1
|
Liu X, Kouassi KGW, Vanbever R, Dumoulin M. Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin. Protein Sci 2022; 31:e4392. [PMID: 36040264 PMCID: PMC9375436 DOI: 10.1002/pro.4392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Conjugation to polyethylene glycol (PEG) is a widely used approach to improve the therapeutic value of proteins essentially by prolonging their body residence time. PEGylation may however induce changes in the structure and/or the stability of proteins and thus on their function(s). The effects of PEGylation on the thermodynamic stability can either be positive (stabilization), negative (destabilization), or neutral (no effect). Moreover, various factors such as the PEG length and PEGylation site can influence the consequences of PEGylation on the structure and stability of proteins. In this study, the effects of PEGylation on the structure, stability, and polymerization of alpha1-antitrypsin (AAT) were investigated, using PEGs with different lengths, different structures (linear or 2-armed) and different linking chemistries (via amine or thiol) at two distinct positions of the sequence. The results show that whatever the size, position, and structure of PEG chains, PEGylation (a) does not induce significant changes in AAT structure (either at the secondary or tertiary level); (b) does not alter the stability of the native protein upon both chemical- and heat-induced denaturation; and (c) does not prevent AAT to fully refold and recover its activity following chemical denaturation. However, the propensity of AAT to aggregate upon heat treatment was significantly decreased by PEGylation, although PEGylation did not prevent the irreversible inactivation of the enzyme. Moreover, conjugation to PEG, especially 2-armed 40 kDa PEG, greatly improved the proteolytic resistance of AAT. PEGylation of AAT could be a promising strategy to prolong its half-life after infusion in AAT-deficient patients and thereby decrease the frequency of infusions.
Collapse
Affiliation(s)
- Xiao Liu
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Kobenan G. W. Kouassi
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Rita Vanbever
- Advanced Drug Delivery and BiomaterialsLouvain Drug Research Institute, Université catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Dumoulin
- Department of Life SciencesInBios, Center for Protein Engineering, Nanobodies to Explore Protein Structure and Functions, University of LiègeLiègeBelgium
| |
Collapse
|
2
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
4
|
Kellner R, Malempré R, Vandenameele J, Brans A, Hennen AF, Rochus N, Di Paolo A, Vandevenne M, Matagne A. Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:473-490. [PMID: 33611612 DOI: 10.1007/s00249-021-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine β-lactamases, two metallo-β-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.
Collapse
Affiliation(s)
- Ruth Kellner
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Romain Malempré
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Alain Brans
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | | | - Noémie Rochus
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium
| | - Alexandre Di Paolo
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium.,Xpress Biologics SA, Accessia Pharma Site, Avenue du Parc Industriel, 89, 4041, Milmort, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium.
| |
Collapse
|
5
|
Risso VA, Ermácora MR. Equilibrium partially folded states of B. licheniformis
β
-lactamase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:341-348. [PMID: 30929094 DOI: 10.1007/s00249-019-01361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
β -Lactamases (penicillinases) facilitate bacterial resistance to antibiotics and are excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class Aβ -lactamase with three tryptophan residues located one in each of its two domains and one in the interface between domains. The conformational landscape of three well-characterized ESP Trp→ Phe mutants was characterized in equilibrium unfolding experiments by measuring tryptophan fluorescence, far-UV CD, activity, hydrodynamic radius, and limited proteolysis. The Trp→ Phe substitutions had little impact on the native conformation, but changed the properties of the partially folded states populated at equilibrium. The results were interpreted in the framework of modern theories of protein folding.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071, Granada, Spain
| | - Mario R Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina.
- Instituto Multidisciplinario de Biología Celular, Conicet-CIC-UNLP, Calle 526 y Camino General Belgrano, B1906APO, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GCK, Damblon C, Redfield C, Matagne A. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. J Biol Chem 2016; 291:16124-37. [PMID: 27235401 DOI: 10.1074/jbc.m116.719005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity.
Collapse
Affiliation(s)
- Caroline Montagner
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Michaël Nigen
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Olivier Jacquin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Nicolas Willet
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Mireille Dumoulin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Andreas Ioannis Karsisiotis
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Gordon C K Roberts
- the Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Christian Damblon
- Département de Chimie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - André Matagne
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| |
Collapse
|
7
|
Struvay C, Negro S, Matagne A, Feller G. Energetics of Protein Stability at Extreme Environmental Temperatures in Bacterial Trigger Factors. Biochemistry 2013; 52:2982-90. [DOI: 10.1021/bi4002387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Caroline Struvay
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - Sonia Negro
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - André Matagne
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| | - Georges Feller
- Laboratory of Biochemistry and ‡Laboratory of
Enzymology and Protein Folding, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart
Tilman, Belgium
| |
Collapse
|
8
|
Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state. Biochem Biophys Res Commun 2012; 422:442-6. [DOI: 10.1016/j.bbrc.2012.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
9
|
Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P, Galleni M, Matagne A, Dumoulin M. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein. PLoS One 2012; 7:e31253. [PMID: 22438863 PMCID: PMC3305072 DOI: 10.1371/journal.pone.0031253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Nine neurodegenerative disorders, called polyglutamine (polyQ) diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be negligible when the latter contain particularly long polyQ tracts.
Collapse
Affiliation(s)
- Natacha Scarafone
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Coralie Pain
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Anthony Fratamico
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Gilles Gaspard
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Nursel Yilmaz
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Patrice Filée
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Moreno Galleni
- Biological Macromolecules, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Di Paolo A, Balbeur D, De Pauw E, Redfield C, Matagne A. Rapid collapse into a molten globule is followed by simple two-state kinetics in the folding of lysozyme from bacteriophage λ. Biochemistry 2010; 49:8646-57. [PMID: 20806781 DOI: 10.1021/bi101126f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stopped-flow fluorescence and circular dichroism spectroscopy have been used in combination with quenched-flow hydrogen exchange labeling, monitored by two-dimensional NMR and electrospray ionization mass spectrometry, to investigate the folding kinetics of lysozyme from bacteriophage λ (λ lysozyme) at pH 5.6, 20 °C. The first step in the folding of λ lysozyme occurs very rapidly (τ < 1 ms) after refolding is initiated and involves both hydrophobic collapse and formation of a high content of secondary structure but only weak protection from (1)H/(2)H exchange and no fixed tertiary structure organization. This early folding step is reflected in the dead-time events observed in the far-UV CD and ANS fluorescence experiments. Following accumulation of this kinetic molten globule species, the secondary structural elements are stabilized and the majority (ca. 88%) of refolding molecules acquire native-like properties in a highly cooperative two-state process, with τ = 0.15 ± 0.03 s. This is accompanied by the acquisition of substantial native-like protection from hydrogen exchange. A double-mixing experiment and the absence of a denaturant effect reveal that slow (τ = 5 ± 1 s) folding of the remaining (ca. 12%) molecules is rate limited by the cis/trans isomerization of prolines that are trans in the folded enzyme. In addition, native state hydrogen exchange and classical denaturant unfolding experiments have been used to characterize the thermodynamic properties of the enzyme. In good agreement with previous crystallographic evidence, our results show that λ lysozyme is a highly dynamic protein, with relatively low conformational stability (ΔG°(N-U) = 25 ± 2 kJ·mol(-1)).
Collapse
Affiliation(s)
- Alexandre Di Paolo
- Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | | | | | |
Collapse
|