1
|
Zhang N, Li W, Wang F, Han C, Li G, Ren L, Hua C. Epigenetic Signatures and Prognostic Biomarkers Analysis of Methylation-Driven Genes in Uterine Endometrial Carcinosarcoma. Crit Rev Eukaryot Gene Expr 2025; 35:27-47. [PMID: 39957591 DOI: 10.1615/critreveukaryotgeneexpr.2024055577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies, and understanding the molecular mechanisms underlying its development is essential for improving diagnosis and treatment. However, the role of DNA methylation, a key epigenetic modification, in UCEC prognosis prediction and clinical treatment strategies has rarely been studied. This study utilized publicly available datasets from The Cancer Genome Atlas (TCGA) and online bioinformatics tools to analyze the differential methylation and expression of six selected genes: TP53, PTEN, PTX3, TNK1, PPP2R1A, and KLRG2. These genes were chosen based on their known roles in cancer-related pathways, previous associations with oncogenic processes, and preliminary data showing significant changes in methylation and expression in UCEC compared with normal tissues. We integrated mRNA expression and DNA methylation data with the MethylMix method to identify genes with methylation-driven expression changes. Our analysis revealed that these genes exhibit distinct differential expression and methylation patterns in UCEC, suggesting potential regulatory mechanisms. The expression patterns across the six genes were observed, and TP53, TNK1, PPP2R1A, and KLRG2 were upregulated in tumors, and PTX3 was downregulated in tumors. At the same time, there was no significant change in the expression of PTEN gene. The differential expression correlates with changes in methylation, providing insights into the gene regulation occurring in UCEC. Additionally, Kaplan-Meier survival analysis revealed that the expression levels of specific genes, particularly PTX3, TNK1, and KLRG1, are significantly associated with overall survival in UCEC patients. Higher expression of these genes correlated with poorer survival outcomes, suggesting their potential as prognostic markers. In contrast, the expression of TP53, PTEN, and PPP2R1A did not show a significant impact on patient survival. The functional importance of these genes was investigated utilizing pathway enrichment and protein-protein interaction networks. Additionally, pathway enrichment analysis indicated these genes are involved in critical cancer pathways. The findings highlight the importance of integrating epigenetic and transcriptomic data to understand UCEC pathogenesis and suggest that the identified genes could serve as potential biomarkers for early diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Na Zhang
- Department of Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China 750002
| | - Wangshu Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China 110000; Dalian Women and Children's Medical Group, Dalian, Liaoning, China 116012
| | - Fang Wang
- Department of Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China 750002
| | - Cailing Han
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China 750004
| | - Guijun Li
- Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, China 750004
| | - Liyun Ren
- Department of Gynecology, The Second People's Hospital of Yinchuan, Yinchuan, Ningxia, China, 75001
| | - Chen Hua
- Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
4
|
Xue Y, Pan L, Vlahopoulos S, Wang K, Zheng X, Radak Z, Bacsi A, Tanner L, Brasier AR, Ba X, Boldogh I. Epigenetic control of type III interferon expression by 8-oxoguanine and its reader 8-oxoguanine DNA glycosylase1. Front Immunol 2023; 14:1161160. [PMID: 37600772 PMCID: PMC10436556 DOI: 10.3389/fimmu.2023.1161160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges. Here, we tested the hypothesis that the DNA repair protein OGG1 recognizes 8-oxoguanine (8-oxoGua) in promoters modulating IFN expression. We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). Mechanistically, OGG1 bound to 8-oxoGua in proximity to interferon response elements, which inhibits the IRF3/IRF7 and NF-κB/RelA DNA occupancy, while promoting the suppressor NF-κB1/p50-p50 homodimer binding to the IFN-λ2/3 promoter. In a mouse model of bronchiolitis induced by RSV infection, functional ablation of OGG1 by a small molecule inhibitor (TH5487) enhances IFN-λ production, decreases immunopathology, neutrophilia, and confers antiviral protection. These findings suggest that the ROS-generated epigenetic mark 8-oxoGua via its reader OGG1 serves as a homeostatic thresholding factor in IFN-λ expression. Pharmaceutical targeting of OGG1 activity may have clinical utility in modulating antiviral response.
Collapse
Affiliation(s)
- Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Spiros Vlahopoulos
- Horemeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian, University of Athens, Athens, Greece
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, University of Sport Science, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Allan R. Brasier
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Fang Y, Zou P. Genome-Wide Mapping of Oxidative DNA Damage via Engineering of 8-Oxoguanine DNA Glycosylase. Biochemistry 2019; 59:85-89. [PMID: 31618020 DOI: 10.1021/acs.biochem.9b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The occurrence of 8-oxo-7,8-dihydroguanine (OG) in the genome, as one of the major DNA oxidative damages, has been implicated in an array of biological processes, ranging from mutagenesis to transcriptional regulation. Genome-wide mapping of oxidative damages could shed light on the underlying cellular mechanism. In the present study, we engineered the hOGG1 enzyme, a primary 8-oxoguanine DNA glycosylase, into a guanine oxidation-profiling tool. Our method, called enTRAP-seq, successfully identified more than 1400 guanine oxidation sites in the mouse embryonic fibroblast genome. These OG peaks were enriched in open chromatin regions and regulatory elements, including promoters, 5' untranslated regions, and CpG islands. Collectively, we present a simple and generalizable approach for the genome-wide profiling of DNA damages with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yuxin Fang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China.,PKU-IDG/McGovern Institute for Brain Research , Peking University , Beijing 100871 , China
| |
Collapse
|
7
|
Ba X, Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol 2017; 14:669-678. [PMID: 29175754 PMCID: PMC5975208 DOI: 10.1016/j.redox.2017.11.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and the resulting damage to genomic DNA are inevitable consequences of endogenous physiological processes, and they are amplified by cellular responses to environmental exposures. One of the most frequent reactions of reactive oxygen species with DNA is the oxidation of guanine to pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG). Despite the vulnerability of guanine to oxidation, vertebrate genes are primarily embedded in GC-rich genomic regions, and over 72% of the promoters of human genes belong to a class with a high GC content. In the promoter, 8-oxoG may serve as an epigenetic mark, and when complexed with the oxidatively inactivated repair enzyme 8-oxoguanine DNA glycosylase 1, provide a platform for the coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch the prompt and preferential expression of redox-regulated genes. Deviations/variations from this artful coordination may be the etiological links between guanine oxidation and various cellular pathologies and diseases during ageing processes.
Collapse
Affiliation(s)
- Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
8
|
Kemme CA, Marquez R, Luu RH, Iwahara J. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins. Nucleic Acids Res 2017; 45:7751-7759. [PMID: 28486614 PMCID: PMC5569922 DOI: 10.1093/nar/gkx387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/06/2017] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare.
Collapse
Affiliation(s)
- Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Rolando Marquez
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Ross H Luu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
9
|
Hsu CW, Sowers ML, Hsu W, Eyzaguirre E, Qiu S, Chao C, Mouton CP, Fofanov Y, Singh P, Sowers LC. How does inflammation drive mutagenesis in colorectal cancer? TRENDS IN CANCER RESEARCH 2017; 12:111-132. [PMID: 30147278 PMCID: PMC6107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is a major health challenge worldwide. Factors thought to be important in CRC etiology include diet, microbiome, exercise, obesity, a history of colon inflammation and family history. Interventions, including the use of non-steroidal anti-Inflammatory drugs (NSAIDs) and anti-inflammatory agents, have been shown to decrease incidence in some settings. However, our current understanding of the mechanistic details that drive CRC are insufficient to sort out the complex and interacting factors responsible for cancer-initiating events. It has been known for some time that the development of CRC involves mutations in key genes such as p53 and APC, and the sequence in which these mutations occur can determine tumor presentation. Observed recurrent mutations are dominated by C to T transitions at CpG sites, implicating the deamination of 5-methylcytosine (5mC) as a key initiating event in cancer-driving mutations. While it has been widely assumed that inflammation-mediated oxidation drives mutations in CRC, oxidative damage to DNA induces primarily G to T transversions, not C to T transitions. In this review, we discuss this unresolved conundrum, and specifically, we elucidate how the known nucleotide excision repair (NER) and base excision repair (BER) pathways, which are partially redundant and potentially competing, might provide a critical link between oxidative DNA damage and C to T mutations. Studies using recently developed next-generation DNA sequencing technologies have revealed the genetic heterogeneity in human tissues including tumors, as well as the presence of DNA damage. The capacity to follow DNA damage, repair and mutagenesis in human tissues using these emerging technologies could provide a mechanistic basis for understanding the role of oxidative damage in CRC tumor initiation. The application of these technologies could identify mechanism-based biomarkers useful in earlier diagnosis and aid in the development of cancer prevention strategies.
Collapse
Affiliation(s)
- Chia Wei Hsu
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Mark L Sowers
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Willie Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Eduardo Eyzaguirre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Charles P Mouton
- Department of Family Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yuri Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Cysewski P, Oliński R. Structural, electronic and energetic consequences of epigenetic cytosine modifications. Phys Chem Chem Phys 2015; 17:19616-24. [PMID: 26151626 DOI: 10.1039/c5cp02188j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen bonding patterns of cytosine and its seven C5-modifed analogues paired with canonical guanine were studied using the first principle approach. Both global minima and biologically relevant conformations were studied. The former resulted from full gradient geometry optimizations of hydrogen bonded pairs, while the latter were obtained based on 125 d(GpC) dinucleotides found in the PDB database. The obtained energetic, electronic and structural data lead to the conclusion that the epigenetically relevant modification of cytosine may have serious consequences on hydrogen bonding with guanine. First of all, the significant substituent effects were observed for such trends as charges on sites involved in hydrogen bonding, the total intermolecular interaction energy or electron densities at bond critical points. Moreover, the molecular orbital polarization contribution resulting from energy decomposition expressed in terms of absolutely localized molecular orbitals exhibited an inverse linear correlation with frozen density contributions. A substituent effect on the amount of charge transfer from pyrimidine toward guanine was also observed. The increase of intermolecular interactions of guanine with modified cytosine is associated with the increase of the electro-donating character of the C5-substituent. However, only pairs involving 5-methylcytosine are more stable than those formed by canonical cytosine. Furthermore, the energy differences observed for global minima also remain important for a broad range of displacement and angular parameters defining pair conformations in model d(GpC) dinucleotides. Due to the sensitivities of intermolecular interactions to mutual arrangements of monomers the modification of cytosine at the C5 site can significantly alter the actual energy profiles. Consequently, it may be anticipated that the modified dinucleotides will adopt different conformations than a standard G-C pair in a B-DNA double helix.
Collapse
Affiliation(s)
- P Cysewski
- Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Physical Chemistry Department, Kurpińskiego 5, Bydgoszcz, Poland.
| | | |
Collapse
|
11
|
Khrapunov S, Warren C, Cheng H, Berko E, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 2014; 53:3379-91. [PMID: 24828757 PMCID: PMC4045320 DOI: 10.1021/bi500424z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Indexed: 02/04/2023]
Abstract
The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Christopher Warren
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Huiyong Cheng
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Esther
R. Berko
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - John M. Greally
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| |
Collapse
|
12
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
13
|
Sowers JL, Johnson KM, Conrad C, Patterson JT, Sowers LC. The role of inflammation in brain cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:75-105. [PMID: 24818720 DOI: 10.1007/978-3-0348-0837-8_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding in glioma cell lines and patient samples, suggesting a common defect in epigenetic reprogramming. Within the tumor microenvironment, infiltrating immune cells increase oxidative DNA damage, likely promoting both genetic and epigenetic changes that occur during glioma evolution. In this environment, glioma cells are selected that utilize multiple metabolic changes, including changes in the metabolism of the amino acids glutamate, tryptophan, and arginine. Whereas altered metabolism can promote the destruction of normal tissues, glioma cells exploit these changes to promote tumor cell survival and to suppress adaptive immune responses. Further understanding of these metabolic changes could reveal new strategies that would selectively disadvantage tumor cells and redirect host antitumor responses toward eradication of these lethal tumors.
Collapse
Affiliation(s)
- James L Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | |
Collapse
|
14
|
Theruvathu JA, Yin YW, Pettitt BM, Sowers LC. Comparison of the structural and dynamic effects of 5-methylcytosine and 5-chlorocytosine in a CpG dinucleotide sequence. Biochemistry 2013; 52:8590-8. [PMID: 24147911 DOI: 10.1021/bi400980c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation-mediated reactive molecules can result in an array of oxidized and halogenated DNA-damage products, including 5-chlorocytosine ((Cl)C). Previous studies have shown that (Cl)C can mimic 5-methylcytosine ((m)C) and act as a fraudulent epigenetic signal, promoting the methylation of previously unmethylated DNA sequences. Although the 5-halouracils are good substrates for base-excision repair, no repair activity has yet been identified for (Cl)C. Because of the apparent biochemical similarities of (m)C and (Cl)C, we have investigated the effects of (m)C and (Cl)C substitution on oligonucleotide structure and dynamics. In this study, we have constructed oligonucleotide duplexes containing C, (Cl)C, and (m)C within a CpG dinucleotide. The thermal and thermodynamic stability of these duplexes were found to be experimentally indistinguishable. Crystallographic structures of duplex oligonucleotides containing (m)C or (Cl)C were determined to 1.2 and 1.9 Å resolution, respectively. Both duplexes are B-form and are superimposable on a previously determined structure of a cytosine-containing duplex with a rmsd of approximately 0.25 Å. NMR solution studies indicate that all duplexes containing cytosine or the cytosine analogues are normal B-form and that no structural perturbations are observed surrounding the site of each substitution. The magnitude of the base-stacking-induced upfield shifts for nonexchangeable base proton resonances are similar for each of the duplexes examined, indicating that neither (m)C nor (Cl)C significantly alter base-stacking interactions. The (Cl)C analogue is paired with G in an apparently normal geometry; however, the G-imino proton of the (Cl)C-G base pair resonates to higher field relative to (m)C-G or C-G, indicating a weaker imino hydrogen bond. Using selective ¹⁵N-enrichment and isotope-edited NMR, we observe that the amino group of (Cl)C rotates at roughly half of the rate of the corresponding amino groups of the C-G and (m)C-G base pairs. The altered chemical shifts of hydrogen-bonding proton resonances for the (Cl)C-G base pair as well as the slower rotation of the (Cl)C amino group can be attributed to the electron-withdrawing inductive property of the 5-chloro substituent. The apparent similarity of duplexes containing (m)C and (Cl)C demonstrated here is in accord with results of previous biochemical studies and further suggests that (Cl)C is likely to be an unusually persistent form of DNA damage.
Collapse
Affiliation(s)
- Jacob A Theruvathu
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch , 3.330 Basic Science Building, 301 University Boulevard, Galveston, Texas 77555, United States
| | | | | | | |
Collapse
|
15
|
Scartozzi M, Giampieri R, Loretelli C, Mandolesi A, del Prete M, Biagetti S, Alfonsi S, Faloppi L, Bianconi M, Bittoni A, Bearzi I, Cascinu S. Role of β4 integrin in HER-3-negative, K-RAS wild-type metastatic colorectal tumors receiving cetuximab. Future Oncol 2013; 9:1207-14. [PMID: 23617461 DOI: 10.2217/fon.13.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS Altered α6β4 integrin expression has been demonstrated in HER-3-negative tumors and may be responsible for anti-HER treatment resistance. The current study aimed to evaluate the interaction between polymorphisms of α6 and β4 integrins and clinical outcome in HER-3-negative, K-RAS wild-type colorectal cancer patients receiving cetuximab. PATIENTS & METHODS K-RAS analysis was performed via direct sequencing, HER-3 was evaluated by immunohistochemistry and genotyping of α6 and β4 integrins was performed by real-time PCR. RESULTS An univariate analysis, the β4 rs8669, rs871443 and rs9367 polymorphisms correlated with progression-free and overall survival. On multivariate analysis, only the β4 rs8669 maintained an independent role in influencing progression-free survival. CONCLUSION We believe that β4 rs8669 genotyping may help to identify a subgroup of HER-3-negative, K-RAS wild-type colorectal cancer patients who are more likely to benefit from anti-EGFR treatment. Our findings could also be relevant in planning future trials testing treatment strategies against the integrin-activated molecular pathways.
Collapse
Affiliation(s)
- Mario Scartozzi
- Clinica di Oncologia Medica, AO Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22:9-20. [PMID: 22789535 PMCID: PMC3396881 DOI: 10.1016/j.ccr.2012.06.008] [Citation(s) in RCA: 801] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/31/2012] [Accepted: 06/18/2012] [Indexed: 12/13/2022]
Abstract
Epigenetic and genetic alterations have long been thought of as two separate mechanisms participating in carcinogenesis. A recent outcome of whole exome sequencing of thousands of human cancers has been the unexpected discovery of many inactivating mutations in genes that control the epigenome. These mutations have the potential to disrupt DNA methylation patterns, histone modifications, and nucleosome positioning and hence, gene expression. Genetic alteration of the epigenome therefore contributes to cancer just as epigenetic process can cause point mutations and disable DNA repair functions. This crosstalk between the genome and the epigenome offers new possibilities for therapy.
Collapse
Affiliation(s)
- Jueng Soo You
- Department of Urology, USC Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
17
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|