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences.
Collapse
Affiliation(s)
| | - Virginie Dufour
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Anna Meletiou
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | | | - Olivia Wilson
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Christopher Williams
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | | | - Richard B Sessions
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, UK.
| |
Collapse
|
9
|
Nagarajan D, Sukumaran S, Deka G, Krishnamurthy K, Atreya HS, Chandra N. Design of a heme-binding peptide motif adopting a β-hairpin conformation. J Biol Chem 2018; 293:9412-9422. [PMID: 29695501 DOI: 10.1074/jbc.ra118.001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Heme-binding proteins constitute a large family of catalytic and transport proteins. Their widespread presence as globins and as essential oxygen and electron transporters, along with their diverse enzymatic functions, have made them targets for protein design. Most previously reported designs involved the use of α-helical scaffolds, and natural peptides also exhibit a strong preference for these scaffolds. However, the reason for this preference is not well-understood, in part because alternative protein designs, such as those with β-sheets or hairpins, are challenging to perform. Here, we report the computational design and experimental validation of a water-soluble heme-binding peptide, Pincer-1, composed of predominantly β-scaffold secondary structures. Such heme-binding proteins are rarely observed in nature, and by designing such a scaffold, we simultaneously increase the known fold space of heme-binding proteins and expand the limits of computational design methods. For a β-scaffold, two tryptophan zipper β-hairpins sandwiching a heme molecule were linked through an N-terminal cysteine disulfide bond. β-Hairpin orientations and residue selection were performed computationally. Heme binding was confirmed through absorbance experiments and surface plasmon resonance experiments (KD = 730 ± 160 nm). CD and NMR experiments validated the β-hairpin topology of the designed peptide. Our results indicate that a helical scaffold is not essential for heme binding and reveal the first designed water-soluble, heme-binding β-hairpin peptide. This peptide could help expand the search for and design space to cytoplasmic heme-binding proteins.
Collapse
Affiliation(s)
| | | | - Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
10
|
Hwang H, McCaslin TG, Hazel A, Pagba CV, Nevin CM, Pavlova A, Barry BA, Gumbart JC. Redox-Driven Conformational Dynamics in a Photosystem-II-Inspired β-Hairpin Maquette Determined through Spectroscopy and Simulation. J Phys Chem B 2017; 121:3536-3545. [DOI: 10.1021/acs.jpcb.6b09481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hyea Hwang
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tyler G. McCaslin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony Hazel
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina M. Nevin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Moser CC, Sheehan MM, Ennist NM, Kodali G, Bialas C, Englander MT, Discher BM, Dutton PL. De Novo Construction of Redox Active Proteins. Methods Enzymol 2016; 580:365-88. [PMID: 27586341 DOI: 10.1016/bs.mie.2016.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways.
Collapse
Affiliation(s)
- C C Moser
- University of Pennsylvania, Philadelphia, PA, United States
| | - M M Sheehan
- University of Pennsylvania, Philadelphia, PA, United States
| | - N M Ennist
- University of Pennsylvania, Philadelphia, PA, United States
| | - G Kodali
- University of Pennsylvania, Philadelphia, PA, United States
| | - C Bialas
- University of Pennsylvania, Philadelphia, PA, United States
| | - M T Englander
- University of Pennsylvania, Philadelphia, PA, United States
| | - B M Discher
- University of Pennsylvania, Philadelphia, PA, United States
| | - P L Dutton
- University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
|
13
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Goparaju G, Fry BA, Chobot SE, Wiedman G, Moser CC, Leslie Dutton P, Discher BM. First principles design of a core bioenergetic transmembrane electron-transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:503-512. [PMID: 26672896 PMCID: PMC4846532 DOI: 10.1016/j.bbabio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/14/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Abstract
Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Geetha Goparaju
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryan A Fry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E Chobot
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Wiedman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
D'Souza A, Mahajan M, Bhattacharjya S. Designed multi-stranded heme binding β-sheet peptides in membrane. Chem Sci 2016; 7:2563-2571. [PMID: 28660027 PMCID: PMC5477022 DOI: 10.1039/c5sc04108b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 01/20/2023] Open
Abstract
Designed peptides demonstrating well-defined structures and functioning in membrane environment are of significant interest in developing novel proteins for membrane active biological processes including enzymes, electron transfer, ion channels and energy conversion. Heme proteins' ability to carry out multiple functions in nature has inspired the design of several helical heme binding peptides and proteins soluble in water and also recently in membrane. Naturally occurring β-sheet proteins are both water and membrane soluble, and are known to bind heme, however, designed heme binding β-sheet proteins are yet to be reported, plausibly because of the complex folding and difficulty in introducing heme binding sites in the β-sheet structures. Here, we describe the design, NMR structures and biochemical functional characterization of four stranded and six stranded membrane soluble β-sheet peptides that bind heme and di-heme, respectively. The designed peptides contain either DP-G or DP-DA residues for the nucleation of β-turns intended to stabilize multi-stranded β-sheet topologies and ligate heme with bis-His coordination between adjacent antiparallel β-strands. Furthermore, we have optimized a high affinity heme binding pocket, Kd ∼ nM range, in the adjacent β-strands by utilizing a series of four stranded β-sheet peptides employing β- and ω-amino acids. We find that there is a progressive increase in cofactor binding affinity in the designed peptides with the alkyl chain length of ω-amino acids. Notably, the six stranded β-sheet peptide binds two molecules of heme in a cooperative fashion. The designed peptides perform peroxidase activity with varying ability and efficiently carried out electron transfer with membrane associated protein cytochrome c. The current study demonstrates the designing of functional β-sheet proteins in a membrane environment and expands the repertoire of heme protein design.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | - Mukesh Mahajan
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | | |
Collapse
|
16
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
17
|
Magruder HT, Quinn JA, Schwartzbauer JE, Reichner J, Huang A, Filardo EJ. The G protein-coupled estrogen receptor-1, GPER-1, promotes fibrillogenesis via a Shc-dependent pathway resulting in anchorage-independent growth. Discov Oncol 2014; 5:390-404. [PMID: 25096985 DOI: 10.1007/s12672-014-0195-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023] Open
Abstract
The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in "hanging drop" assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression.
Collapse
Affiliation(s)
- Hilary T Magruder
- Division of Hematology and Oncology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mahajan M, Bhattacharjya S. Designed di-heme binding helical transmembrane protein. Chembiochem 2014; 15:1257-62. [PMID: 24829076 DOI: 10.1002/cbic.201402142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 01/03/2023]
Abstract
De novo designing of functional membrane proteins is fundamental in terms of understanding the structure, folding, and stability of membrane proteins. In this work, we report the design and characterization of a transmembrane protein, termed HETPRO (HEme-binding Transmembrane PROtein), that binds two molecules of heme in a membrane and catalyzes oxidation/reduction reactions. The primary structure of HETPRO has been optimized in a guided fashion, from an antimicrobial peptide, for transmembrane orientation, defined 3D structure, and functions. HETPRO assembles into a tetrameric form, from an apo dimeric helical structure, in complex with cofactor in detergent micelles. The NMR structure of the apo HETPRO in micelles reveals an antiparallel helical dimer that inserts into the nonpolar core of detergent micelles. The well-defined structure of HETPRO and its ability to bind to heme moieties could be utilized to develop a functional membrane protein mimic for electron transport and photosystems.
Collapse
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore-637551 (Singapore)
| | | |
Collapse
|
19
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 610] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
21
|
Watkins DW, Armstrong CT, Anderson JLR. De novo protein components for oxidoreductase assembly and biological integration. Curr Opin Chem Biol 2014; 19:90-8. [DOI: 10.1016/j.cbpa.2014.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
|
22
|
Aldinucci A, Turco A, Biagioli T, Toma FM, Bani D, Guasti D, Manuelli C, Rizzetto L, Cavalieri D, Massacesi L, Mello T, Scaini D, Bianco A, Ballerini L, Prato M, Ballerini C. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. NANO LETTERS 2013; 13:6098-6105. [PMID: 24224474 DOI: 10.1021/nl403396e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanomaterials interact with cells and modify their function and biology. Manufacturing this ability can provide tissue-engineering scaffolds with nanostructures able to influence tissue growth and performance. Carbon nanotube compatibility with biomolecules motivated ongoing interest in the development of biosensors and devices including such materials. More recently, carbon nanotubes have been applied in several areas of nerve tissue engineering to study cell behavior or to instruct the growth and organization of neural networks. To gather further knowledge on the true potential of future constructs, in particular to assess their immune-modulatory action, we evaluate carbon nanotubes interactions with human dendritic cells (DCs). DCs are professional antigen-presenting cells and their behavior can predict immune responses triggered by adhesion-dependent signaling. Here, we incorporate DC cultures to carbon nanotubes and we show by phenotype, microscopy, and transcriptional analysis that in vitro differentiated and activated DCs show when interfaced to carbon nanotubes a lower immunogenic profile.
Collapse
|
23
|
Mahajan M, Bhattacharjya S. β-Hairpin peptides: heme binding, catalysis, and structure in detergent micelles. Angew Chem Int Ed Engl 2013; 52:6430-4. [PMID: 23640811 DOI: 10.1002/anie.201300241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
24
|
Mahajan M, Bhattacharjya S. β-Hairpin Peptides: Heme Binding, Catalysis, and Structure in Detergent Micelles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Shinde S, Cordova JM, Woodrum BW, Ghirlanda G. Modulation of function in a minimalist heme-binding membrane protein. J Biol Inorg Chem 2012; 17:557-64. [PMID: 22307279 DOI: 10.1007/s00775-012-0876-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
De novo designed heme-binding proteins have been used successfully to recapitulate features of natural hemoproteins. This approach has now been extended to membrane-soluble model proteins. Our group designed a functional hemoprotein, ME1, by engineering a bishistidine binding site into a natural membrane protein, glycophorin A (Cordova et al. in J Am Chem Soc 129:512-518, 2007). ME1 binds iron(III) protoporphyrin IX with submicromolar affinity, has a redox potential of -128 mV, and displays peroxidase activity. Here, we show the effect of aromatic residues in modulating the redox potential in the context of a membrane-soluble model system. We designed aromatic interactions with the heme through a single-point mutant, G25F, in which a phenylalanine is designed to dock against the porphyrin ring. This mutation results in roughly tenfold tighter binding to iron(III) protoporphyrin IX (K(d,app) = 6.5 × 10(-8) M), and lowers the redox potential of the cofactor to -172 mV. This work demonstrates that specific design features aimed at controlling the properties of bound cofactors can be introduced in a minimalist membrane hemoprotein model. The ability to modulate the redox potential of cofactors embedded in artificial membrane proteins is crucial for the design of electron transfer chains across membranes in functional photosynthetic devices.
Collapse
Affiliation(s)
- Sandip Shinde
- Department of Chemistry and Biochemistry, ASU, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
26
|
Barry BA. Proton coupled electron transfer and redox active tyrosines in Photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 104:60-71. [PMID: 21419640 PMCID: PMC3164834 DOI: 10.1016/j.jphotobiol.2011.01.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
In this article, progress in understanding proton coupled electron transfer (PCET) in Photosystem II is reviewed. Changes in acidity/basicity may accompany oxidation/reduction reactions in biological catalysis. Alterations in the proton transfer pathway can then be used to alter the rates of the electron transfer reactions. Studies of the bioenergetic complexes have played a central role in advancing our understanding of PCET. Because oxidation of the tyrosine results in deprotonation of the phenolic oxygen, redox active tyrosines are involved in PCET reactions in several enzymes. This review focuses on PCET involving the redox active tyrosines in Photosystem II. Photosystem II catalyzes the light-driven oxidation of water and reduction of plastoquinone. Photosystem II provides a paradigm for the study of redox active tyrosines, because this photosynthetic reaction center contains two tyrosines with different roles in catalysis. The tyrosines, YZ and YD, exhibit differences in kinetics and midpoint potentials, and these differences may be due to noncovalent interactions with the protein environment. Here, studies of YD and YZ and relevant model compounds are described.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry and The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
27
|
Kathan-Galipeau K, Nanayakkara S, O'Brian PA, Nikiforov M, Discher BM, Bonnell DA. Direct probe of molecular polarization in de novo protein-electrode interfaces. ACS NANO 2011; 5:4835-4842. [PMID: 21612231 DOI: 10.1021/nn200887n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel approach to energy harvesting and biosensing devices would exploit optoelectronic processes found in proteins that occur in nature. However, in order to design such systems, the proteins need to be attached to electrodes and the optoelectronic properties in nonliquid (ambient) environments must be understood at a fundamental level. Here we report the simultaneous detection of electron transport and the effect of optical absorption on dielectric polarizability in oriented peptide single molecular layers. This characterization requires a peptide design strategy to control protein/electrode interface interactions, to allow peptide patterning on a substrate, and to induce optical activity. In addition, a new method to probe electronic, dielectric, and optical properties at the single molecular layer level is demonstrated. The combination enables a quantitative comparison of the change in polarization volume between the ground state and excited state in a single molecular layer in a manner that allows spatial mapping relevant to ultimate device design.
Collapse
Affiliation(s)
- Kendra Kathan-Galipeau
- Department of Materials Science and Biophysics, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
28
|
Cohen-Ofri I, van Gastel M, Grzyb J, Brandis A, Pinkas I, Lubitz W, Noy D. Zinc-Bacteriochlorophyllide Dimers in de Novo Designed Four-Helix Bundle Proteins. A Model System for Natural Light Energy Harvesting and Dissipation. J Am Chem Soc 2011; 133:9526-35. [DOI: 10.1021/ja202054m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilit Cohen-Ofri
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maurice van Gastel
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Joanna Grzyb
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Brandis
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Pinkas
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang Lubitz
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dror Noy
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Smith BA, Hecht MH. Novel proteins: from fold to function. Curr Opin Chem Biol 2011; 15:421-6. [PMID: 21474363 DOI: 10.1016/j.cbpa.2011.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
Abstract
The field of de novo protein design, though only two decades old, has already reached the point where designing and selecting novel proteins that are functionally active has been achieved several times. Here we review recently reported de novo functional proteins that were developed using various approaches, including rational design, computational optimization, and selection from combinatorial libraries. The functions displayed by these proteins range from metal binding to enzymatic catalysis. Some were designed for specific applications in engineering and medicine, and others provide life-sustaining functions in vivo.
Collapse
Affiliation(s)
- Betsy A Smith
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
30
|
Korendovych IV, Senes A, Kim YH, Lear JD, Fry HC, Therien MJ, Blasie JK, Walker FA, Degrado WF. De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J Am Chem Soc 2011; 132:15516-8. [PMID: 20945900 DOI: 10.1021/ja107487b] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.
Collapse
Affiliation(s)
- Ivan V Korendovych
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of structural and energetic engineering tolerances of the mechanism. Significant barriers to achieving an engineering understanding of enzyme mechanisms arise from natural protein complexity. In certain cases we can surmount these barriers to understanding, such as natural electron tunneling, coupling of electron tunneling to light capture and proton exchange as well as simpler bond breaking redox catalysis. Hope for similar solutions of more complex bioinorganic enzymes is indicated in several papers presented in this Discussion. Armed with an engineering understanding of mechanism, the current serious frustrations to successful creation of functional artificial proteins that are rooted in protein complexity can fall away. Here we discuss the genetic and biological roots of protein complexity and show how to dodge and minimize the effects of complexity. In the best-understood cases, artificial enzymes can be designed from scratch using the simplest of protein scaffolds.
Collapse
Affiliation(s)
- P Leslie Dutton
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
32
|
Sibert RS, Josowicz M, Barry BA. Control of proton and electron transfer in de novo designed, biomimetic β hairpins. ACS Chem Biol 2010; 5:1157-68. [PMID: 20919724 DOI: 10.1021/cb100138m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine side chains are involved in proton coupled electron transfer reactions (PCET) in many complex proteins, including photosystem II (PSII) and ribonucleotide reductase. For example, PSII contains two redox-active tyrosines, TyrD (Y160D2) and TyrZ (Y161D1), which have different protein environments, midpoint potentials, and roles in catalysis. TyrD has a midpoint potential lower than that of TyrZ, and its protein environment is distinguished by potential π-cation interactions with arginine residues. Designed biomimetic peptides provide a system that can be used to investigate how the protein matrix controls PCET reactions. As a model for the redox-active tyrosines in PSII, we are employing a designed, 18 amino acid β hairpin peptide in which PCET reactions occur between a tyrosine (Tyr5) and a cross-strand histidine (His14). In this peptide, the single tyrosine is hydrogen-bonded to an arginine residue, Arg16, and a second arginine, Arg12, has a π-cation interaction with Tyr5. In this report, the effect of these hydrogen bonding and electrostatic interactions on the PCET reactions is investigated. Electrochemical titrations show that histidine substitutions change the nature of PCET reactions, and optical titrations show that Arg16 substitution changes the pK of Tyr5. Removal of Arg16 or Arg12 increases the midpoint potential for tyrosine oxidation. The effects of Arg12 substitution are consistent with the midpoint potential difference, which is observed for the PSII redox-active tyrosine residues. Our results demonstrate that a π-cation interaction, hydrogen bonding, and PCET reactions alter redox-active tyrosine function. These interactions can contribute equally to the control of midpoint potential and reaction rate.
Collapse
Affiliation(s)
- Robin S. Sibert
- Department of Chemistry and Biochemistry
- Petit Institute for Bioengineering and Bioscience
| | | | - Bridgette A. Barry
- Department of Chemistry and Biochemistry
- Petit Institute for Bioengineering and Bioscience
| |
Collapse
|
33
|
Kuciauskas D, Kiskis J, Caputo GA, Gulbinas V. Exciton Annihilation and Energy Transfer in Self-Assembled Peptide−Porphyrin Complexes Depends on Peptide Secondary Structure. J Phys Chem B 2010; 114:16029-35. [DOI: 10.1021/jp108685n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Darius Kuciauskas
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08108, United States and Institute of Physics, Centre for Physical and Technological Sciences, Savanoriu 238, Vilnius, Lithuania
| | - Juris Kiskis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08108, United States and Institute of Physics, Centre for Physical and Technological Sciences, Savanoriu 238, Vilnius, Lithuania
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08108, United States and Institute of Physics, Centre for Physical and Technological Sciences, Savanoriu 238, Vilnius, Lithuania
| | - Vidmantas Gulbinas
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08108, United States and Institute of Physics, Centre for Physical and Technological Sciences, Savanoriu 238, Vilnius, Lithuania
| |
Collapse
|
34
|
Balaban TS, Bhise AD, Bringmann G, Bürck J, Chappaz-Gillot C, Eichhöfer A, Fenske D, Götz DCG, Knauer M, Mizoguchi T, Mössinger D, Rösner H, Roussel C, Schraut M, Tamiaki H, Vanthuyne N. Mimics of the self-assembling chlorosomal bacteriochlorophylls: regio- and stereoselective synthesis and stereoanalysis of acyl(1-hydroxyalkyl)porphyrins. J Am Chem Soc 2009; 131:14480-92. [PMID: 19769331 DOI: 10.1021/ja905628h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diacylation of copper 10,20-bis(3,5-di-tert-butylphenylporphyrin) using Friedel-Crafts conditions at short reaction times, high concentrations of catalyst, and 0-4 degrees C affords only the 3,17-diacyl-substituted porphyrins, out of the 12 possible regioisomers. At longer reaction times and higher temperatures, the 3,13-diacyl compounds are also formed, and the two isomers can be conveniently separated by normal chromatographic techniques. Monoreduction of these diketones affords in good yields the corresponding acyl(1-hydroxyalkyl)porphyrins, which after zinc metalation are mimics of the natural chlorosomal bacteriochlorophyll (BChl) d. Racemate resolution by HPLC on a variety of chiral columns was achieved and further optimized, thus permitting easy access to enantiopure porphyrins. Enantioselective reductions proved to be less effective in this respect, giving moderate yields and only 79% ee in the best case. The absolute configuration of the 3(1)-stereocenter was assigned by independent chemical and spectroscopic methods. Self-assembly of a variety of these zinc BChl d mimics proves that a collinear arrangement of the hydroxyalkyl substituent with the zinc atom and the carbonyl substituent is not a stringent requirement, since both the 3,13 and the 3,17 regioisomers self-assemble readily as the racemates. Interestingly, the separated enantiomers self-assemble less readily, as judged by absorption, fluorescence, and transmission electron microscopy studies. Circular dichroism spectra of the self-assemblies show intense Cotton effects, which are mirror-images for the two 3(1)-enantiomers, proving that the supramolecular chirality is dependent on the configuration at the 3(1)-stereocenter. Upon disruption of these self-assemblies with methanol, which competes with zinc ligation, only very weak monomeric Cotton effects are present. The favored heterochiral self-assembly process may also be encountered for the natural BChls. This touches upon the long-standing problem of why both 3(1)-epimers are encountered in BChls in ratios that vary with the illumination and culturing conditions.
Collapse
Affiliation(s)
- Teodor Silviu Balaban
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Negron C, Fufezan C, Koder RL. Geometric constraints for porphyrin binding in helical protein binding sites. Proteins 2009; 74:400-16. [PMID: 18636480 DOI: 10.1002/prot.22143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Helical bundles which bind heme and porphyrin cofactors have been popular targets for cofactor-containing de novo protein design. By analyzing a highly nonredundant subset of the protein databank we have determined a rotamer distribution for helical histidines bound to heme cofactors. Analysis of the entire nonredundant database for helical sequence preferences near the ligand histidine demonstrated little preference for amino acid side chain identity, size, or charge. Analysis of the database subdivided by ligand histidine rotamer, however, reveals strong preferences in each case, and computational modeling illuminates the structural basis for some of these findings. The majority of the rotamer distribution matches that predicted by molecular simulation of a single porphyrin-bound histidine residue placed in the center of an all-alanine helix, and the deviations explain two prominent features of natural heme protein binding sites: heme distortion in the case of the cytochromes C in the m166 histidine rotamer, and a highly prevalent glycine residue in the t73 histidine rotamer. These preferences permit derivation of helical consensus sequence templates which predict optimal side chain-cofactor packing interactions for each rotamer. These findings thus promise to guide future design endeavors not only in the creation of higher affinity heme and porphyrin binding sites, but also in the direction of bound cofactor geometry.
Collapse
Affiliation(s)
- Christopher Negron
- Department of Physics, the City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
36
|
Controlling complexity and water penetration in functional de novo protein design. Biochem Soc Trans 2009; 36:1106-11. [PMID: 19021506 DOI: 10.1042/bst0361106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural proteins are complex, and the engineering elements that support function and catalysis are obscure. Simplified synthetic protein scaffolds offer a means to avoid such complexity, learn the underlying principles behind the assembly of function and render the modular assembly of enzymatic function a tangible reality. A key feature of such protein design is the control and exclusion of water access to the protein core to provide the low-dielectric environment that enables enzymatic function. Recent successes in de novo protein design have illustrated how such control can be incorporated into the design process and have paved the way for the synthesis of nascent enzymatic activity in these systems.
Collapse
|
37
|
Dreher C, Prodöhl A, Hielscher R, Hellwig P, Schneider D. Multiple Step Assembly Of The Transmembrane Cytochrome b6. J Mol Biol 2008; 382:1057-65. [DOI: 10.1016/j.jmb.2008.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
38
|
Abstract
We present a new design of peptide-polymer conjugates where a polymer chain is covalently linked to the side chain of a helix bundle-forming peptide. The effect of conjugated polymer chains on the peptide structure was examined using a de novo designed three-helix bundle and a photoactive four-helix bundle. Upon attachment of poly(ethylene glycol) to the exterior of the coiled-coil helix bundle, the peptide secondary structure was stabilized and the tertiary structure, that is, the coiled-coil helix bundle, was retained. When a heme-binding peptide as an example is used, the new peptide-polymer conjugate architecture also preserves the built-in functionalities within the interior of the helix bundle. It is expected that the conjugated polymer chains act to mediate the interactions between the helix bundle and its external environment. Thus, this new peptide-polymer conjugate design strategy may open new avenues to macroscopically assemble the helix bundles and may enable them to function in nonbiological environments.
Collapse
Affiliation(s)
- Jessica Y. Shu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - Cen Tan
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
39
|
Oakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:260-8. [DOI: 10.1016/j.bbabio.2007.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
40
|
Wydrzynski T, Hillier W, Conlan B. Engineering model proteins for Photosystem II function. PHOTOSYNTHESIS RESEARCH 2007; 94:225-233. [PMID: 17955341 DOI: 10.1007/s11120-007-9271-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/04/2007] [Indexed: 05/25/2023]
Abstract
Our knowledge of Photosystem II and the molecular mechanism of oxygen production are rapidly advancing. The time is now ripe to exploit this knowledge and use it as a blueprint for the development of light-driven catalysts, ultimately for the splitting of water into O2 and H2. In this article, we outline the background and our approach to this technological application through the reverse engineering of Photosystem II into model proteins.
Collapse
Affiliation(s)
- Tom Wydrzynski
- Research School of Biological Sciences, Australian National University, Canberra, ACT, 0200, Australia.
| | | | | |
Collapse
|
41
|
Sibert R, Josowicz M, Porcelli F, Veglia G, Range K, Barry BA. Proton-coupled electron transfer in a biomimetic peptide as a model of enzyme regulatory mechanisms. J Am Chem Soc 2007; 129:4393-400. [PMID: 17362010 DOI: 10.1021/ja068805f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton-coupled electron-transfer reactions are central to enzymatic mechanism in many proteins. In several enzymes, essential electron-transfer reactions involve oxidation and reduction of tyrosine side chains. For these redox-active tyrosines, proton transfer couples with electron transfer, because the phenolic pKA of the tyrosine is altered by changes in the tyrosine redox state. To develop an experimentally tractable peptide system in which the effect of proton and electron coupling can be investigated, we have designed a novel amino acid sequence that contains one tyrosine residue. The tyrosine can be oxidized by ultraviolet photolysis or electrochemical methods and has a potential cross-strand interaction with a histidine residue. NMR spectroscopy shows that the peptide forms a beta-hairpin with several interstrand dipolar contacts between the histidine and tyrosine side chains. The effect of the cross-strand interaction was probed by electron paramagnetic resonance and electrochemistry. The data are consistent with an increase in histidine pKA when the tyrosine is oxidized; the effect of this thermodynamic coupling is to increase tyrosyl radical yield at low pH. The coupling mechanism is attributed to an interstrand pi-cation interaction, which stabilizes the tyrosyl radical. A similar interaction between histidine and tyrosine in enzymes provides a regulatory mechanism for enzymatic electron-transfer reactions.
Collapse
Affiliation(s)
- Robin Sibert
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hong J, Kharenko OA, Ogawa MY. Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up. Inorg Chem 2007; 45:9974-84. [PMID: 17140193 PMCID: PMC2566827 DOI: 10.1021/ic060222j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The alpha-helical coiled-coil motif serves as a robust scaffold for incorporating electron-transfer (ET) functionality into synthetic metalloproteins. These structures consist of a supercoiling of two or more aplha helices that are formed by the self-assembly of individual polypeptide chains whose sequences contain a repeating pattern of hydrophobic and hydrophilic residues. Early work from our group attached abiotic Ru-based redox sites to the most surface-exposed positions of two stranded coiled-coils and used electron-pulse radiolysis to study both intra- and intermolecular ET reactions in these systems. Later work used smaller metallopeptides to investigate the effects of conformational gating within electrostatic peptide-protein complexes. We have recently designed the C16C19-GGY peptide, which contains Cys residues located at both the "a" and "d" positions of its third heptad repeat in order to construct a nativelike metal-binding domain within its hydrophobic core. It was shown that the binding of both Cd(II) and Cu(I) ions induces the peptide to undergo a conformational change from a disordered random coil to a metal-bridged coiled-coil. However, whereas the Cd(II)-protein exists as a two-stranded coiled-coil, the Cu(I) derivative exists as a four-stranded coiled-coil. Upon the incorporation of other metal ions, metal-bridged peptide dimers, tetramers, and hexamers are formed. The Cu(I)-protein is of particular interest because it exhibits a long-lived (microsecond) room-temperature luminescence at 600 nm. The luminophore in this protein is thought to be a multinuclear CuI4Cys4(N/O)4 cage complex, which can be quenched by exogenous electron acceptors in solution, as shown by emission-lifetime and transient-absorption experiments. It is anticipated that further investigation into these systems will contribute to the expanding effort of bioinorganic chemists to prepare new kinds of functionally active synthetic metalloproteins.
Collapse
|
43
|
Zou H, Strzalka J, Xu T, Tronin A, Blasie JK. Three-dimensional structure and dynamics of a de novo designed, amphiphilic, metallo-porphyrin-binding protein maquette at soft interfaces by molecular dynamics simulations. J Phys Chem B 2007; 111:1823-33. [PMID: 17256981 DOI: 10.1021/jp0666378] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure and dynamics of de novo designed, amphiphilic four-helix bundle peptides (or "maquettes"), capable of binding metallo-porphyrin cofactors at selected locations along the length of the core of the bundle, are investigated via molecular dynamics simulations. The rapid evolution of the initial design to stable three-dimensional structures in the absence (apo-form) and presence (holo-form) of bound cofactors is described for the maquettes at two different soft interfaces between polar and nonpolar media. This comparison of the apo- versus holo-forms allows the investigation of the effects of cofactor incorporation on the structure of the four-helix bundle. The simulation results are in qualitative agreement with available experimental data describing the structures at lower resolution and limited dimension.
Collapse
Affiliation(s)
- Hongling Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Liu HD, Zhao YF, Li YM. The Synthesis and Characterization of a Helical Miniature Protein Mimicking the OGT Active Domain. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Noy D, Moser CC, Dutton PL. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:90-105. [PMID: 16457774 DOI: 10.1016/j.bbabio.2005.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/20/2022]
Abstract
Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.
Collapse
Affiliation(s)
- Dror Noy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
46
|
Noy D, Discher BM, Rubtsov IV, Hochstrasser RM, Dutton PL. Design of amphiphilic protein maquettes: enhancing maquette functionality through binding of extremely hydrophobic cofactors to lipophilic domains. Biochemistry 2005; 44:12344-54. [PMID: 16156647 PMCID: PMC2597482 DOI: 10.1021/bi050696e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate coordination of the extremely hydrophobic 13(2)-OH-Ni-bacteriochlorophyll (Ni-BChl) to the lipophilic domain of a novel, designed amphiphilic protein maquette (AP3) dispersed in detergent micelles [Discher et al. (2005) Biochemistry 44, 12329-12343]. Sedimentation velocity and equilibrium experiments and steady-state absorption spectra indicate that Ni-BChl-AP3 is a four-helix bundle containing one Ni-BChl axially ligated by one or two histidines. The nature of the ligation was pursued with ultrafast visible spectroscopy. While it is well established that light excitation of axially ligated mono- and bisimidazole Ni-BChl in solution leads to rapid imidazole dissociation and nanosecond recombination, there is no evidence of axial ligand dissociation in the light-excited Ni-BChl-AP3. This indicates that Ni-BChl is confined within the AP3 protein, ligated to histidines with severely restricted mobility. Dissociation constants show that Ni-BChl binding to AP3 is considerably weaker than the nanomolar range usual for heme and hydrophilic (HP) maquettes; moreover, there is a tendency for the Ni-BChl-AP3 four-helix bundles to dimerize into eight-helix bundles. Nevertheless, the preparation of the Ni-BChl-AP3 four-alpha-helix maquettes, supported by time-resolved spectroscopic analysis of the nature of the ligation, provides a viable new approach to AP maquette designs that address the challenges involved in binding extremely hydrophobic cofactors.
Collapse
Affiliation(s)
- Dror Noy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
47
|
Ye S, Discher BM, Strzalka J, Xu T, Wu SP, Noy D, Kuzmenko I, Gog T, Therien MJ, Dutton PL, Blasie JK. Amphiphilic four-helix bundle peptides designed for light-induced electron transfer across a soft interface. NANO LETTERS 2005; 5:1658-67. [PMID: 16159202 DOI: 10.1021/nl050542k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A family of four-helix bundle peptides were designed to be amphiphilic, possessing distinct hydrophilic and hydrophobic domains along the length of the bundle's exterior. This facilitates their vectorial insertion across a soft interface between polar and nonpolar media. Their design also now provides for selective incorporation of electron donor and acceptor cofactors within each domain. This allows translation of the designed intramolecular electron transfer along the bundle axis into a macroscopic charge separation across the interface.
Collapse
Affiliation(s)
- Shixin Ye
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|