1
|
Hwang IY, Kalyuzhnaya MG, Lee EY. Quantitative assessment of methane bioconversion based on kinetics and bioenergetics. BIORESOURCE TECHNOLOGY 2024; 410:131269. [PMID: 39163949 DOI: 10.1016/j.biortech.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
The biological conversion of methane under ambient conditions can be performed by methanotrophs that utilize methane as both a sole source of energy and a carbon source. However, compared to the established microbial chassis used for general fermentation with sugar as a feedstock, the productivity of methanotrophs is low. The fundamental knowledge of their metabolic or cellular bottlenecks is limited. In this review, the industrial-scale potential of methane bioconversion was evaluated. In particular, the enzyme kinetics associated with the oxidation and assimilation of methane were investigated to evaluate the potential of methane fermentation. The kinetics of enzymes involved in methane metabolism were compared with those used in the metabolic processes of traditional fermentation (glycolysis). Through this analysis, the current limitations of methane metabolism were identified. Methods for increasing the efficiency of methane bioconversion and directions for the industrial application of methane-based fermentation were discussed.
Collapse
Affiliation(s)
- In Yeub Hwang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - M G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego CA92182, USA.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Lee SH, Yeom SJ, Kim SE, Oh DK. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol 2021; 40:306-319. [PMID: 34462144 DOI: 10.1016/j.tibtech.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Pickl M, Marín-Valls R, Joglar J, Bujons J, Clapés P. Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids. Adv Synth Catal 2021; 363:2866-2876. [PMID: 34276272 PMCID: PMC7611260 DOI: 10.1002/adsc.202100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/14/2022]
Abstract
A two-enzyme cascade reaction plus in situ oxidative decarboxylation for the transformation of readily available canonical and non-canonical L-α-amino acids into 2-substituted 3-hydroxy-carboxylic acid derivatives is described. The biocatalytic cascade consisted of an oxidative deamination of L-α-amino acids by an L-α-amino acid deaminase from Cosenzaea myxofaciens, rendering 2-oxoacid intermediates, with an ensuing aldol addition reaction to formaldehyde, catalyzed by metal-dependent (R)- or (S)-selective carboligases namely 2-oxo-3-deoxy-l-rhamnonate aldolase (YfaU) and ketopantoate hydroxymethyltransferase (KPHMT), respectively, furnishing 3-substituted 4-hydroxy-2-oxoacids. The overall substrate conversion was optimized by balancing biocatalyst loading and amino acid and formaldehyde concentrations, yielding 36-98% aldol adduct formation and 91- 98% ee for each enantiomer. Subsequent in situ follow-up chemistry via hydrogen peroxide-driven oxidative decarboxylation afforded the corresponding 2-substituted 3-hydroxycarboxylic acid derivatives.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Roser Marín-Valls
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jesús Joglar
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Pere Clapés
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Abstract
Formation of carbon-carbon bonds is central to synthetic chemistry. The aldol reaction provides the chemistry to fuse a nucleophilic enolate with an electrophilic aldehyde to form a new CC bond between two newly formed asymmetric centers. A major challenge in the reaction is steering the stereochemistry of the product. Aldolases are lyases that catalyze aldol reactions as well as the retro-aldol cleavage, and are abundant in cellular metabolism. Due to the often exquisite stereoselectivity in aldolase catalyzed carboligation reactions, these enzymes are gaining increased interest as potentially important tools in asymmetric synthesis of new useful compounds. Fructose 6-phosphate aldolase from Escherichia coli (FSA) is of special interest because of its very unusual independence of phosphorylated reactant substrates. The current text describes the protein engineering of FSA, applying principles of directed evolution, for the generation, production and characterization of new aldolase variants. A range of new enantiopure polyhydroxylated compounds were produced applying isolated FSA variants.
Collapse
Affiliation(s)
- Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Krevet S, Shen L, Bohnen T, Schoenenberger B, Meier R, Obkircher M, Bangert K, Koehling R, Allenspach E, Wohlgemuth R, Siebers B, Bräsen C. Enzymatic Synthesis of 2-Keto-3-Deoxy-6-Phosphogluconate by the 6-Phosphogluconate-Dehydratase From Caulobacter crescentus. Front Bioeng Biotechnol 2020; 8:185. [PMID: 32266226 PMCID: PMC7099567 DOI: 10.3389/fbioe.2020.00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/25/2020] [Indexed: 11/25/2022] Open
Abstract
The availability of metabolic intermediates is a prerequisite in many fields ranging from basic research, to biotechnological and biomedical applications as well as diagnostics. 2-keto-3-deoxy-6-phosphogluconate (KDPG) is the key intermediate of the Entner-Doudoroff (ED) pathway for sugar degradation and of sugar acid and sugar polymer breakdown in many organisms including human and plant pathogens. However, so far KDPG is hardly available due to missing efficient synthesis routes. We here report the efficient biocatalytic KDPG production through enzymatic dehydration of 6-phosphogluconate (6PG) up to gram scale using the 6PG dehydratase/Entner-Doudoroff dehydratase (EDD) from Caulobacter crescentus (CcEDD). The enzyme was recombinantly produced in Escherichia coli, purified to apparent homogeneity in a simple one-step procedure using nickel ion affinity chromatography, and characterized with respect to molecular and kinetic properties. The homodimeric CcEDD catalyzed the irreversible 6PG dehydration to KDPG with a Vmax of 61.6 U mg–1 and a KM of 0.3 mM for 6PG. Most importantly, the CcEDD showed sufficient long-term stability and activity to provide the enzyme in amounts and purity required for the efficient downstream synthesis of KDPG. CcEDD completely converted 1 g 6PG and a straight forward purification method yielded 0.81 g of stereochemically pure KDPG corresponding to a final yield of 90% as shown by HPLC-MS and NMR analyses.
Collapse
Affiliation(s)
- Sabine Krevet
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Lu Shen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Timon Bohnen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Roland Meier
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland
| | - Markus Obkircher
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland
| | - Klara Bangert
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland
| | - Rudolf Koehling
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland
| | - Eric Allenspach
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland
| | - Roland Wohlgemuth
- Member of Merck Group, Sigma-Aldrich Production GmbH, Buchs, Switzerland.,Institute of Molecular and Industrial Biotechnology, Technical University Lodz, Lodz, Poland
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Zeng R, Liu J, Ding S, Sun L, Wu L, Cao L, Qiu J. Construction of Class I Aldolases-like Carboxyl-Controlled-Graphene Oxide Supported 3-Aminopropyl-triethoxysilane Heterogeneous Catalysts for Aldol Reaction. Catal Letters 2019. [DOI: 10.1007/s10562-019-03048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Tyzack JD, Ribeiro AJM, Borkakoti N, Thornton JM. Exploring Chemical Biosynthetic Design Space with Transform-MinER. ACS Synth Biol 2019; 8:2494-2506. [PMID: 31647630 DOI: 10.1021/acssynbio.9b00105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transform-MinER (Transforming Molecules in Enzyme Reactions) is a web application facilitating the exploration of chemical biosynthetic space, guiding the user toward promising start points for enzyme design projects or directed evolution experiments. Two types of search are possible: Molecule Search allows a user to submit a source substrate enabling Transform-MinER to search for enzyme reactions acting on similar substrates, whereas Path Search additionally allows a user to submit a target molecule enabling Transform-MinER to search for a path of enzyme reactions acting on similar substrates to link source and target. Transform-MinER searches for potential reaction centers in the source substrate and uses chemoinformatic fingerprints to identify those that are situated in molecular environments similar to native counterparts, prioritizing steps that move closer to the target using reactions most similar to native in its exploration of search space. The ligand-based methodology behind Transform-MinER is presented, and its performance is validated yielding 90% success rates: first, on a data set of native pathways from the KEGG database, and second, on a data set of de novo enzyme reactions.
Collapse
Affiliation(s)
- Jonathan D. Tyzack
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Antonio J. M. Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
8
|
Gowda V, Foley B, Du J, Esteb M, Watanabe CMH. Biocatalysis with the milk protein β-lactoglobulin: promoting retroaldol cleavage of α,β-unsaturated aldehydes. Org Biomol Chem 2019; 16:2210-2213. [PMID: 29512670 DOI: 10.1039/c8ob00139a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes with a hydrophobic binding site and an active site lysine have been suggested to be promiscuous in their catalytic activity. β-Lactoglobulin (BLG), the principle whey protein found in milk, possesses a central calyx that binds non-polar molecules. Here, we report that BLG can catalyze the retro-aldol cleavage of α,β-unsaturated aldehydes making it a naturally occurring protein capable of catalyzing retro-aldol reactions on hydrophobic substrates. Retroaldolase activity was seen to be most effective on substrates with phenyl or naphthyl side-chains. Use of a brominated substrate analogue inhibitor increases the product yield by a factor of three. BLG's catalytic activity and its ready availability make it a prime candidate for the development of commercial biocatalysts.
Collapse
Affiliation(s)
- Vishruth Gowda
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
9
|
Aldolase-catalysed stereoselective synthesis of fluorinated small molecules. Curr Opin Chem Biol 2017; 37:33-38. [DOI: 10.1016/j.cbpa.2016.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/01/2016] [Accepted: 12/31/2016] [Indexed: 11/22/2022]
|
10
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
11
|
Bisterfeld C, Classen T, Küberl I, Henßen B, Metz A, Gohlke H, Pietruszka J. Redesigning Aldolase Stereoselectivity by Homologous Grafting. PLoS One 2016; 11:e0156525. [PMID: 27327271 PMCID: PMC4915726 DOI: 10.1371/journal.pone.0156525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity.
Collapse
Affiliation(s)
- Carolin Bisterfeld
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Irene Küberl
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Birgit Henßen
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Alexander Metz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- * E-mail:
| |
Collapse
|
12
|
Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol Adv 2015; 33:1443-54. [DOI: 10.1016/j.biotechadv.2015.02.014] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/10/2023]
|
13
|
Windle CL, Müller M, Nelson A, Berry A. Engineering aldolases as biocatalysts. Curr Opin Chem Biol 2014; 19:25-33. [PMID: 24780276 PMCID: PMC4012138 DOI: 10.1016/j.cbpa.2013.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
Aldolases are seen as an attractive route to the production of biologically important compounds due to their ability to form carbon-carbon bonds. However, for many industrial reactions there are no naturally occurring enzymes, and so many different engineering approaches have been used to address this problem. Engineering methods have been used to alter the stability, substrate specificity and stereospecificity of aldolases to produce excellent enzymes for biocatalytic processes. Recently greater understanding of the aldolase mechanism has allowed many successes with both rational engineering approaches and computational design of aldolases. Rational engineering approaches have produced desired enzymes quickly and efficiently while combination of computational design with laboratory methods has created enzymes with activity approaching that of natural enzymes.
Collapse
Affiliation(s)
- Claire L Windle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marion Müller
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
14
|
Katsuyama I, Chouthaiwale PV, Akama H, Cui HL, Tanaka F. Fluorogenic probes for aldol reactions: tuning of fluorescence using π-conjugation systems. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Zhou X, Wang H, Zhang Y, Gao L, Feng Y. Alteration of substrate specificities of thermophilic α/β hydrolases through domain swapping and domain interface optimization. Acta Biochim Biophys Sin (Shanghai) 2012; 44:965-73. [PMID: 23099882 DOI: 10.1093/abbs/gms086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multi-domain proteins in vitro. To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins, here we constructed two chimeras from a pair of thermophilic members of the α/β hydrolase superfamily by grafting their functional domains to the conserved α/β hydrolase fold domain: a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths. We took two approaches to reduce the crossover disruptions when creating the chimeras: chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by site-directed mutations. Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents. In the aspect of substrate specificity, AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8, similar to parent AFEST and apAPH, respectively. These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity, and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.
Collapse
Affiliation(s)
- Xiaoli Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
17
|
Widmann M, Pleiss J, Samland AK. Computational tools for rational protein engineering of aldolases. Comput Struct Biotechnol J 2012; 2:e201209016. [PMID: 24688657 PMCID: PMC3962226 DOI: 10.5936/csbj.201209016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
In this mini-review we describe the different strategies for rational protein engineering and summarize the computational tools available. Computational tools can either be used to design focused libraries, to predict sequence-function relationships or for structure-based molecular modelling. This also includes de novo design of enzymes. Examples for protein engineering of aldolases and transaldolases are given in the second part of the mini-review.
Collapse
Affiliation(s)
- Michael Widmann
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anne K Samland
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|