1
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 PMCID: PMC11603008 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Gao J, Proffitt D, Marecki J, Protacio R, Wahls W, Byrd A, Raney K. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res 2024; 52:6543-6557. [PMID: 38752483 PMCID: PMC11194084 DOI: 10.1093/nar/gkae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - David R Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
4
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
5
|
Valle-Orero J, Rieu M, Tran P, Joubert A, Raj S, Allemand JF, Croquette V, Boulé JB. Strand switching mechanism of Pif1 helicase induced by its collision with a G-quadruplex embedded in dsDNA. Nucleic Acids Res 2022; 50:8767-8778. [PMID: 35947696 PMCID: PMC9410907 DOI: 10.1093/nar/gkac667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
G-rich sequences found at multiple sites throughout all genomes may form secondary structures called G-quadruplexes (G4), which act as roadblocks for molecular motors. Among the enzymes thought to process these structures, the Pif1 DNA helicase is considered as an archetypical G4-resolvase and its absence has been linked to G4-related genomic instabilities in yeast. Here we developed a single-molecule assay to observe Pif1 opening a DNA duplex and resolving the G4 in real time. In support of former enzymological studies, we show that the helicase reduces the lifetime of G4 from hours to seconds. However, we observe that in the presence of a G4, Pif1 exhibits a strong strand switching behavior, which can lead to Pif1 escaping G4 resolution, depending on the structural context surrounding the substrate. This behavior is also detected in the presence of other roadblocks (LNA or RNA). We propose that the efficiency of Pif1 to remove a roadblock (G4 or other) is affected by its strand switching behavior and depends on the context surrounding the obstacle. We discuss how this switching behavior may explain several aspects of Pif1 substrate preference and affect its activity as a G4 resolvase in vivo.
Collapse
Affiliation(s)
| | - Martin Rieu
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France,Institut de Biologie de l’École Normale Supérieure de Paris (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Phong Lan Thao Tran
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Alexandra Joubert
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| | - Saurabh Raj
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Jean-François Allemand
- Laboratoire de physique de L’École Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France,Institut de Biologie de l’École Normale Supérieure de Paris (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Jean-Baptiste Boulé
- To whom correspondence should be addressed. Tel: +33 140795616; Fax: +33 1407937050;
| |
Collapse
|
6
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
8
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
9
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
10
|
Muellner J, Schmidt KH. Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family. Genes (Basel) 2020; 11:genes11020224. [PMID: 32093266 PMCID: PMC7073672 DOI: 10.3390/genes11020224] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
11
|
Lu C, Le S, Chen J, Byrd AK, Rhodes D, Raney KD, Yan J. Direct quantification of the translocation activities of Saccharomyces cerevisiae Pif1 helicase. Nucleic Acids Res 2019; 47:7494-7501. [PMID: 31216020 PMCID: PMC6698741 DOI: 10.1093/nar/gkz541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
Saccharomyces cerevisiae Pif1 (ScPif1) is known as an ATP-dependent DNA helicase that plays critical roles in a number of important biological processes such as DNA replication, telomere maintenance and genome stability maintenance. Besides its DNA helicase activity, ScPif1 is also known as a single-stranded DNA (ssDNA) translocase, while how ScPif1 translocates on ssDNA is unclear. Here, by measuring the translocation activity of individual ScPif1 molecules on ssDNA extended by mechanical force, we identified two distinct types of ssDNA translocation. In one type, ScPif1 moves along the ssDNA track with a rate of ∼140 nt/s in 100 μM ATP, whereas in the other type, ScPif1 is immobilized to a fixed location of ssDNA and generates ssDNA loops against force. Between the two, the mobile translocation is the major form at nanomolar ScPif1 concentrations although patrolling becomes more frequent at micromolar concentrations. Together, our results suggest that ScPif1 translocates on extended ssDNA in two distinct modes, primarily in a ‘mobile’ manner.
Collapse
Affiliation(s)
- Chen Lu
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542
| | - Jin Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, Singapore 637551
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557.,Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
12
|
Su N, Byrd AK, Bharath SR, Yang O, Jia Y, Tang X, Ha T, Raney KD, Song H. Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases. Nat Commun 2019; 10:5375. [PMID: 31772234 PMCID: PMC6879534 DOI: 10.1038/s41467-019-13414-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA, but the mechanism by which Pif1 unwinds forked dsDNA remains elusive. Here we report the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA. Two interacting BaPif1 molecules are bound to each fork of the partially unwound dsDNA, and interact with the 5′ arm and 3′ ss/dsDNA respectively. Each of the two BaPif1 molecules is an active helicase and their interaction may regulate their helicase activities. The binding of BaPif1 to the 5′ arm causes a sharp bend in the 5′ ss/dsDNA junction, consequently breaking the first base-pair. BaPif1 bound to the 3′ ss/dsDNA junction impacts duplex unwinding by stabilizing the unpaired first base-pair and engaging the second base-pair poised for breaking. Our results provide an unprecedented insight into how two BaPif1 coordinate with each other to unwind the forked dsDNA. Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA. Here the authors solve the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA and provide unprecedented insights into forked dsDNA unwinding by BaPif1.
Collapse
Affiliation(s)
- Nannan Su
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Yu Jia
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
13
|
Singh SP, Kukshal V, De Bona P, Antony E, Galletto R. The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers. Nucleic Acids Res 2019; 46:7193-7205. [PMID: 29931186 PMCID: PMC6101547 DOI: 10.1093/nar/gky530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023] Open
Abstract
Rim1 is the mitochondrial single-stranded DNA binding protein in Saccharomyces cerevisiae and functions to coordinate replication and maintenance of mtDNA. Rim1 can form homo-tetramers in solution and this species has been assumed to be solely responsible for ssDNA binding. We solved structures of tetrameric Rim1 in two crystals forms which differ in the relative orientation of the dimers within the tetramer. In testing whether the different arrangement of the dimers was due to formation of unstable tetramers, we discovered that while Rim1 forms tetramers at high protein concentration, it dissociates into a smaller oligomeric species at low protein concentrations. A single point mutation at the dimer-dimer interface generates stable dimers and provides support for a dimer-tetramer oligomerization model. The presence of Rim1 dimers in solution becomes evident in DNA binding studies using short ssDNA substrates. However, binding of the first Rim1 dimer is followed by binding of a second dimer, whose affinity depends on the length of the ssDNA. We propose a model where binding of DNA to a dimer of Rim1 induces tetramerization, modulated by the ability of the second dimer to interact with ssDNA.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
14
|
Lu KY, Chen WF, Rety S, Liu NN, Wu WQ, Dai YX, Li D, Ma HY, Dou SX, Xi XG. Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase. Nucleic Acids Res 2019; 46:1486-1500. [PMID: 29202194 PMCID: PMC5814829 DOI: 10.1093/nar/gkx1217] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Yun Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Université Paris-Saclay, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
15
|
Wang L, Wang QM, Wang YR, Xi XG, Hou XM. DNA-unwinding activity of Saccharomyces cerevisiae Pif1 is modulated by thermal stability, folding conformation, and loop lengths of G-quadruplex DNA. J Biol Chem 2018; 293:18504-18513. [PMID: 30305390 DOI: 10.1074/jbc.ra118.005071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded DNA structures formed by Hoogsteen base pairing between stacked sets of four guanines. Pif1 helicase plays critical roles in suppressing genomic instability in the yeast Saccharomyces cerevisiae by resolving G4s. However, the structural properties of G4s in S. cerevisiae and the substrate preference of Pif1 for different G4s remain unknown. Here, using CD spectroscopy and 83 G4 motifs from S. cerevisiae ranging in length from 30 to 60 nucleotides, we first show that G4 structures can be formed with a broad range of loop sizes in vitro and that a parallel conformation is favored. Using single-molecule FRET analysis, we then systematically addressed Pif1-mediated unwinding of various G4s and found that Pif1 is sensitive to G4 stability. Moreover, Pif1 preferentially unfolded antiparallel G4s rather than parallel G4s having similar stability. Furthermore, our results indicate that most G4 structures in S. cerevisiae sequences have long loops and can be efficiently unfolded by Pif1 because of their low stability. However, we also found that G4 structures with short loops can be barely unfolded. This study highlights the formidable capability of Pif1 to resolve the majority of G4s in S. cerevisiae sequences, narrows the fractions of G4s that may be challenging for genomic stability, and provides a framework for understanding the influence of different G4s on genomic stability via their processing by Pif1.
Collapse
Affiliation(s)
- Lei Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Qing-Man Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Yi-Ran Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Xu-Guang Xi
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xi-Miao Hou
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| |
Collapse
|
16
|
Byrd AK, Bell MR, Raney KD. Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 2018; 293:17792-17802. [PMID: 30257865 DOI: 10.1074/jbc.ra118.004499] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+ Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Matthew R Bell
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
17
|
Geronimo CL, Singh SP, Galletto R, Zakian VA. The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity. Nucleic Acids Res 2018; 46:8357-8370. [PMID: 30239884 PMCID: PMC6144861 DOI: 10.1093/nar/gky655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pif1 family DNA helicases are conserved from bacteria to humans and have critical and diverse functions in vivo that promote genome integrity. Pif1 family helicases share a 23 amino acid region, called the Pif1 signature motif (SM) that is unique to this family. To determine the importance of the SM, we did mutational and functional analysis of the SM from the Saccharomyces cerevisiae Pif1 (ScPif1). The mutations deleted portions of the SM, made one or multiple single amino acid changes in the SM, replaced the SM with its counterpart from a bacterial Pif1 family helicase and substituted an α-helical domain from another helicase for the part of the SM that forms an α helix. Mutants were tested for maintenance of mitochondrial DNA, inhibition of telomerase at telomeres and double strand breaks, and promotion of Okazaki fragment maturation. Although certain single amino acid changes in the SM can be tolerated, the presence and sequence of the ScPif1 SM were essential for all tested in vivo functions. Consistent with the in vivo analyses, in vitro studies showed that the presence and sequence of the ScPif1 SM were critical for ATPase activity but not substrate binding.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
18
|
Nickens DG, Rogers CM, Bochman ML. The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro. J Biol Chem 2018; 293:14481-14496. [PMID: 30068549 DOI: 10.1074/jbc.ra118.004092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Telomere length homeostasis is vital for maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant WT and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.
Collapse
Affiliation(s)
- David G Nickens
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Cody M Rogers
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Matthew L Bochman
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
19
|
Andis NM, Sausen CW, Alladin A, Bochman ML. The WYL Domain of the PIF1 Helicase from the Thermophilic Bacterium Thermotoga elfii is an Accessory Single-Stranded DNA Binding Module. Biochemistry 2018; 57:1108-1118. [PMID: 29341597 DOI: 10.1021/acs.biochem.7b01233] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PIF1 family helicases are conserved from bacteria to man. With the exception of the well-studied yeast PIF1 helicases (e.g., ScPif1 and ScRrm3), however, very little is known about how these enzymes help maintain genome stability. Indeed, we lack a basic understanding of the protein domains found N- and C-terminal to the characteristic central PIF1 helicase domain in these proteins. Here, using chimeric constructs, we show that the ScPif1 and ScRrm3 helicase domains are interchangeable and that the N-terminus of ScRrm3 is important for its function in vivo. This suggests that PIF1 family helicases evolved functional modules fused to a generic motor domain. To investigate this hypothesis, we characterized the biochemical activities of the PIF1 helicase from the thermophilic bacterium Thermotoga elfii (TePif1), which contains a C-terminal WYL domain of unknown function. Like helicases from other thermophiles, recombinant TePif1 was easily prepared, thermostable in vitro, and displayed activities similar to its eukaryotic homologues. We also found that the WYL domain was necessary for high-affinity single-stranded DNA (ssDNA) binding and affected both ATPase and helicase activities. Deleting the WYL domain from TePif1 or mutating conserved residues in the predicted ssDNA binding site uncoupled ATPase activity and DNA unwinding, leading to higher rates of ATP hydrolysis but less efficient DNA helicase activity. Our findings suggest that the domains of unknown function found in eukaryotic PIF1 helicases may also confer functional specificity and additional activities to these enzymes, which should be investigated in future work.
Collapse
Affiliation(s)
- Nicholas M Andis
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Ashna Alladin
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Structure and function of Pif1 helicase. Biochem Soc Trans 2017; 45:1159-1171. [PMID: 28900015 DOI: 10.1042/bst20170096] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Pif1 family helicases have multiple roles in the maintenance of nuclear and mitochondrial DNA in eukaryotes. Saccharomyces cerevisiae Pif1 is involved in replication through barriers to replication, such as G-quadruplexes and protein blocks, and reduces genetic instability at these sites. Another Pif1 family helicase in S. cerevisiae, Rrm3, assists in fork progression through replication fork barriers at the rDNA locus and tRNA genes. ScPif1 (Saccharomyces cerevisiae Pif1) also negatively regulates telomerase, facilitates Okazaki fragment processing, and acts with polymerase δ in break-induced repair. Recent crystal structures of bacterial Pif1 helicases and the helicase domain of human PIF1 combined with several biochemical and biological studies on the activities of Pif1 helicases have increased our understanding of the function of these proteins. This review article focuses on these structures and the mechanism(s) proposed for Pif1's various activities on DNA.
Collapse
|
21
|
Zhang B, Wu WQ, Liu NN, Duan XL, Li M, Dou SX, Hou XM, Xi XG. G-quadruplex and G-rich sequence stimulate Pif1p-catalyzed downstream duplex DNA unwinding through reducing waiting time at ss/dsDNA junction. Nucleic Acids Res 2016; 44:8385-94. [PMID: 27471032 PMCID: PMC5041479 DOI: 10.1093/nar/gkw669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a 'waiting time'. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.
Collapse
Affiliation(s)
- Bo Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
22
|
Chemo-mechanical pushing of proteins along single-stranded DNA. Proc Natl Acad Sci U S A 2016; 113:6194-9. [PMID: 27185951 DOI: 10.1073/pnas.1602878113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.
Collapse
|
23
|
Li JH, Lin WX, Zhang B, Nong DG, Ju HP, Ma JB, Xu CH, Ye FF, Xi XG, Li M, Lu Y, Dou SX. Pif1 is a force-regulated helicase. Nucleic Acids Res 2016; 44:4330-9. [PMID: 27098034 PMCID: PMC4872122 DOI: 10.1093/nar/gkw295] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Pif1 is a prototypical member of the 5′ to 3′ DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.
Collapse
Affiliation(s)
- Jing-Hua Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xia Lin
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Zhang
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hai-Peng Ju
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang-Fu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Guang Xi
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Li JR, Lu CY, Lin JJ, Li HW. Multiple Pif1 helicases are required to sequentially disrupt G-quadruplex structure and unwind duplex DNA. Biochem Biophys Res Commun 2016; 473:1235-1239. [PMID: 27079238 DOI: 10.1016/j.bbrc.2016.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Jing-Ru Li
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Ying Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
25
|
Koc KN, Singh SP, Stodola JL, Burgers PM, Galletto R. Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ. Nucleic Acids Res 2016; 44:3811-9. [PMID: 27001517 PMCID: PMC4856994 DOI: 10.1093/nar/gkw181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Using an in vitro reconstituted system in this work we provide direct evidence that the yeast repressor/activator protein 1 (Rap1), tightly bound to its consensus site, forms a strong non-polar barrier for the strand displacement activity of DNA polymerase δ. We propose that relief of inhibition may be mediated by the activity of an accessory helicase. To this end, we show that Pif1, a 5'-3' helicase, not only stimulates the strand displacement activity of Pol δ but it also allows efficient replication through the block, by removing bound Rap1 in front of the polymerase. This stimulatory activity of Pif1 is not limited to the displacement of a single Rap1 molecule; Pif1 also allows Pol δ to carry out DNA synthesis across an array of bound Rap1 molecules that mimics a telomeric DNA-protein assembly. This activity of Pif1 represents a novel function of this helicase during DNA replication.
Collapse
Affiliation(s)
- Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
26
|
Singh SP, Koc KN, Stodola JL, Galletto R. A Monomer of Pif1 Unwinds Double-Stranded DNA and It Is Regulated by the Nature of the Non-Translocating Strand at the 3'-End. J Mol Biol 2016; 428:1053-1067. [PMID: 26908222 DOI: 10.1016/j.jmb.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
Abstract
Using a DNA polymerase coupled assay and FRET (Förster resonance energy transfer)-based helicase assays, in this work, we show that a monomer of Saccharomyces cerevisiae Pif1 can unwind dsDNA (double-stranded DNA). The helicase activity of a Pif1 monomer is modulated by the nature of the 3'-ssDNA (single-stranded DNA) tail of the substrate and its effect on a Pif1-dependent re-winding activity that is coupled to the opening of dsDNA. We propose that, in addition to the ssDNA site on the protein that interacts with the translocating strand, Pif1 has a second site that binds the 3'-ssDNA of the substrate. Interaction of DNA with this site modulates the degree to which re-winding counteracts unwinding. Depending on the nature of the 3'-tail and the length of the duplex DNA to be unwound, this activity is sufficiently strong to mask the helicase activity of a monomer. In excess Pif1 over the DNA, the Pif1-dependent re-winding of the opened DNA strongly limits unwinding, independent of the 3'-tail. We propose that, in this case, binding of DNA to the second site is precluded and modulation of the Pif1-dependent re-winding activity is largely lost.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
27
|
Zhou X, Ren W, Bharath SR, Tang X, He Y, Chen C, Liu Z, Li D, Song H. Structural and Functional Insights into the Unwinding Mechanism of Bacteroides sp Pif1. Cell Rep 2016; 14:2030-9. [PMID: 26904952 DOI: 10.1016/j.celrep.2016.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/27/2022] Open
Abstract
Pif1 is a conserved SF1B DNA helicase involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. Here, we report the structures of the helicase domain of human Pif1 and Bacteroides sp Pif1 (BaPif1) in complex with ADP-AlF4(-) and two different single-stranded DNAs (ssDNAs). The wedge region equivalent to the β hairpin in other SF1B DNA helicases folds into an extended loop followed by an α helix. The Pif1 signature motif of BaPif1 interacts with the wedge region and a short helix in order to stabilize these ssDNA binding elements, therefore indirectly exerting its functional role. Domain 2B of BaPif1 undergoes a large conformational change upon concomitant binding of ATP and ssDNA, which is critical for Pif1's activities. BaPif1 cocrystallized with a tailed dsDNA and ADP-AlF4(-), resulting in a bound ssDNA bent nearly 90° at the ssDNA/dsDNA junction. The conformational snapshots of BaPif1 provide insights into the mechanism governing the helicase activity of Pif1.
Collapse
Affiliation(s)
- Xianglian Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wendan Ren
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Yang He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Zhou Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Dewang Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Haiwei Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
28
|
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res 2016; 44:1989-2006. [PMID: 26883636 PMCID: PMC4797304 DOI: 10.1093/nar/gkw079] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Jean-Baptiste Boulé
- CNRS UMR 7196, INSERM U1154, MNHN, F-75005 Paris, France Sorbonne Universités, F-75005 Paris, France
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
29
|
Chen WF, Dai YX, Duan XL, Liu NN, Shi W, Li N, Li M, Dou SX, Dong YH, Rety S, Xi XG. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding. Nucleic Acids Res 2016; 44:2949-61. [PMID: 26809678 PMCID: PMC4824106 DOI: 10.1093/nar/gkw033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/11/2016] [Indexed: 11/14/2022] Open
Abstract
Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.
Collapse
Affiliation(s)
- Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shou-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Stephane Rety
- Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 passage du Vercors, 69367 Lyon, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China LBPA, Institut d'Alembert, ENS de Cachan, Université Paris-Saclay, CNRS, 61, avenue du Président Wilson, F-94235 Cachan, France
| |
Collapse
|
30
|
Liu NN, Duan XL, Ai X, Yang YT, Li M, Dou SX, Rety S, Deprez E, Xi XG. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase. Nucleic Acids Res 2015; 43:8942-54. [PMID: 26384418 PMCID: PMC4605326 DOI: 10.1093/nar/gkv916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022] Open
Abstract
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Stephane Rety
- Institut de Biochimie et Chimie des protéines, CNRS UMR5086, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| |
Collapse
|
31
|
Duan XL, Liu NN, Yang YT, Li HH, Li M, Dou SX, Xi XG. G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding. J Biol Chem 2015; 290:7722-35. [PMID: 25627683 DOI: 10.1074/jbc.m114.628008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Xiao-Lei Duan
- From the College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- From the College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- From the College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hai-Hong Li
- From the College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- the CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, and
| | - Shuo-Xing Dou
- the CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, and
| | - Xu-Guang Xi
- From the College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China, the Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
32
|
Byrd AK, Raney KD. A parallel quadruplex DNA is bound tightly but unfolded slowly by pif1 helicase. J Biol Chem 2015; 290:6482-94. [PMID: 25589786 DOI: 10.1074/jbc.m114.630749] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
33
|
Ramanagoudr-Bhojappa R, Byrd AK, Dahl C, Raney KD. Yeast Pif1 accelerates annealing of complementary DNA strands. Biochemistry 2014; 53:7659-69. [PMID: 25393406 PMCID: PMC4263423 DOI: 10.1021/bi500746v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg(2+). Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3'-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1.
Collapse
Affiliation(s)
- Ramanagouda Ramanagoudr-Bhojappa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States
| | | | | | | |
Collapse
|
34
|
Feldmann EA, Galletto R. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes. Biochemistry 2014; 53:7471-83. [PMID: 25382181 PMCID: PMC4263426 DOI: 10.1021/bi501049b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Saccharomyces cerevisiae repressor-activator protein
1 (Rap1) is an essential protein involved in multiple steps of DNA
regulation, as an activator in transcription, as a repressor at silencer
elements, and as a major component of the shelterin-like complex at
telomeres. All the known functions of Rap1 require the known high-affinity
and specific interaction of the DNA-binding domain with its recognition
sequences. In this work, we focus on the interaction of the DNA-binding
domain of Rap1 (Rap1DBD) with double-stranded DNA substrates.
Unexpectedly, we found that while Rap1DBD forms a high-affinity
1:1 complex with its DNA recognition site, it can also form lower-affinity
complexes with higher stoichiometries on DNA. These lower-affinity
interactions are independent of the presence of the recognition sequence,
and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity
binding mode, Rap1DBD likely binds in the conformation
observed in the available crystal structures. In the other alternative
lower-affinity binding mode, we propose that a single Myb-like domain
of the Rap1DBD makes interactions with DNA, allowing for
more than one protein molecule to bind to the DNA substrates. Our
findings suggest that the Rap1DBD does not simply target
the protein to its recognition sequence but rather it might be a possible
point of regulation.
Collapse
Affiliation(s)
- Erik A Feldmann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
35
|
Li JR, Yu TY, Chien IC, Lu CY, Lin JJ, Li HW. Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 2014; 42:8527-36. [PMID: 24981509 PMCID: PMC4117769 DOI: 10.1093/nar/gku541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3'-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5'-to-3' helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional extension processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentrations. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and maintains telomere length.
Collapse
Affiliation(s)
- Jing-Ru Li
- Department of Chemistry, National Taiwan University, Taiwan
| | - Tai-Yuan Yu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - I-Chieh Chien
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - Chia-Ying Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taiwan
| |
Collapse
|
36
|
Zhou R, Zhang J, Bochman ML, Zakian VA, Ha T. Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. eLife 2014; 3:e02190. [PMID: 24843019 PMCID: PMC3999857 DOI: 10.7554/elife.02190] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pif1 family helicases are conserved from bacteria to humans. Here, we report a novel DNA patrolling activity which may underlie Pif1’s diverse functions: a Pif1 monomer preferentially anchors itself to a 3′-tailed DNA junction and periodically reel in the 3′ tail with a step size of one nucleotide, extruding a loop. This periodic patrolling activity is used to unfold an intramolecular G-quadruplex (G4) structure on every encounter, and is sufficient to unwind RNA-DNA heteroduplex but not duplex DNA. Instead of leaving after G4 unwinding, allowing it to refold, or going beyond to unwind duplex DNA, Pif1 repeatedly unwinds G4 DNA, keeping it unfolded. Pif1-induced unfolding of G4 occurs in three discrete steps, one strand at a time, and is powerful enough to overcome G4-stabilizing drugs. The periodic patrolling activity may keep Pif1 at its site of in vivo action in displacing telomerase, resolving R-loops, and keeping G4 unfolded during replication, recombination and repair. DOI:http://dx.doi.org/10.7554/eLife.02190.001 Helicases are enzymes that are best known for their ability to separate the two strands of DNA that make up the famous double-helix structure. Many important processes within cells—including the expression of genes as proteins, and the replication of DNA before cell division—rely on DNA molecules being separated in this way. However, these enzymes can perform many other roles that help maintain the integrity of a cell’s DNA. The genetic code is written using four DNA bases—called A, C, G and T—and if a stretch of DNA contains lots of G bases, then one of the strands can loop back upon itself three times to form a structure known as a ‘G-quadruplex’. These structures can prevent the expression of genes, and slow the replication of DNA. However, a helicase called Pif1 can unwind G-quadruplexes to allow these activities to continue. This helicase is found in many organisms, from bacteria to humans, and carries out multiple functions for a cell. However, the exact mechanisms underlying these activities are unknown. Now, Zhou et al. have used biophysical techniques to reveal that individual Pif1 proteins bind to single-stranded overhangs at one end of a DNA molecule. Pif1 also binds to forks in DNA where the double helix separates into two single strands. And once Pif1 has bound to the DNA, it works to ‘reel in’ the overhang or a single strand, one base at a time. This activity can unwind a G-quadruplex, and individual Pif1 proteins will patrol DNA to keep this structures unwound without unraveling the double helix itself. Separating the two strands of DNA actually needs multiple Pif1 proteins to join and work together. As it patrols, Pif1 also displaces other proteins from DNA and removes unusual, and potentially harmful, structures in DNA (such as RNA molecules that have displaced one of the strands of DNA double helix). The next challenge will be to address important questions that remain unanswered including: how does Pif1 recognize DNA structures and change its activity; and how does it coordinate with other proteins that target the same structures? DOI:http://dx.doi.org/10.7554/eLife.02190.002
Collapse
Affiliation(s)
- Ruobo Zhou
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jichuan Zhang
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew L Bochman
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Taekjip Ha
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
37
|
Chung WH. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis. J Microbiol 2014; 52:89-98. [PMID: 24500472 DOI: 10.1007/s12275-014-3524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea,
| |
Collapse
|
38
|
Ramanagoudr-Bhojappa R, Chib S, Byrd AK, Aarattuthodiyil S, Pandey M, Patel SS, Raney KD. Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA. J Biol Chem 2013; 288:16185-95. [PMID: 23596008 DOI: 10.1074/jbc.m113.470013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.
Collapse
|
39
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
40
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
41
|
Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD. Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 2012; 41:1029-46. [PMID: 23175612 PMCID: PMC3553982 DOI: 10.1093/nar/gks1088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pif1 helicase plays various roles in the maintenance of nuclear and mitochondrial genome integrity in most eukaryotes. Here, we used a proteomics approach called isotopic differentiation of interactions as random or targeted to identify specific protein complexes of Saccharomyces cerevisiae Pif1. We identified a stable association between Pif1 and a mitochondrial SSB, Rim1. In vitro co-precipitation experiments using recombinant proteins indicated a direct interaction between Pif1 and Rim1. Fluorescently labeled Rim1 was titrated with Pif1 resulting in an increase in anisotropy and a Kd value of 0.69 µM. Deletion mutagenesis revealed that the OB-fold domain and the C-terminal tail of Rim1 are both involved in interaction with Pif1. However, a Rim1 C-terminal truncation (Rim1ΔC18) exhibited a nearly 4-fold higher Kd value. Rim1 stimulated Pif1 DNA helicase activity by 4- to 5-fold, whereas Rim1ΔC18 stimulated Pif1 by 2-fold. Hence, two regions of Rim1, the OB-fold domain and the C-terminal domain, interact with Pif1. One of these interactions occurs through the N-terminal domain of Pif1 because a deletion mutant of Pif1 (Pif1ΔN) retained interaction with Rim1 but did not exhibit stimulation of helicase activity. In light of our in vivo and in vitro data, and previous work, it is likely that the Rim1–Pif1 interaction plays a role in coordination of their functions in mtDNA metabolism.
Collapse
|