1
|
Booncherm V, Gill H, Anderson E, Mostafa S, Mercado C, Jiang X. Probing Ligand-Induced Conformational Changes in an MFS Transporter in vivo Using Site-Directed PEGylation. J Mol Biol 2025; 437:168941. [PMID: 39799991 DOI: 10.1016/j.jmb.2025.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence. Ligand binding increases the rate of PEGylation at five out of eight tested positions on the periplasmic side in vivo, while decreasing the rate of PEGylation at both positions tested on the cytoplasmic side in situ. Upon ligand binding, the rate of PEGylation at two periplasmic positions, K42 and Q242, slightly decreases in vivo, but increases in situ, indicating the conformational behavior of these two residues in living cells may not be identical to that in isolated cell membranes. Furthermore, abolishing the electrochemical H+ gradient (Δμ∼H+) reduces the rate of PEGylation at all tested positions on the periplasmic side. We also found that, unlike the linear form, the branched (Y-shape) mPEG-Mal-5K cannot pass the outer membrane. This work characterizes the alternating access of LacY in the context of a living cell and demonstrates that this methodology is feasible and effective for dynamical studies of MFS transporters.
Collapse
Affiliation(s)
- Vatchilasack Booncherm
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Harjot Gill
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Ellen Anderson
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Sayeeda Mostafa
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Cindy Mercado
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Xiaoxu Jiang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA.
| |
Collapse
|
2
|
Zhang X, Liu F, Li D, Guo D, Ma Y, Zhou JJ, Wang D, Chen Z. Pyriofenone Interacts with the Major Facilitator Superfamily Transporter of Phytopathogenic Fungi to Potentially Control Tea Leaf Spot Caused by Lasiodiplodia theobromae. PHYTOPATHOLOGY 2025; 115:128-138. [PMID: 39374036 DOI: 10.1094/phyto-08-24-0246-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Tea leaf spot caused by Lasiodiplodia theobromae is a newly discovered fungal disease in southwest China. Due to a lack of knowledge of its epidemiology and control strategies, the disease has a marked impact on tea yield and quality. Pyriofenone is a new fungicide belonging to the aryl phenyl ketone fungicide group, which has shown marked efficacy in controlling various fungal diseases. However, its mechanism of action is not yet understood. This study found that pyriofenone exhibits strong in vitro inhibitory activity against various phytopathogenic fungi. Specifically, it showed strong inhibitory activity against L. theobromae, with a half-maximal effective concentration (EC50) value of 0.428 μg/ml determined by measuring the mycelial growth rate. Morphological observations, using optical, scanning electron, and transmission electron microscopy, revealed that pyriofenone induces morphological abnormalities in L. theobromae hyphae. At lower doses, the hyphae became swollen, the distance between septa decreased, and the hyphal growth rate slowed. At higher doses and longer exposures, the hyphae collapsed. Transcriptomic and bioinformatic analyses indicated that pyriofenone can affect the expression of genes related to membrane transporters. Homology modeling suggested that pyriofenone may bind to a candidate target protein of the major facilitator superfamily transporter, with a free binding energy of -7.1 kcal/mol. This study suggests that pyriofenone may potentially regulate the transport of metabolites in L. theobromae, thus affecting hyphal metabolism and interfering with hyphal growth. Pyriofenone exhibits in vitro inhibitory activity against various tea foliar pathogens and holds promise for future applications to the control of tea foliar diseases.
Collapse
Affiliation(s)
- Xiaolin Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Di Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yue Ma
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
4
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
5
|
Dissecting the Conformational Dynamics of the Bile Acid Transporter Homologue ASBT NM. J Mol Biol 2021; 433:166764. [PMID: 33359100 DOI: 10.1016/j.jmb.2020.166764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.
Collapse
|
6
|
Sampson CDD, Stewart MJ, Mindell JA, Mulligan C. Solvent accessibility changes in a Na +-dependent C 4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism. J Biol Chem 2020; 295:18524-18538. [PMID: 33087444 PMCID: PMC7939474 DOI: 10.1074/jbc.ra120.013894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site-associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.
Collapse
Affiliation(s)
- Connor D D Sampson
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Matthew J Stewart
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Dwivedi M. Site-directed mutations reflecting functional and structural properties of Ec-NhaA. Biochimie 2020; 180:79-89. [PMID: 33129932 DOI: 10.1016/j.biochi.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
NhaA antiporters are secondary integral membrane protein critical for maintaining the Na+/H+ cell homeostasis, as a result, they regulate fundamental processes like cell volume and intracellular pH. Exploration of the structural and functional properties can assist to make them effective human drug targets and mechanisms of salt-resistance in plants. NhaA proteins are integrated into cytoplasmic and intracellular membranes, transport 2H+/Na + across the membrane by the canonical alternating access mechanism. There are mutagenesis studies have done on Ec-NhaA predicting residues crucial for function and structure. The unique NhaA structural fold is formed in the middle of the membrane by two transmembrane segments (TMs), TM IV and XI which cross each other creating a delicate electrostatically balanced environment for the binding of Na+/H+. Previously, Asp164, Asp163 and Asp133 residues have been proposed as crucial for Na+/Li + binding on the based on crystal structure and mutation-based studies. However, the pathway and the binding sites for the two protons are still elusive and debatable. This review will provide comprehensive details on various mutations constructed in Ec-NhaA by different research groups using site-directed or random mutagenesis techniques. The selected residues for mutations are located on the sites which are more suspected to have a crucial role in function and structure on NhaA. This information on the single platform would accelerate further studies on the structure-function relationship on NhaA as well as will facilitate to predict the role of Na+/H+ antiporters in human diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Gomtinagar Ext., Lucknow, 226028, India.
| |
Collapse
|
8
|
Geiger D. Plant glucose transporter structure and function. Pflugers Arch 2020; 472:1111-1128. [PMID: 32845347 PMCID: PMC8298354 DOI: 10.1007/s00424-020-02449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
The carbohydrate D-glucose is the main source of energy in living organisms. In contrast to animals, as well as most fungi, bacteria, and archaea, plants are capable to synthesize a surplus of sugars characterizing them as autothrophic organisms. Thus, plants are de facto the source of all food on earth, either directly or indirectly via feed to livestock. Glucose is stored as polymeric glucan, in animals as glycogen and in plants as starch. Despite serving a general source for metabolic energy and energy storage, glucose is the main building block for cellulose synthesis and represents the metabolic starting point of carboxylate- and amino acid synthesis. Finally yet importantly, glucose functions as signalling molecule conveying the plant metabolic status for adjustment of growth, development, and survival. Therefore, cell-to-cell and long-distance transport of photoassimilates/sugars throughout the plant body require the fine-tuned activity of sugar transporters facilitating the transport across membranes. The functional plant counterparts of the animal sodium/glucose transporters (SGLTs) are represented by the proton-coupled sugar transport proteins (STPs) of the plant monosaccharide transporter(-like) family (MST). In the framework of this special issue on “Glucose Transporters in Health and Disease,” this review gives an overview of the function and structure of plant STPs in comparison to the respective knowledge obtained with the animal Na+-coupled glucose transporters (SGLTs).
Collapse
Affiliation(s)
- Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082, Wuerzburg, Germany.
| |
Collapse
|
9
|
Giladi M, Lee SY, Refaeli B, Hiller R, Chung KY, Khananshvili D. Structure-dynamic and functional relationships in a Li+-transporting sodium‑calcium exchanger mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:189-200. [DOI: 10.1016/j.bbabio.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/27/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
|
10
|
Xianwei T, Diannan L, Boxiong W. Substrate transport pathway inside outward open conformation of EmrD: a molecular dynamics simulation study. MOLECULAR BIOSYSTEMS 2017; 12:2634-41. [PMID: 27327574 DOI: 10.1039/c6mb00348f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.
Collapse
Affiliation(s)
- Tan Xianwei
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Lu Diannan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Wang Boxiong
- Department of Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Jewel Y, Dutta P, Liu J. Exploration of conformational changes in lactose permease upon sugar binding and proton transfer through coarse-grained simulations. Proteins 2017. [PMID: 28639287 DOI: 10.1002/prot.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves sugar translocation, H+ transfer, and large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear due to the complexity and multiscale nature of the process. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-d-galactopyranosyl-1-thio- β-d-galactopyranoside (TDG) molecule to a wild-type LacY. Results show that the local interactions between TDG and LacY at the binding pocket are consistent with the X-ray experiment. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from ∼5.5 µs simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with double electron-electron resonance and thiol cross-linking experiments. Our analysis suggests that the conformational changes of LacY are a cumulative consequence of interdomain H-bonds breaking at the periplasmic side, interdomain salt-bridge formation at the cytoplasmic side, and the TDG orientational changes during the transition.
Collapse
Affiliation(s)
- Yead Jewel
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
12
|
Giladi M, van Dijk L, Refaeli B, Almagor L, Hiller R, Man P, Forest E, Khananshvili D. Dynamic distinctions in the Na +/Ca 2+ exchanger adopting the inward- and outward-facing conformational states. J Biol Chem 2017; 292:12311-12323. [PMID: 28572509 DOI: 10.1074/jbc.m117.787168] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Na+/Ca2+ exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj (Methanococcus jannaschii NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively. Next, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) was employed to analyze the backbone dynamics profiles in proteins, preferentially adopting the OF (WT) and IF (5L6-8) states either in the presence or absence of ions. Characteristic differences in the backbone dynamics were identified between apo NCX_Mj-WT and NCX_Mj-5L6-8, thereby underscoring specific conformational patterns owned by the OF and IF states. Saturating concentrations of Na+ or Ca2+ specifically modify HDX patterns, revealing that the ion-bound/occluded states are much more stable (rigid) in the OF than in the IF state. Conformational differences observed in the ion-occluded OF and IF states can account for diversifying the ion-release dynamics and apparent affinity (Km ) at opposite sides of the membrane, where specific structure-dynamic elements can effectively match the rates of bidirectional ion movements at physiological ion concentrations.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel; Tel-Aviv Sourasky Medical Center, Tel-Aviv 39040, Israel
| | - Liat van Dijk
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Bosmat Refaeli
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Lior Almagor
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Petr Man
- BioCeV-Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-14220 Prague, Czech Republic; Faculty of Science, Charles University, CZ-14220 Prague, Czech Republic
| | - Eric Forest
- University of Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; Commissariat à l'Energie Atomique, IBS, F-38044 Grenoble, France
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel.
| |
Collapse
|
13
|
Hariharan P, Andersson M, Jiang X, Pardon E, Steyaert J, Kaback HR, Guan L. Thermodynamics of Nanobody Binding to Lactose Permease. Biochemistry 2016; 55:5917-5926. [PMID: 27686537 DOI: 10.1021/acs.biochem.6b00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increases the affinity for galactoside. The findings presented here show that both enthalpy and entropy contribute favorably to binding of the Nbs to wild-type (WT) LacY and that binding of Nb to double-Trp mutant G46W/G262W is driven by a greater enthalpy at an entropic penalty. Thermodynamic analyses support the interpretation that WT LacY is stabilized in outward-facing conformations like the double-Trp mutant with closure of the water-filled cytoplasmic cavity through conformational selection. The LacY conformational transition required for ligand binding is reflected by a favorable entropy increase. Molecular dynamics simulations further suggest that the entropy increase likely stems from release of immobilized water molecules primarily from the cytoplasmic cavity upon closure.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Magnus Andersson
- Department of Theoretical Physics and Swedish e-Science Research Center, Science for Life Laboratory, KTH Royal Institute of Technology , SE-171 21 Solna, Sweden
| | - Xiaoxu Jiang
- Department of Physiology, University of California , Los Angeles, California 90095, United States
| | - Els Pardon
- VIB Center for Structural Biology Research, VIB , 1050 Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB Center for Structural Biology Research, VIB , 1050 Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussel, Belgium
| | - H Ronald Kaback
- Department of Physiology, University of California , Los Angeles, California 90095, United States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| |
Collapse
|
14
|
Jiang X, Andersson M, Chau BT, Wong LY, Villafuerte MKR, Kaback HR. Role of Conserved Gly-Gly Pairs on the Periplasmic Side of LacY. Biochemistry 2016; 55:4326-32. [PMID: 27438891 DOI: 10.1021/acs.biochem.6b00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the periplasmic side of LacY, two conserved Gly-Gly pairs in helices II and XI (Gly46 and Gly370, respectively) and helices V and VIII (Gly159 and Gly262, respectively) allow close packing of each helix pair in the outward (periplasmic)-closed conformation. Previous studies demonstrate that replacing one Gly residue in each Gly-Gly pair with Trp leads to opening of the periplasmic cavity with abrogation of transport activity, but an increased rate of galactoside binding. To further investigate the role of the Gly-Gly pairs, 11 double-replacement mutants were constructed for each pair at positions 46 (helix II) and 262 (helix VIII). Replacement with Ala or Ser results in decreased but significant transport activity, while replacements with Thr, Val, Leu, Asn, Gln, Tyr, Trp, Glu, or Lys exhibit very little or no transport. Remarkably, however, the double mutants bind galactoside with affinities 10-20-fold higher than that of the pseudo-WT or WT LacY. Moreover, site-directed alkylation of a periplasmic Cys replacement indicates that the periplasmic cavity becomes readily accessible in the double-replacement mutants. Molecular dynamics simulations with the WT and double-Leu mutant in the inward-open/outward-closed conformation provide support for this interpretation.
Collapse
Affiliation(s)
| | - Magnus Andersson
- Department of Theoretical Physics and Swedish e-Science Research Center, Science for Life Laboratory, KTH Royal Institute of Technology , SE-171 21 Solna, Sweden
| | | | | | | | | |
Collapse
|
15
|
The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation. Sci Rep 2016; 6:23339. [PMID: 27021484 PMCID: PMC4810432 DOI: 10.1038/srep23339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The Na+, Li+/H+ antiporter of Escherichia coli (Ec-NhaA) maintains pH, Na+ homeostasis in enterobacteria. We used isothermal titration calorimetry to perform a detailed thermodynamic analysis of Li+ binding to Ec-NhaA and several of its mutants. We found that, in line with the canonical alternative access mechanistic model of secondary transporters, Li+/H+ binding to the antiporter is antagonistically coupled. Binding of Li+ displaces 2 H+ from the binding site. The process is enthalpically driven, the enthalpic gain just compensating for an entropic loss and the buffer-associated enthalpic changes dominate the overall free-energy change. Li+ binding, H+ release and antiporter activity were all affected to the same extent by mutations in the Li+ binding site (D163E, D163N, D164N, D164E), while D133C changed the H+/Li+ stoichiometry to 4. Most striking, however, was the mutation, A167P, which converted the Ec-NhaA antagonistic binding into synergistic binding which is only known to occur in Cl−/H+ antiporter.
Collapse
|
16
|
Abstract
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H(+) across the Escherichia coli membrane (galactoside/H(+) symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H(+) symport in the absence of the H(+) electrochemical gradient (∆µ̃H+) is deprotonation, whereas in the presence of ∆µ̃H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not ∆µ̃H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in Kd for sugar on either side of the membrane, but the pKa (the affinity for H(+)) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, ∆µ̃H+ acts kinetically to control the rate of the process.
Collapse
|
17
|
Abstract
![]()
Although
an X-ray crystal structure of lactose permease (LacY)
has been presented with bound galactopyranoside, neither the sugar
nor the residues ligating the sugar can be identified with precision
at ∼3.5 Å. Therefore, additional evidence is important
for identifying side chains likely to be involved in binding. On the
basis of a clue from site-directed alkylation suggesting that Asn272,
Gly268, and Val264 on one face of helix VIII might participate in
galactoside binding, molecular dynamics simulations were conducted
initially. The simulations indicate that Asn272 (helix VIII) is sufficiently
close to the galactopyranosyl ring of a docked lactose analogue to
play an important role in binding, the backbone at Gly268 may be involved,
and Val264 does not interact with the bound sugar. When the three
side chains are subjected to site-directed mutagenesis, with the sole
exception of mutant Asn272 → Gln, various other replacements
for Asn272 either markedly decrease affinity for the substrate (i.e.,
high KD) or abolish binding altogether.
However, mutant Gly268 → Ala exhibits a moderate 8-fold decrease
in affinity, and binding by mutant Val264 → Ala is affected
only minimally. Thus, Asn272 and possibly Gly268 may comprise additional
components of the galactoside-binding site in LacY.
Collapse
Affiliation(s)
- Xiaoxu Jiang
- Department of Physiology and Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095-7327, United States
| | | | | | | | | |
Collapse
|
18
|
Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM. Structure of sugar-bound LacY. Proc Natl Acad Sci U S A 2014; 111:1784-8. [PMID: 24453216 PMCID: PMC3918835 DOI: 10.1073/pnas.1324141111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we describe the X-ray crystal structure of a double-Trp mutant (Gly46→Trp/Gly262→Trp) of the lactose permease of Escherichia coli (LacY) with a bound, high-affinity lactose analog. Although thought to be arrested in an open-outward conformation, the structure is almost occluded and is partially open to the periplasmic side; the cytoplasmic side is tightly sealed. Surprisingly, the opening on the periplasmic side is sufficiently narrow that sugar cannot get in or out of the binding site. Clearly defined density for a bound sugar is observed at the apex of the almost occluded cavity in the middle of the protein, and the side chains shown to ligate the galactopyranoside strongly confirm more than two decades of biochemical and spectroscopic findings. Comparison of the current structure with a previous structure of LacY with a covalently bound inactivator suggests that the galactopyranoside must be fully ligated to induce an occluded conformation. We conclude that protonated LacY binds D-galactopyranosides specifically, inducing an occluded state that can open to either side of the membrane.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; and
| | | | | | - Janet S. Finer-Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; and
| | - H. Ronald Kaback
- Departments of Physiology
- Microbiology, Immunology and Molecular Genetics, and
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; and
| |
Collapse
|
19
|
The Life and Times of Lac Permease: Crystals Ain’t Everything, but They Certainly Do Help. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Gaiko O, Bazzone A, Fendler K, Kaback HR. Electrophysiological characterization of uncoupled mutants of LacY. Biochemistry 2013; 52:8261-6. [PMID: 24152072 DOI: 10.1021/bi4013269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study of the lactose permease of Escherichia coli (LacY), five functionally irreplaceable residues involved specifically in H(+) translocation (Arg302 and Glu325) or in the coupling between protonation and sugar binding (Tyr236, Glu269, and His322) were mutated individually or together with mutant Glu325 → Ala. The wild type and each mutant were purified and reconstituted into proteoliposomes, which were then examined using solid-supported-membrane-based electrophysiology. Mutants Glu325 → Ala or Arg302 → Ala, in which H(+) symport is abolished, exhibit a weakly electrogenic rapid reaction triggered by sugar binding. The reaction is essentially absent in mutant Tyr236 → Phe, Glu269 → Ala, and His322 → Ala, and each of these mutations blocks the electrogenic reaction observed in the Glu325 → Ala mutant. The findings are consistent with the interpretation that the electrogenic reaction induced by sugar binding is due to rearrangement of charged residues in LacY and that this reaction is blocked by mutation of each member of the Tyr236/Glu269/His322 triad. In addition, further support is provided for the conclusion that deprotonation is rate limiting for downhill lactose/H(+) symport.
Collapse
Affiliation(s)
- Olga Gaiko
- Departments of Physiology and ‡Microbiology, Immunology & Molecular Genetics, §Molecular Biology Institute, University of California-Los Angeles , Los Angeles, California 90095, United States
| | | | | | | |
Collapse
|
21
|
Jiang X, Driessen AJM, Feringa BL, Kaback HR. The periplasmic cavity of LacY mutant Cys154→Gly: how open is open? Biochemistry 2013; 52:6568-74. [PMID: 23962108 PMCID: PMC3951333 DOI: 10.1021/bi401026d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lactose permease from Escherichia coli (LacY) is a galactoside/H(+) symporter that catalyzes the coupled stoichiometric transport of a sugar and an H(+) across the cytoplasmic membrane. X-ray crystal structures of WT LacY and the conformationally restricted mutant Cys154→Gly exhibit an inward-facing conformation with a tightly sealed periplasmic side and a deep central cleft or cavity open to the cytoplasm. Although the crystal structures may give the impression that LacY is a rigid molecule, multiple converging lines of evidence demonstrate that galactoside binding to WT LacY induces reciprocal opening and closing of periplasmic and cytoplasmic cavities, respectively. By this means, the sugar- and H(+)-binding sites in the middle of the molecule are exposed alternatively to either side of the membrane. In contrast to the crystal structure, biochemical/biophysical studies with mutant Cys154→Gly show that the periplasmic side is paralyzed in an open-outward conformation. In this study, a rigid, funnel-shaped, maleimide-containing molecule was used to probe the periplasmic cavity of a pseudo-WT and the Cys154→Gly mutant by site-directed alkylation. The findings provide strong support for previous observations and indicate further that the external opening of the periplasmic cleft in the mutant is patent to the extent of at least 8.5 Å in the absence of sugar or about half that of the WT cavity with bound galactoside.
Collapse
Affiliation(s)
- Xiaoxu Jiang
- Department of Physiology and ‡Department of Microbiology, Immunology & Molecular Genertics, §Molecular Biology Institute, University of California Los Angeles , Los Angeles, California 90095, United States
| | | | | | | |
Collapse
|
22
|
Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation. Proc Natl Acad Sci U S A 2013; 110:8876-81. [PMID: 23671103 DOI: 10.1073/pnas.1306849110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trp replacements for conserved Gly-Gly pairs between the N- and C-terminal six-helix bundles on the periplasmic side of lactose permease (LacY) cause complete loss of transport activity with little or no effect on sugar binding. Moreover, the detergent-solubilized mutants exhibit much greater thermal stability than WT LacY. A Cys replacement for Asn245, which is inaccessible/unreactive in WT LacY, alkylates readily in the Gly→Trp mutants, indicating that the periplasmic cavity is patent. Stopped-flow kinetic measurements of sugar binding with the Gly→Trp mutants in detergent reveal linear dependence of binding rates on sugar concentration, as observed with WT or the C154G mutant of LacY, and are compatible with free access to the sugar-binding site in the middle of the molecule. Remarkably, after reconstitution of the Gly→Trp mutants into proteoliposomes, the concentration dependence of sugar-binding rates increases sharply with even faster rates than measured in detergent. Such behavior is strikingly different from that observed for reconstituted WT LacY, in which sugar-binding rates are independent of sugar concentration because opening of the periplasmic cavity is limiting for sugar binding. The observations clearly indicate that Gly→Trp replacements, which introduce bulky residues into tight Gly-Gly interdomain interactions on the periplasmic side of LacY, prevent closure of the periplasmic cavity and, as a result, shift the distribution of LacY toward an outward-open conformation.
Collapse
|
23
|
Schindler BD, Patel D, Seo SM, Kaatz GW. Mutagenesis and modeling to predict structural and functional characteristics of the Staphylococcus aureus MepA multidrug efflux pump. J Bacteriol 2013; 195:523-33. [PMID: 23175649 PMCID: PMC3554018 DOI: 10.1128/jb.01679-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/14/2012] [Indexed: 02/08/2023] Open
Abstract
MepA is a multidrug and toxin extrusion (MATE) family protein and the only MATE protein encoded within the Staphylococcus aureus genome. Structural data for MATE proteins are limited to a single high-resolution example, NorM of Vibrio cholerae. Substitution mutations were created in MepA using gradient plates containing both a substrate and reserpine as an efflux pump inhibitor. Site-directed mutagenesis of plasmid-based mepA was used to reproduce these mutations, as well as unique or low-frequency mutations identified in mepA-overexpressing clinical strains, and to mutagenize conserved acidic residues. The effect of these changes on protein function was quantitated in a norA-disrupted host strain by susceptibility testing with and without inhibitors and by determining the proficiency of ethidium efflux. Up-function substitutions clustered in the carboxy half of MepA, near the cytoplasmic face of the protein. Repeated application of the same gradient plate conditions frequently reproduced identical substitution mutations, suggesting that individual residues are required for interaction with specific substrates. Acidic residues critical to protein function were identified in helices 4 and 5. In silico modeling revealed an outward-facing molecule, with helices 1, 2, 4, 7, 8, and 10 having contact with a central cavity that may represent a substrate translocation pathway. Functionally important residues within this cavity included S81, A161, M291, and A302. These data provide a critical starting point for understanding how MATE multidrug efflux proteins function and will be useful in refining crystallographic data when they are available.
Collapse
Affiliation(s)
| | - Diixa Patel
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Susan M. Seo
- John D. Dingell Department of Veterans Affairs Medical Center
| | - Glenn W. Kaatz
- John D. Dingell Department of Veterans Affairs Medical Center
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Frillingos S. Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:250-272. [PMID: 23097742 PMCID: PMC3476789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/02/2012] [Indexed: 06/01/2023]
Abstract
The nucleobase-ascorbate transporter or nucleobase-cation symporter-2 (NAT/NCS2) family is one of the five known families of transporters that use nucleobases as their principal substrates and the only one that is evolutionarily conserved and widespread in all major taxa of organisms. The family is a typical paradigm of a group of related transporters for which conservation in sequence and overall structure correlates with high functional variations between homologs. Strikingly, the human homologs fail to recognize nucleobases or related cytotoxic compounds. This fact allows important biomedical perspectives for translation of structure-function knowledge on this family to the rational design of targeted antimicrobial purine-related drugs. To date, very few homologs have been characterized experimentally in detail and only two, the xanthine permease XanQ and the uric acid/xanthine permease UapA, have been studied extensively with site-directed mutagenesis. Recently, the high-resolution structure of a related homolog, the uracil permease UraA, has been solved for the first time with crystallography. In this review, I summarize current knowledge and emphasize how the systematic Cys-scanning mutagenesis of XanQ, in conjunction with existing biochemical and genetic evidence for UapA and the x-ray structure of UraA, allow insight on the structure-function and evolutionary relationships of this important group of transporters. The review is organized in three parts referring to (I) the theory of use of Cys-scanning approaches in the study of membrane transporter families, (II) the state of the art with experimental knowledge and current research on the NAT/NCS2 family, (III) the perspectives derived from the Cys-scanning analysis of XanQ.
Collapse
Affiliation(s)
- Stathis Frillingos
- Laboratory of Biological Chemistry, University of Ioannina Medical School 45110 Ioannina Greece
| |
Collapse
|
25
|
Role of the irreplaceable residues in the LacY alternating access mechanism. Proc Natl Acad Sci U S A 2012; 109:12438-42. [PMID: 22802658 DOI: 10.1073/pnas.1210684109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Few side chains in the galactoside/H(+) symporter LacY (lactose permease of Escherichia coli) are irreplaceable for an alternating access mechanism in which sugar binding induces closing of the cytoplasmic cavity and reciprocal opening of a periplasmic cavity. In this study, each irreplaceable residue was mutated individually, and galactoside-induced opening or closing of periplasmic or cytoplasmic cavities was probed by site-directed alkylation. Mutation of Glu126 (helix IV) or Arg144 (helix V), which are essential for sugar binding, completely blocks sugar-induced periplasmic opening as expected. Remarkably, however, replacement of Glu269 (helix VIII), His322 (helix X), or Tyr236 (helix VII) causes spontaneous opening of the periplasmic cavity in the absence of sugar and decreased closing of the cytoplasmic cavity in the presence of galactoside. In contrast, mutation of Arg302 (helix IX) or Glu325 (helix X) has no such effect, and sugar binding induces normal opening and closing of periplasmic and cytoplasmic cavities. Possibly, Glu269, His322, and Tyr236 act in concert to coordinate opening and closing of the cavities by binding water, which also acts as a cofactor in H(+) translocation. Mutation of the triad results in loss of the bound water, which destabilizes LacY, and the cavities open and close in an uncoordinated manner. Thus, the triad mutants exhibit poor affinity for sugar, and galactoside/H(+) symport is abolished as well.
Collapse
|
26
|
Abstract
LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in Cys154 → Gly LacY in right-side-out membrane vesicles or after solubilization and purification in dodecyl-β-D-maltopyranoside (DDM). Unlike the pseudo-WT, Cys replacements on the periplasmic side of the Cys154 → Gly mutant label rapidly in the membrane without sugar, but labeling decreases markedly after the mutant proteins are purified. Thus, Cys154 → Gly LacY likely favors a higher-energy intermediate periplasmic-open conformation in situ, but collapses to a lower-energy periplasmic-closed conformation in DDM after purification. Notably, branched-chain or neopentyl glycol maltoside detergents stabilize Cys154 → Gly LacY in the membrane-embedded form.
Collapse
|
27
|
Smirnova I, Kasho V, Kaback HR. Lactose permease and the alternating access mechanism. Biochemistry 2011; 50:9684-93. [PMID: 21995338 DOI: 10.1021/bi2014294] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Physiology and Department of Microbiology, University of California, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
28
|
Karena E, Frillingos S. The role of transmembrane segment TM3 in the xanthine permease XanQ of Escherichia coli. J Biol Chem 2011; 286:39595-605. [PMID: 21917919 DOI: 10.1074/jbc.m111.299164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The xanthine permease XanQ of Escherichia coli is used as a study prototype for function-structure analysis of the ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family. Our previous mutagenesis study of polar residues of XanQ has shown that Asn-93 at the middle of putative TM3 is a determinant of substrate affinity and specificity. To study the role of TM3 in detail we employed Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence 79-107 (YGIVGSGLLSIQSVNFSFVTVMIALGSSM) including TM3 (underlined) and flanking sequences was replaced individually with Cys. Of 29 single-Cys mutants, 20 accumulate xanthine to 40-110% of the steady state observed with C-less, six (S88C, F94C, A102C, G104C, S106C) accumulate to low levels (10-30%) and three (G83C, G85C, N93C) are inactive. Extensive mutagenesis reveals that Gly-83 and, to a lesser extent, Gly-85, are crucial for expression in the membrane. Replacements of Asn-93 disrupt affinity (Thr) or permit recognition of 8-methylxanthine which is not a wild-type ligand (Ala, Ser, Asp) and utilization of uric acid which is not a wild-type substrate (Ala, Ser). Replacements of Phe-94 impair affinity for 2-thio and 6-thioxanthine (Tyr) or 3-methylxanthine (Ile). Single-Cys mutants S84C, L86C, L87C, and S95C are highly sensitive to inactivation by N-ethylmaleimide. Our data reveal that key residues of TM3 cluster in two conserved sequence motifs, (83)GSGLL(87) and (93)NFS(95), and highlight the importance of Asn-93 and Phe-94 in substrate recognition and specificity; these findings are supported by structural modeling on the recently described x-ray structure of the uracil-transporting homolog UraA.
Collapse
Affiliation(s)
- Ekaterini Karena
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, Greece
| | | |
Collapse
|
29
|
Zhou Y, Madej MG, Guan L, Nie Y, Kaback HR. An early event in the transport mechanism of LacY protein: interaction between helices V and I. J Biol Chem 2011; 286:30415-30422. [PMID: 21730060 DOI: 10.1074/jbc.m111.268433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix V in LacY, which abuts and crosses helix I in the N-terminal helix bundle of LacY, contains Arg(144) and Trp(151), two residues that play direct roles in sugar recognition and binding, as well as Cys(154), which is important for conformational flexibility. In this study, paired Cys replacement mutants in helices V and I were strategically constructed with tandem factor Xa protease cleavage sites in the loop between the two helices to test cross-linking. None of the mutants form disulfides spontaneously; however, three mutants (Pro(28) → Cys/Cys(154), Pro(28) → Cys/Val(158) → Cys, and Phe(29) → Cys/Val(158) → Cys) exhibit cross-linking after treatment with copper/1,10-phenanthroline (Cu/Ph) or 1,1-methanediyl bismethanethiosulfonate ((MTS)(2)-1), 3-4 Å), and cross-linking is quantitative in the presence of ligand. Remarkably, with one mutant, complete cross-linking with (MTS)(2)-1 has no effect on lactose transport, whereas quantitative disulfide cross-linking catalyzed by Cu/Ph markedly inhibits transport activity. The findings are consistant with a number of previous conclusions suggesting that sugar binding to LacY causes a localized scissors-like movement between helices V and I near the point where the two helices cross in the middle of the membrane. This ligand-induced movement may act to initiate the global conformational change resulting from sugar binding.
Collapse
Affiliation(s)
- Yonggang Zhou
- Departments of Physiology, University of California, Los Angeles, California 90095-1662
| | - M Gregor Madej
- Departments of Physiology, University of California, Los Angeles, California 90095-1662
| | - Lan Guan
- Departments of Physiology, University of California, Los Angeles, California 90095-1662
| | - Yiling Nie
- Departments of Physiology, University of California, Los Angeles, California 90095-1662
| | - H Ronald Kaback
- Departments of Physiology, University of California, Los Angeles, California 90095-1662; Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1662; Molecular Biology Institute, University of California, Los Angeles, California 90095-1662.
| |
Collapse
|