1
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Bonde AC, Lund J, Hansen JJ, Winther JR, Nielsen PF, Zahn S, Tiainen P, Olsen OH, Petersen HH, Bjelke JR. The functional role of the autolysis loop in the regulation of factor X upon hemostatic response. J Thromb Haemost 2022; 20:589-599. [PMID: 34927362 DOI: 10.1111/jth.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of factor X (FX) is critical to maintain the balance between blood coagulation and fluidity. OBJECTIVES To functionally characterize the role of the FX autolysis loop in the regulation of the zymogen and active form of FX. METHODS We introduced novel N-linked glycosylations on the surface-exposed loop spanning residues 143-150 (chymotrypsin numbering) of FX. The activity and inhibition of recombinant FX variants was quantified in pure component assays. The in vitro thrombin generation potential of the FX variants was evaluated in FX-depleted plasma. RESULTS The factor VIIa (FVIIa)-mediated activation and prothrombin activation was reduced, presumably through steric hinderance. Prothrombin activation was, however, recovered in presence of cofactor factor Va (FVa) despite a reduced prothrombinase assembly. The introduced N-glycans exhibited position-specific effects on the interaction with two FXa inhibitors: tissue factor pathway inhibitor (TFPI) and antithrombin (ATIII). Ki for the inhibition by full-length TFPI of these FXa variants was increased by 7- to 1150-fold, whereas ATIII inhibition in the presence of the heparin-analog Fondaparinux was modestly increased by 2- to 15-fold compared with wild-type. When supplemented in zymogen form, the FX variants exhibited reduced thrombin generation activity relative to wild-type FX, whereas enhanced procoagulant activity was measured for activated FXa variants. CONCLUSION The autolysis loop participates in all aspects of FX regulation. In plasma-based assays, a modest decrease in FX activation rate appeared to knock down the procoagulant response even when down regulation of FXa activity by inhibitors was reduced.
Collapse
Affiliation(s)
- Amalie Carnbring Bonde
- Global Research, Novo Nordisk A/S, Måløv, Denmark
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Jakob Rahr Winther
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stefan Zahn
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Ole Hvilsted Olsen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
3
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Papadaki S, Tselepis AD. Nonhemostatic Activities of Factor Xa: Are There Pleiotropic Effects of Anti-FXa Direct Oral Anticoagulants? Angiology 2019; 70:896-907. [PMID: 31010298 DOI: 10.1177/0003319719840861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Factor Xa (FXa) is the key serine protease of the coagulation cascade as it is the point of convergence of the intrinsic and extrinsic pathways, leading to the formation of thrombin. Factor Xa is an established target of anticoagulation therapy, due to its central role in coagulation. Over the past years, several direct oral anticoagulants (DOACs) targeting FXa have been developed. Rivaroxaban, apixaban, and edoxaban are used in clinical practice for prevention and treatment of thrombotic diseases. Increasing evidence suggests that FXa exerts nonhemostatic cellular effects that are mediated mainly through protease-activated receptors-1 and -2 and are involved in pathophysiological conditions, such as atherosclerosis, inflammation, and fibrosis. Direct inhibition of FXa by DOACs could be beneficial in these conditions. This is a narrative review that focuses on the cellular effects of FXa in various cell types and conditions, as well as on the possible pleiotropic effects of FXa-targeting DOACs.
Collapse
Affiliation(s)
- Styliani Papadaki
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- 1 Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol 2019; 49:337-346. [PMID: 30796952 DOI: 10.1016/j.ijpara.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 12/28/2022]
Abstract
Serine peptidases are involved in many physiological processes including digestion, haemostasis and complement cascade. Parasites regulate activities of host serine peptidases to their own benefit, employing various inhibitors, many of which belong to the Kunitz-type protein family. In this study, we confirmed the presence of potential anticoagulants in protein extracts of the haematophagous monogenean Eudiplozoon nipponicum which parasitizes the common carp. We then focused on a Kunitz protein (EnKT1) discovered in the E. nipponicum transcriptome, which structurally resembles textilinin-1, an antihemorrhagic snake venom factor from Pseudonaja textilis. The protein was recombinantly expressed, purified and biochemically characterised. The recombinant EnKT1 did inhibit in vitro activity of Factor Xa of the coagulation cascade, but exhibited a higher activity against plasmin and plasma kallikrein, which participate in fibrinolysis, production of kinins, and complement activation. Anti-coagulation properties of EnKT1 based on the inhibition of Factor Xa were confirmed by thromboelastography, but no effect on fibrinolysis was observed. Moreover, we discovered that EnKT1 significantly impairs the function of fish complement, possibly by inhibiting plasmin or Factor Xa which can act as a C3 and C5 convertase. We localised Enkt1 transcripts and protein within haematin digestive cells of the parasite by RNA in situ hybridisation and immunohistochemistry, respectively. Based on these results, we suggest that the secretory Kunitz protein of E. nipponicum has a dual function. In particular, it impairs both haemostasis and complement activation in vitro, and thus might facilitate digestion of a host's blood and protect a parasite's gastrodermis from damage by the complement. This study presents, to our knowledge, the first characterisation of a Kunitz protein from monogeneans and the first example of a parasite Kunitz inhibitor that impairs the function of the complement.
Collapse
|
6
|
Factor Xa Mediates Calcium Flux in Endothelial Cells and is Potentiated by Igg From Patients With Lupus and/or Antiphospholipid Syndrome. Sci Rep 2017; 7:10788. [PMID: 28883515 PMCID: PMC5589732 DOI: 10.1038/s41598-017-11315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Factor (F) Xa reactive IgG isolated from patients with antiphospholipid syndrome (APS) display higher avidity binding to FXa with greater coagulant effects compared to systemic lupus erythematosus (SLE) non APS IgG. FXa signalling via activation of protease-activated receptors (PAR) leads to increased intracellular calcium (Ca2+). Therefore, we measured alterations in Ca2+ levels in human umbilical vein endothelial cells (HUVEC) following FXa-mediated PAR activation and investigated whether FXa reactive IgG from patients with APS or SLE/APS- alter these responses. We observed concentration-dependent induction of Ca2+ release by FXa that was potentiated by APS-IgG and SLE/APS- IgG compared to healthy control subjects’ IgG, and FXa alone. APS-IgG and SLE/APS- IgG increased FXa mediated NFκB signalling and this effect was fully-retained in the affinity purified anti-FXa IgG sub-fraction. Antagonism of PAR-1 and PAR-2 reduced FXa-induced Ca2+ release. Treatment with a specific FXa inhibitor, hydroxychloroquine or fluvastatin significantly reduced FXa-induced and IgG-potentiated Ca2+ release. In conclusion, PAR-1 and PAR-2 are involved in FXa-mediated intracellular Ca2+ release in HUVEC and FXa reactive IgG from patients with APS and/or SLE potentiate this effect. Further work is required to explore the potential use of IgG FXa reactivity as a novel biomarker to stratify treatment with FXa inhibitors in these patients.
Collapse
|
7
|
FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF–FVIIa–FXa complex. Neuroscience 2017; 348:114-125. [DOI: 10.1016/j.neuroscience.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
8
|
Ebrahimi S, Rezaei S, Seiri P, Ryzhikov M, Hashemy SI, Hassanian SM. Factor Xa Signaling Contributes to the Pathogenesis of Inflammatory Diseases. J Cell Physiol 2016; 232:1966-1970. [PMID: 27925197 DOI: 10.1002/jcp.25714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 02/01/2023]
Abstract
The coagulation protease Factor Xa (FXa) triggers a variety of signaling pathways through activation of protease-activated receptors (PARs) and non-PAR receptors. FXa-mediated signaling is strongly implicated in the pathogenesis of several inflammatory diseases including fibrosis, cardiovascular diseases, and cancer. Thus, targeting of FXa can have great clinical significance in terms of the treatment of these disorders. This review summarizes the current knowledge about the mechanism of FXa signaling in cellular and animal systems under (patho) physiological conditions for a better understanding and hence a better management of FXa-induced disorders. J. Cell. Physiol. 232: 1966-1970, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Rezaei
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Seiri
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Arutyunova E, Panwar P, Skiba PM, Gale N, Mak MW, Lemieux MJ. Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J 2014; 33:1869-81. [PMID: 25009246 DOI: 10.15252/embj.201488149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases.
Collapse
Affiliation(s)
- Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Pankaj Panwar
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Pauline M Skiba
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Nicola Gale
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Michelle W Mak
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases. Biochem J 2014; 460:187-98. [PMID: 24627966 DOI: 10.1042/bj20140268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.
Collapse
|
11
|
Rezaie AR. Protease-activated receptor signalling by coagulation proteases in endothelial cells. Thromb Haemost 2014; 112:876-82. [PMID: 24990498 DOI: 10.1160/th14-02-0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022]
Abstract
Endothelial cells express several types of integral membrane protein receptors, which upon interaction and activation by their specific ligands, initiate a signalling network that links extracellular cues in circulation to various biological processes within a plethora of cells in the vascular system. A small family of G-protein coupled receptors, termed protease-activated receptors (PAR1-4), can be specifically activated by coagulation proteases, thereby modulating a diverse array of cellular activities under various pathophysiological conditions. Thrombin and all vitamin K-dependent coagulation proteases, with the exception of factor IXa for which no PAR signalling has been attributed, can selectively activate cell surface PARs on the vasculature. Thrombin can activate PAR1, PAR3 and PAR4, but not PAR2 which can be specifically activated by factors VIIa and Xa. The mechanistic details of the specificity of PAR signalling by coagulation proteases are the subject of extensive investigation by many research groups worldwide. However, analysis of PAR signalling data in the literature has proved to be challenging since a single coagulation protease can elicit different signalling responses through activation of the same PAR receptor in endothelial cells. This article is focused on briefly reviewing the literature with respect to determinants of the specificity of PAR signalling by coagulation proteases with special emphasis on the mechanism of PAR1 signalling by thrombin and activated protein C in endothelial cells.
Collapse
Affiliation(s)
- Alireza R Rezaie
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA, Tel.: +1 314 977 9240, Fax:+1 314 977 9205, E-mail:
| |
Collapse
|
12
|
Al-Ani B. Resveratrol inhibits proteinase-activated receptor-2-induced release of soluble vascular endothelial growth factor receptor-1 from human endothelial cells. EXCLI JOURNAL 2013; 12:598-604. [PMID: 26933402 PMCID: PMC4763455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia.
Collapse
Affiliation(s)
- Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|