1
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
2
|
Gaskill MM, Soluri IV, Branks AE, Boka AP, Stadler MR, Vietor K, Huang HYS, Gibson TJ, Mukherjee A, Mir M, Blythe SA, Harrison MM. Localization of the Drosophila pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression. Dev Cell 2023; 58:1610-1624.e8. [PMID: 37478844 PMCID: PMC10528433 DOI: 10.1016/j.devcel.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. This non-uniform distribution is driven by binding to highly abundant GA repeats. At GA repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains essential for the robust regulation of gene expression.
Collapse
Affiliation(s)
- Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella V Soluri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Annemarie E Branks
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan P Boka
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine Vietor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao-Yu S Huang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Apratim Mukherjee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Li J, Cao Y, Yang Y, Ma H, Zhao J, Zhang Y, Liu N. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging Drosophila. J Proteome Res 2023; 22:2909-2924. [PMID: 37545086 DOI: 10.1021/acs.jproteome.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Protein lysine acetylation is a dynamic post-translational modification (PTM) that regulates a wide spectrum of cellular events including aging. General control nonderepressible 5 (GCN5) is a highly conserved lysine acetyltransferase (KAT). However, the acetylation substrates of GCN5 in vivo remain poorly studied, and moreover, how lysine acetylation changes with age and the contribution of KATs to aging remain to be addressed. Here, using Drosophila, we perform label-free quantitative acetylomic analysis, identifying new substrates of GCN5 in the adult and aging process. We further characterize the dynamics of protein acetylation with age, which exhibits a trend of increase. Since the expression of endogenous fly Gcn5 progressively increases during aging, we reason that, by combining the substrate analysis, the increase in acetylation with age is triggered, at least in part, by GCN5. Collectively, our study substantially expands the atlas of GCN5 substrates in vivo, provides a resource of protein acetylation that naturally occurs with age, and demonstrates how individual KAT contributes to the aging acetylome.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| |
Collapse
|
4
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
5
|
Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194608. [PMID: 32711095 DOI: 10.1016/j.bbagrm.2020.194608] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
GCN5, conserved from yeast to humans, and the vertebrate specific PCAF, are lysine acetyltransferase enzymes found in large protein complexes. Both enzymes have well documented roles in the histone acetylation and the concomitant regulation of transcription. However, these enzymes also acetylate non-histone substrates to impact diverse aspects of cell physiology. Here, I review our current understanding of non-histone acetylation by GCN5 and PCAF across eukaryotes, from target identification to molecular mechanism and regulation. I focus mainly on budding yeast, where Gcn5 was first discovered, and mammalian systems, where the bulk of non-histone substrates have been characterized. I end the review by defining critical caveats and open questions that apply to all models.
Collapse
|
6
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|