1
|
Yabukarski F. Ensemble-function relationships: From qualitative to quantitative relationships between protein structure and function. J Struct Biol 2025; 217:108152. [PMID: 39577782 DOI: 10.1016/j.jsb.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Structure-function relationships are deeply rooted in modern biochemistry and structural biology and have provided the basis for our understanding of how protein structure defines function. While structure-function relationships continue to provide invaluable qualitative information, they cannot, in principle, provide the quantitative information ultimately needed to fully understand how proteins function and to make quantitative predictions about changes in activity from changes in sequence and structure. These limitations appear to arise from fundamental principles of physics, which dictate that proteins exist as interchanging ensembles of conformations, rather than as static structures that underly conventional structure-function relationships. This perspective discusses the concept of ensemble-function relationships as quantitative relationships that build on and extend traditional structure-function relationships. The concepts of free energy landscapes and conformational ensembles and their application to proteins are reviewed. The perspective summarizes a range of approaches that can provide conformational ensemble information and focuses on X-ray crystallography methods for obtaining experimental protein conformational ensembles. Focusing on enzymes as archetypes of protein function, recent literature examples are reviewed that used ensemble-function relationships to understand how protein residues contribute to function and how changes in protein sequence and structure impact activity, leading to new models and providing previously inaccessible mechanistic insights. Potential applications of conformational ensembles and ensemble-function relationships to protein design are examined. The perspective concludes with current limitations of the ensemble-function relationships and potential paths forward toward the next generation of quantitative ensemble-function models.
Collapse
Affiliation(s)
- Filip Yabukarski
- Protein Homeostasis Structural Biology Group, Bristol Myers Squibb, San Diego, CA 92121, United States.
| |
Collapse
|
2
|
Fatima S, Mehrafrooz B, Boggs DG, Ali N, Singh S, Thielges MC, Bridwell-Rabb J, Aksimentiev A, Olshansky L. Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein. Biochemistry 2024; 63:2040-2050. [PMID: 39088332 PMCID: PMC11699564 DOI: 10.1021/acs.biochem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Hydrogen-bonding (H-bonding) interactions in metalloprotein active sites can critically regulate enzyme function. Changes in the protein structure triggered by interplay with substrates, products, and partner proteins are often translated to the metallocofactor by way of specific changes in H-bond networks connected to the active site. However, the complexities of metalloprotein architecture and mechanism often preclude our ability to define the precise molecular interactions giving rise to these intricate regulatory pathways. To address this shortcoming, we have developed conformationally switchable artificial metalloproteins (swArMs) in which allosteric Gln-binding triggers protein conformational changes that impact the microenvironment surrounding an installed metallocofactor. Herein, we report a combined structural, spectroscopic, and computational approach to enhance the conformation-dependent changes in H-bond interactions surrounding the metallocofactor site of a swArM. Structure-informed molecular dynamics simulations were employed to predict point mutations that could enhance active site H-bond interactions preferentially in the Gln-bound holo-conformation of the swArM. Testing our predictions via the unique infrared spectral signals associated with the metallocofactor site, we have identified three key residues capable of imparting conformational control over the metallocofactor microenvironment. The resultant swArMs not only model biologically relevant structural regulation but also provide an enhanced Gln-responsive biological probe to be leveraged in future biosensing applications.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Behzad Mehrafrooz
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David G Boggs
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Noor Ali
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Swapnil Singh
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Aleksei Aksimentiev
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Rapp C, Borg A, Nidetzky B. Interplay of structural preorganization and conformational sampling in UDP-glucuronic acid 4-epimerase catalysis. Nat Commun 2024; 15:3897. [PMID: 38719841 PMCID: PMC11519531 DOI: 10.1038/s41467-024-48281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat (Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity (Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Annika Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
4
|
Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, Legault P. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3'-end modifications. Cell Mol Life Sci 2024; 81:53. [PMID: 38261114 PMCID: PMC10806991 DOI: 10.1007/s00018-023-05090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.
Collapse
Affiliation(s)
- Gunjan Dadhwal
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Hebatallah Samy
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Bouvette
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Department, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Fatima El-Azzouzi
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Biochemistry Department, Wake Forest Biotech Place, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA
| | - Pierre Dagenais
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
5
|
Li W, Kohne M, Warncke K. Reactivity Tracking of an Enzyme Progress Coordinate. J Phys Chem Lett 2023; 14:7157-7164. [PMID: 37540029 PMCID: PMC10440813 DOI: 10.1021/acs.jpclett.3c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The reactivity of individual solvent-coupled protein configurations is used to track and resolve the progress coordinate for the core reaction sequence of substrate radical rearrangement and hydrogen atom transfer in the ethanolamine ammonia-lyase (EAL) enzyme from Salmonella enterica. The first-order decay of the substrate radical intermediate is the monitored reaction. Heterogeneous confinement from sucrose hydrates in the mesophase solvent surrounding the cryotrapped protein introduces distributed kinetics in the non-native decay of the substrate radical pair capture substate, which arise from an ensemble of configurational microstates. Reaction rates increase by >103-fold across the distribution to approach that for the native enabled substate for radical rearrangement, which reacts with monotonic kinetics. The native progress coordinate thus involves a collapse of the configuration space to generate optimized reactivity. Reactivity tracking reveals fundamental features of solvent-protein-reaction configurational coupling and leads to a model that refines the ensemble paradigm of enzyme catalysis for strongly adiabatic chemical steps.
Collapse
Affiliation(s)
- Wei Li
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan Kohne
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Eberhart ME, Wilson TR, Johnston NW, Alexandrova AN. Geometry of Charge Density as a Reporter on the Role of the Protein Scaffold in Enzymatic Catalysis: Electrostatic Preorganization and Beyond. J Chem Theory Comput 2023; 19:694-704. [PMID: 36562645 DOI: 10.1021/acs.jctc.2c01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enzymes host active sites inside protein macromolecules, which have diverse, often incredibly complex, and atom-expensive structures. It is an outstanding question what the role of these expensive scaffolds might be in enzymatic catalysis. Answering this question is essential to both enzymology and the design of artificial enzymes with proficiencies that will match those of the best natural enzymes. Protein rigidifying the active site, contrasted with the dynamics and vibrational motion promoting the reaction, as well as long-range electrostatics (also known as electrostatic preorganization) were all proposed as central contributions of the scaffold to the catalysis. Here, we show that all these effects inevitably produce changes in the quantum mechanical electron density in the active site, which in turn defines the reactivity. The phenomena are therefore fundamentally inseparable. The geometry of the electron density-a scalar field characterized by a number of mathematical features such as critical points-is a rigorous and convenient descriptor of enzymatic catalysis and a reporter on the role of the protein. We show how this geometry can be analyzed, linked to the reaction barriers, and report in particular on intramolecular electric fields in enzymes. We illustrate these tools on the studies of electrostatic preorganization in several representative enzyme classes, both natural and artificial. We highlight the forward-looking aspects of the approach.
Collapse
Affiliation(s)
- Mark E Eberhart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Timothy R Wilson
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Nathaniel W Johnston
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Wilson TR, Morgenstern A, Alexandrova AN, Eberhart ME. Bond Bundle Analysis of Ketosteroid Isomerase. J Phys Chem B 2022; 126:9443-9456. [PMID: 36383139 DOI: 10.1021/acs.jpcb.2c03638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bond bundle analysis is used to investigate enzymatic catalysis in the ketosteroid isomerase (KSI) active site. We identify the unique bonding regions in five KSI systems, including those exposed to applied oriented electric fields and those with amino acid mutations, and calculate the precise redistribution of electron density and other regional properties that accompanies either enhancement or inhibition of KSI catalytic activity. We find that catalytic enhancement results from promoting both inter- and intra-molecular electron density redistribution, between bond bundles and bond wedges within the KSI-docked substrate molecule, in the forward direction of the catalyzed reaction. Though the redistribution applies to both types of perturbed systems and is thus suggestive of a general catalytic role, we observe that bond properties (e.g., volume vs energy vs electron count) can respond independently and disproportionately depending on the type of perturbation. We conclude that the resulting catalytic enhancement/inhibition proceeds via different mechanisms, where some bond properties are utilized more by one type of perturbation than the other. Additionally, we find that the correlations between bond wedge properties and catalyzed reaction barrier energies are additive to predict those of bond bundles and atomic basins, providing a rigorous grounding for connecting changes in local charge density to resulting shifts in reaction barrier energy.
Collapse
Affiliation(s)
- Timothy R Wilson
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80004, United States
| | - Amanda Morgenstern
- Department of Chemistry & Biochemistry, UCCS, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - M E Eberhart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80004, United States
| |
Collapse
|
8
|
Fatima S, Boggs DG, Ali N, Thompson PJ, Thielges MC, Bridwell-Rabb J, Olshansky L. Engineering a Conformationally Switchable Artificial Metalloprotein. J Am Chem Soc 2022; 144:21606-21616. [DOI: 10.1021/jacs.2c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saman Fatima
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - David G. Boggs
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Noor Ali
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| |
Collapse
|
9
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature. SCIENCE ADVANCES 2022; 8:eabo5083. [PMID: 35622909 PMCID: PMC9140965 DOI: 10.1126/sciadv.abo5083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 05/04/2023]
Abstract
The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Li W, Nforneh B, Whitcomb KL, Warncke K. Resolution and characterization of confinement- and temperature-dependent dynamics in solvent phases that surround proteins in frozen aqueous solution by using spin-probe EPR spectroscopy. Methods Enzymol 2022; 666:25-57. [PMID: 35465922 DOI: 10.1016/bs.mie.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spin probe electron paramagnetic resonance spectroscopy is applied to characterize the dynamics of concentric hydration and mesophase solvent domains that surround proteins within the ice boundary in frozen aqueous solutions. The solvent dynamics are tuned by variation of temperature (190-265K) and by the degree of ice boundary confinement, which is modulated by the volume of added cryosolvent (0-~50Å separation distance from protein surface). Goals are to: (1) characterize the protein-coupled solvent dynamics on correlation time scales of ~10-10<τ<10-7s, and spatial scales from protein surface to periphery of the surrounding solution, from the perspective of a free, small-molecule (~7Å diameter) probe, and (2) reveal properties of the solvent-protein coupling that can be correlated with protein functions, that are measureable under the same conditions. Rotational mobility of the nitroxide spin probe, TEMPOL, resolves and tracks two solvent components, the protein-associated domain (PAD; akin to hydration layer) and surrounding mesodomain, through their distinct temperature- and confinement-dependent values of τ and normalized weight. Detailed protocols are described for simulation of two-component nitroxide EPR spectra, which are categorized by line shape regime and guided by a library of template spectra and simulation parameters derived from two model soluble globular proteins. The order-disorder transition in the PAD, which is a universal feature of protein-coupled solvent dynamics, provides a well-defined, tunable property for elucidating mechanism in solvent-protein-function dynamical coupling. The low-temperature mesodomain system and EPR spin probe method are generally applicable to reveal solvent contributions to a broad range of macromolecule-mediated biological processes.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Benjamen Nforneh
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Katie L Whitcomb
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
11
|
Pfeiffer M, Crean RM, Moreira C, Parracino A, Oberdorfer G, Brecker L, Hammerschmidt F, Kamerlin SCL, Nidetzky B. Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catal 2022; 12:3357-3370. [PMID: 35356705 PMCID: PMC8938923 DOI: 10.1021/acscatal.1c05656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Indexed: 01/15/2023]
Abstract
![]()
The cooperative interplay
between the functional devices of a preorganized
active site is fundamental to enzyme catalysis. An in-depth understanding
of this phenomenon is central to elucidating the remarkable efficiency
of natural enzymes and provides an essential benchmark for enzyme
design and engineering. Here, we study the functional interconnectedness
of the catalytic nucleophile (His18) in an acid phosphatase by analyzing
the consequences of its replacement with aspartate. We present crystallographic,
biochemical, and computational evidence for a conserved mechanistic
pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy
relationships for phosphoryl transfer from phosphomonoester substrates
to His18/Asp18 provide evidence for the cooperative interplay between
the nucleophilic and general-acid catalytic groups in the wild-type
enzyme, and its substantial loss in the H18D variant. As an isolated
factor of phosphatase efficiency, the advantage of a histidine compared
to an aspartate nucleophile is ∼104-fold. Cooperativity
with the catalytic acid adds ≥102-fold to that advantage.
Empirical valence bond simulations of phosphoryl transfer from glucose
1-phosphate to His and Asp in the enzyme explain the loss of activity
of the Asp18 enzyme through a combination of impaired substrate positioning
in the Michaelis complex, as well as a shift from early to late protonation
of the leaving group in the H18D variant. The evidence presented furthermore
suggests that the cooperative nature of catalysis distinguishes the
enzymatic reaction from the corresponding reaction in solution and
is enabled by the electrostatic preorganization of the active site.
Our results reveal sophisticated discrimination in multifunctional
catalysis of a highly proficient phosphatase active site.
Collapse
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Rory M Crean
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Catia Moreira
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 12/II, 8010 Graz, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Friedrich Hammerschmidt
- Department of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | | | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
12
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.07.479477. [PMID: 35169801 PMCID: PMC8845425 DOI: 10.1101/2022.02.07.479477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA 94158, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Kohne M, Li W, Ionescu A, Zhu C, Warncke K. Resolution and characterization of contributions of select protein and coupled solvent configurational fluctuations to radical rearrangement catalysis in coenzyme B 12-dependent ethanolamine ammonia-lyase. Methods Enzymol 2022; 669:229-259. [PMID: 35644173 PMCID: PMC9270175 DOI: 10.1016/bs.mie.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coenzyme B12 (adenosylcobalamin) -dependent ethanolamine ammonia-lyase (EAL) is the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. The enzyme conducts a complex choreography of bond-making/bond-breaking steps that rearrange substrate to products through a radical mechanism, with themes common to other coenzyme B12-dependent and radical enzymes. The methods presented are targeted to test the hypothesis that particular, select protein and coupled solvent configurational fluctuations contribute to enzyme function. The general approach is to correlate enzyme function with an introduced perturbation that alters the properties (for example, degree of concertedness, or collectiveness) of protein and coupled solvent dynamics. Methods for sample preparation and low-temperature kinetic measurements by using temperature-step reaction initiation and time-resolved, full-spectrum electron paramagnetic resonance spectroscopy are detailed. A framework for interpretation of results obtained in ensemble systems under conditions of statistical equilibrium within the reacting, globally unstable state is presented. The temperature-dependence of the first-order rate constants for decay of the cryotrapped paramagnetic substrate radical state in EAL, through the chemical step of radical rearrangement, displays a piecewise-continuous Arrhenius dependence from 203 to 295K, punctuated by a kinetic bifurcation over 219-220K. The results reveal the obligatory contribution of a class of select collective protein and coupled solvent fluctuations to the interconversion of two resolved, sequential configurational substates, on the decay time scale. The select class of collective fluctuations also contributes to the chemical step. The methods and analysis are generally applicable to other coenzyme B12-dependent and related radical enzymes.
Collapse
Affiliation(s)
- Meghan Kohne
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Alina Ionescu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Chen Zhu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
14
|
Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E, Longwell SA, Sabatti C, Herschlag D, Fordyce PM. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 2021; 373:373/6553/eabf8761. [PMID: 34437092 DOI: 10.1126/science.abf8761] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Systematic and extensive investigation of enzymes is needed to understand their extraordinary efficiency and meet current challenges in medicine and engineering. We present HT-MEK (High-Throughput Microfluidic Enzyme Kinetics), a microfluidic platform for high-throughput expression, purification, and characterization of more than 1500 enzyme variants per experiment. For 1036 mutants of the alkaline phosphatase PafA (phosphate-irrepressible alkaline phosphatase of Flavobacterium), we performed more than 670,000 reactions and determined more than 5000 kinetic and physical constants for multiple substrates and inhibitors. We uncovered extensive kinetic partitioning to a misfolded state and isolated catalytic effects, revealing spatially contiguous regions of residues linked to particular aspects of function. Regions included active-site proximal residues but extended to the enzyme surface, providing a map of underlying architecture not possible to derive from existing approaches. HT-MEK has applications that range from understanding molecular mechanisms to medicine, engineering, and design.
Collapse
Affiliation(s)
- C J Markin
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - D A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - F Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - M J Appel
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - E Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - S A Longwell
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - C Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.,Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - D Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - P M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. .,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub; San Francisco, CA 94110, USA
| |
Collapse
|
15
|
Cheng L, Huang H, Lin Z, Yang Y, Yuan Q, Hu L, Wang C, Chen Q. N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. J Colloid Interface Sci 2021; 594:466-473. [PMID: 33774402 DOI: 10.1016/j.jcis.2021.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Recently, atomically dispersed transition-metal single atom in nitrogen-doped carbon matrix as electrocatalysts has aroused general interest. However, there is no report about vanadium single atom for ORR in the literature. According to d-band center theory for transition-metals, the performance of catalysts is regulated by the electronic structure of the catalytic center which determines the intermediate adsorption kinetics. Indeed, the valence of vanadium is variable, its electron structure could be modulated by an appropriate coordination structure. Here, a novel method is developed to prepare the N and O co-coordinated vanadium single atom (V-N1O4) embedded in the carbon matrix. The catalyst displays a half-wave potential of 865 mV in base solution which surpasses 20% Pt/C, and also shows a high power density of 180 mW/cm2 in Zn-air batteries. DFT calculations reveal that the N and O coordination configuration could regulate the electron structure and geometry of vanadium to boost the electrocatalytic activity.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Hao Huang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Zhiyu Lin
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Yang Yang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Qing Yuan
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China
| | - Lin Hu
- The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Changlai Wang
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China; Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qianwang Chen
- Department of Materials Science & Engineering, University of Science and Technology of China, Jinzhai Road NO.96, Hefei, Anhui 230026, PR China; The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
16
|
Hennefarth MR, Alexandrova AN. Heterogeneous Intramolecular Electric Field as a Descriptor of Diels–Alder Reactivity. J Phys Chem A 2021; 125:1289-1298. [DOI: 10.1021/acs.jpca.1c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew R. Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
17
|
Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:33204-33215. [PMID: 33376217 DOI: 10.1073/pnas.2011350117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
Collapse
|
18
|
Affiliation(s)
- Zebediah C. Girvin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Hennefarth MR, Alexandrova AN. Direct Look at the Electric Field in Ketosteroid Isomerase and Its Variants. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Matthew R. Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United Sates
| |
Collapse
|
20
|
Wu Y, Fried SD, Boxer SG. A Preorganized Electric Field Leads to Minimal Geometrical Reorientation in the Catalytic Reaction of Ketosteroid Isomerase. J Am Chem Soc 2020; 142:9993-9998. [PMID: 32378409 PMCID: PMC7474534 DOI: 10.1021/jacs.0c00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrostatic interactions play a pivotal role in enzymatic catalysis and are increasingly modeled explicitly in computational enzyme design; nevertheless, they are challenging to measure experimentally. Using vibrational Stark effect (VSE) spectroscopy, we have measured electric fields inside the active site of the enzyme ketosteroid isomerase (KSI). These studies have shown that these fields can be unusually large, but it has been unclear to what extent they specifically stabilize the transition state (TS) relative to a ground state (GS). In the following, we use crystallography and computational modeling to show that KSI's intrinsic electric field is nearly perfectly oriented to stabilize the geometry of its reaction's TS. Moreover, we find that this electric field adjusts the orientation of its substrate in the ground state so that the substrate needs to only undergo minimal structural changes upon activation to its TS. This work provides evidence that the active site electric field in KSI is preorganized to facilitate catalysis and provides a template for how electrostatic preorganization can be measured in enzymatic systems.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Stephen D Fried
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
21
|
Kries H, Bloch JS, Bunzel HA, Pinkas DM, Hilvert D. Contribution of Oxyanion Stabilization to Kemp Eliminase Efficiency. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hajo Kries
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Joël S. Bloch
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - H. Adrian Bunzel
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel M. Pinkas
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Abstract
Biocatalysis (the use of biological molecules or materials to catalyse chemical reactions) has considerable potential. The use of biological molecules as catalysts enables new and more specific syntheses. It also meets many of the core principles of “green chemistry”. While there have been some considerable successes in biocatalysis, the full potential has yet to be realised. This results, partly, from some key challenges in understanding the fundamental biochemistry of enzymes. This review summarises four of these challenges: the need to understand protein folding, the need for a qualitative understanding of the hydrophobic effect, the need to understand and quantify the effects of organic solvents on biomolecules and the need for a deep understanding of enzymatic catalysis. If these challenges were addressed, then the number of successful biocatalysis projects is likely to increase. It would enable accurate prediction of protein structures, and the effects of changes in sequence or solution conditions on these structures. We would be better able to predict how substrates bind and are transformed into products, again leading to better enzyme engineering. Most significantly, it may enable the de novo design of enzymes to catalyse specific reactions.
Collapse
|
23
|
Abstract
The pKa values for substrates acting as carbon acids (i.e., C-H deprotonation reactions) in several enzyme active sites are presented. The information needed to calculate them includes the pKa of the active site acid/base catalyst and the equilibrium constant for the deprotonation step. Carbon acidity is obtained from the relation pKeq = pKar–pKap = ΔpKa for a proton transfer reaction. Five enzymatic free energy profiles (FEPs) were calculated to obtain the equilibrium constants for proton transfer from carbon in the active site, and six additional proton transfer equilibrium constants were extracted from data available in the literature, allowing substrate C-H pKas to be calculated for 11 enzymes. Active site-bound substrate C-H pKa values range from 5.6 for ketosteroid isomerase to 16 for proline racemase. Compared to values in water, enzymes lower substrate C-H pKas by up to 23 units, corresponding to 31 kcal/mol of carbanion stabilization energy. Calculation of Marcus intrinsic barriers (ΔG0‡) for pairs of non-enzymatic/enzymatic reactions shows significant reductions in ΔG0‡ for cofactor-independent enzymes, while pyridoxal phosphate dependent enzymes appear to increase ΔG0‡ to a small extent as a consequence of carbanion resonance stabilization. The large increases in carbon acidity found here are central to the large rate enhancements observed in enzymes that catalyze carbon deprotonation.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp 3 C-H functionalization. Nature 2018; 565:67-72. [PMID: 30568304 PMCID: PMC6440214 DOI: 10.1038/s41586-018-0808-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 11/08/2022]
Abstract
Although abundant in organic molecules, carbon-hydrogen (C-H) bonds are typically considered unreactive and unavailable for chemical manipulation. Recent advances in C-H functionalization technology have begun to transform this logic, while emphasizing the importance of and challenges associated with selective alkylation at a sp3 carbon1,2. Here we describe iron-based catalysts for the enantio-, regio- and chemoselective intermolecular alkylation of sp3 C-H bonds through carbene C-H insertion. The catalysts, derived from a cytochrome P450 enzyme in which the native cysteine axial ligand has been substituted for serine (cytochrome P411), are fully genetically encoded and produced in bacteria, where they can be tuned by directed evolution for activity and selectivity. That these proteins activate iron, the most abundant transition metal, to perform this chemistry provides a desirable alternative to noble-metal catalysts, which have dominated the field of C-H functionalization1,2. The laboratory-evolved enzymes functionalize diverse substrates containing benzylic, allylic or α-amino C-H bonds with high turnover and excellent selectivity. Furthermore, they have enabled the development of concise routes to several natural products. The use of the native iron-haem cofactor of these enzymes to mediate sp3 C-H alkylation suggests that diverse haem proteins could serve as potential catalysts for this abiological transformation, and will facilitate the development of new enzymatic C-H functionalization reactions for applications in chemistry and synthetic biology.
Collapse
|
25
|
Waskasi MM, Martin DR, Matyushov DV. Wetting of the Protein Active Site Leads to Non-Marcusian Reaction Kinetics. J Phys Chem B 2018; 122:10490-10495. [PMID: 30365331 DOI: 10.1021/acs.jpcb.8b10376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes exist in continuously fluctuating water bath dramatically affecting their function. Water not only forms the solvation shell but also penetrates into the protein interior. Changing the wetting pattern of the protein's active site in response to altering redox state initiates a highly nonlinear structural change and non-Gaussian electrostatic fluctuations at the active site. The free-energy surfaces of electron transfer are highly nonparabolic (non-Marcusian), as shown by atomistic molecular dynamics simulations of hydrated ferredoxin protein and by an analytical model in agreement with simulations. The reorganization energy of electron transfer passes through a spike marking equal probabilities of the wet and dry states of the active site. The activation thermodynamics affected by wetting leads to a non-Arrhenius, passing through a maximum, plot for the reaction rate vs the inverse temperature.
Collapse
Affiliation(s)
- Morteza M Waskasi
- School of Molecular Sciences , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | | | | |
Collapse
|
26
|
Girvin ZC, Gellman SH. Exploration of Diverse Reactive Diad Geometries for Bifunctional Catalysis via Foldamer Backbone Variation. J Am Chem Soc 2018; 140:12476-12483. [PMID: 30226762 DOI: 10.1021/jacs.8b05869] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
What is the best spatial arrangement of a pair of reactive groups for bifunctional catalysis of a chemical transformation? The conformational versatility of proteins allows reactive group geometry to be explored and optimized via evolutionary selection, but it has been difficult for chemists to identify synthetic scaffolds that allow broad comparative evaluation among alternative reactive group geometries. Here we show that a family of helices, adopted predictably by oligomers composed partially or exclusively of β-amino acid residues, enables us to explore a range of orientations for a pair of pyrrolidine units that must work in tandem to catalyze a crossed aldol reaction. Thus, the crossed aldol reaction serves as an assay of reactive diad efficacy. We have chosen a test reaction free of stereochemical complexity in order to streamline our study of reactivity. The best geometry enhances the initial rate of product formation by two orders of magnitude. Our findings raise the possibility that rudimentary catalysts involving an isolated secondary structure might have facilitated the development of prebiotic reaction networks.
Collapse
Affiliation(s)
- Zebediah C Girvin
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Samuel H Gellman
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
27
|
Pinney MM, Natarajan A, Yabukarski F, Sanchez DM, Liu F, Liang R, Doukov T, Schwans JP, Martinez TJ, Herschlag D. Structural Coupling Throughout the Active Site Hydrogen Bond Networks of Ketosteroid Isomerase and Photoactive Yellow Protein. J Am Chem Soc 2018; 140:9827-9843. [DOI: 10.1021/jacs.8b01596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Abstract
Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.
Collapse
|
29
|
Schramm VL, Schwartz SD. Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence. Biochemistry 2018; 57:3299-3308. [PMID: 29608286 DOI: 10.1021/acs.biochem.8b00201] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complete understanding of enzyme catalysis requires knowledge of both transition state features and the detailed motions of atoms that cause reactant molecules to form and traverse the transition state. The seeming intractability of the problem arises from the femtosecond lifetime of chemical transition states, preventing most experimental access. Computational chemistry is admirably suited to short time scale analysis but can be misled by inappropriate starting points or by biased assumptions. Kinetic isotope effects provide an experimental approach to transition state structure and a method for obtaining transition state analogues but, alone, do not inform how that transition state is reached. Enzyme structures with transition state analogues provide computational starting points near the transition state geometry. These well-conditioned starting points, combined with the unbiased computational method of transition path sampling, provide realistic atomistic motions involved in transition state formation and passage. In many, but not all, enzymatic systems, femtosecond local protein motions near the catalytic site are linked to transition state formation. These motions are not inherently revealed by most approaches of transition state theory, because transition state theory replaces dynamics with the statistics of the transition state. Experimental and theoretical convergence of the link between local catalytic site vibrational modes and catalysis comes from heavy atom ("Born-Oppenheimer") enzymes. Fully labeled and catalytic site local heavy atom labels perturb the probability of finding enzymatic transition states in ways that can be analyzed and predicted by transition path sampling. Recent applications of these experimental and computational approaches reveal how subpicosecond local catalytic site protein modes play important roles in creating the transition state.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
30
|
Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD. Rubisco is not really so bad. PLANT, CELL & ENVIRONMENT 2018; 41:705-716. [PMID: 29359811 DOI: 10.1111/pce.13149] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the most widespread carboxylating enzyme in autotrophic organisms. Its kinetic and structural properties have been intensively studied for more than half a century. Yet important aspects of the catalytic mechanism remain poorly understood, especially the oxygenase reaction. Because of its relatively modest turnover rate (a few catalytic events per second) and the competitive inhibition by oxygen, Rubisco is often viewed as an inefficient catalyst for CO2 fixation. Considerable efforts have been devoted to improving its catalytic efficiency, so far without success. In this review, we re-examine Rubisco's catalytic performance by comparison with other chemically related enzymes. We find that Rubisco is not especially slow. Furthermore, considering both the nature and the complexity of the chemical reaction, its kinetic properties are unremarkable. Although not unique to Rubisco, oxygenation is not systematically observed in enolate and enamine forming enzymes and cannot be considered as an inevitable consequence of the mechanism. It is more likely the result of a compromise between chemical and metabolic imperatives. We argue that a better description of Rubisco mechanism is still required to better understand the link between CO2 and O2 reactivity and the rationale of Rubisco diversification and evolution.
Collapse
Affiliation(s)
- Camille Bathellier
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 27042, USA
| | - Graham D Farquhar
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
31
|
Robinson AC, Schlessman JL, García-Moreno E B. Dielectric Properties of a Protein Probed by Reversal of a Buried Ion Pair. J Phys Chem B 2018; 122:2516-2524. [PMID: 29466010 DOI: 10.1021/acs.jpcb.7b12121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thirty years ago, Hwang and Warshel suggested that a microenvironment preorganized to stabilize an ion pair would be incapable of reorganizing to stabilize the reverse ion pair. The implications were that (1) proteins have a limited capacity to reorganize, even under the influence of strong interactions, such as those present when ionizable groups are buried in the hydrophobic interior of a protein, and (2) the inability of proteins to tolerate the reversal of buried ion pairs demonstrates the limitations inherent to continuum electrostatic models of proteins. Previously we showed that when buried individually in the interior of staphylococcal nuclease, Glu23 and Lys36 have p Ka values near pH 7, but when buried simultaneously, they establish a strong interaction of ∼5 kcal/mol and have p Ka values shifted toward more normal values. Here, using equilibrium thermodynamic measurements, crystal structures, and NMR spectroscopy experiments, we show that although the reversed, individual substitutions-Lys23 and Glu36-also have p Ka values near 7, when buried together, they neither establish a strong interaction nor promote reorganization of their microenvironment. These experiments both confirm Warshel's original hypothesis and expand it by showing that it applies to reorganization, as demonstrated by our artificial ion pairs, as well as to preorganization as is commonly argued for motifs that stabilize naturally occurring ion pairs in polar microenvironments. These data constitute a challenging benchmark useful to test the ability of structure-based algorithms to reproduce the compensation between self-energy, Coulomb and polar interactions in hydrophobic environments of proteins.
Collapse
Affiliation(s)
- Aaron C Robinson
- Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Jamie L Schlessman
- Chemistry Department , U.S. Naval Academy , Annapolis , Maryland 21402 , United States
| | - Bertrand García-Moreno E
- Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
32
|
He R, Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: The Role of a Flexible Loop in Activation of Glycerol-3-phosphate Dehydrogenase for Catalysis of Hydride Transfer. Biochemistry 2018; 57:3227-3236. [PMID: 29337541 PMCID: PMC6001809 DOI: 10.1021/acs.biochem.7b01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The side chain of Q295 of glycerol-3-phosphate
dehydrogenase from
human liver (hlGPDH) lies in a flexible loop, that
folds over the phosphodianion of substrate dihydroxyacetone phosphate
(DHAP). Q295 interacts with the side-chain cation from R269, which
is ion-paired to the substrate phosphodianion. Kinetic parameters kcat/Km (M–1 s–1) and kcat/KGAKHPi (M–2 s–1) were determined, respectively, for catalysis
of the reduction of DHAP and for dianion activation of catalysis of
reduction of glycolaldehyde (GA) catalyzed by wild-type, Q295G, Q295S,
Q295A, and Q295N mutants of hlGPDH. These mutations
result in up to a 150-fold decrease in (kcat/Km)DHAP and up to a 2.7 kcal/mol
decrease in the intrinsic phosphodianion binding energy. The data
define a linear correlation with slope 1.1, between the intrinsic
phosphodianion binding energy and the intrinsic phosphite dianion
binding energy for activation of hlGPDH-catalyzed
reduction of GA, that demonstrates a role for Q295 in optimizing this
dianion binding energy. The R269A mutation of wild-type GPDH results
in a 9.1 kcal/mol destabilization of the transition state for reduction
of DHAP, but the same R269A mutation of N270A and Q295A mutants result
in smaller 5.9 and 4.9 kcal/mol transition-state destabilization.
Similarly, the N270A or Q295A mutations of R269A GPDH each result
in large falloffs in the efficiency of rescue of the R269A mutant
by guanidine cation. We conclude that N270, which interacts for the
substrate phosphodianion and Q295, which interacts with the guanidine
side chain of R269, function to optimize the apparent
transition-state stabilization provided by the cationic side chain
of R269.
Collapse
Affiliation(s)
- Rui He
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
33
|
Wang L, Fried SD, Markland TE. Proton Network Flexibility Enables Robustness and Large Electric Fields in the Ketosteroid Isomerase Active Site. J Phys Chem B 2017; 121:9807-9815. [DOI: 10.1021/acs.jpcb.7b06985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lu Wang
- Department
of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Stephen D. Fried
- Medical Research
Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Petrović D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal 2017; 7:6188-6197. [PMID: 29291138 PMCID: PMC5745072 DOI: 10.1021/acscatal.7b01575] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Indexed: 12/17/2022]
Abstract
![]()
Glucose oxidase has
wide applications in the pharmaceutical, chemical,
and food industries. Many recent studies have enhanced key properties
of this enzyme using directed evolution, yet without being able to
reveal why these mutations are actually beneficial. This work presents
a synergistic combination of experimental and computational methods,
indicating how mutations, even when distant from the active site,
positively affect glucose oxidase catalysis. We have determined the
crystal structures of glucose oxidase mutants containing molecular
oxygen in the active site. The catalytically important His516 residue
has been previously shown to be flexible in the wild-type enzyme.
The molecular dynamics simulations performed in this work allow us
to quantify this floppiness, revealing that His516 exists in two states:
catalytic and noncatalytic. The relative populations of these two
substates are almost identical in the wild-type enzyme, with His516
readily shuffling between them. In the glucose oxidase mutants, on
the other hand, the mutations enrich the catalytic His516 conformation
and reduce the flexibility of this residue, leading to an enhancement
in their catalytic efficiency. This study stresses the benefit of
active site preorganization with respect to enzyme conversion rates
by reducing molecular reorientation needs. We further suggest that
the computational approach based on Hamiltonian replica exchange molecular
dynamics, used in this study, may be a general approach to screening
in silico for improved enzyme variants involving flexible catalytic
residues.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - David Frank
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | | | - Kurt Hoffmann
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | - Birgit Strodel
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1470-1478. [PMID: 28843728 DOI: 10.1016/j.bbapap.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[2H4]-choline as a substrate. The limiting rate constants klim1 and klim2 at saturating substrate were well separated (klim1/klim2>9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that klim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that klim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the klim1 and klim2 values increased with increasing temperature, allowing for the analyses of H+ and H- transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the klim1 value (H2Oklim1/D2Oklim1) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the klim2 value gave lines with the slope(choline)>slope(D-choline), suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed.
Collapse
|
36
|
Wu D, Wang R, Li Y, Ganguly R, Hirao H, Kinjo R. Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
|
38
|
Sunden F, AlSadhan I, Lyubimov AY, Ressl S, Wiersma-Koch H, Borland J, Brown CL, Johnson TA, Singh Z, Herschlag D. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. J Am Chem Soc 2016; 138:14273-14287. [PMID: 27670607 PMCID: PMC5096464 DOI: 10.1021/jacs.6b06186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme's cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >107-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes from existing promiscuous templates. More generally, comparative enzymology and analysis of catalytic promiscuity can provide mechanistic and evolutionary insights.
Collapse
Affiliation(s)
- Fanny Sunden
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Ishraq AlSadhan
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Artem Y Lyubimov
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Science, Structural Biology, and Photon Science, Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States
| | - Susanne Ressl
- Molecular and Cellular Biochemistry Department, Indiana University , Bloomington, Indiana 47405, United States
| | - Helen Wiersma-Koch
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States.,Department of Biology, Indian River State College , Fort Pierce, Florida 34981, United States
| | - Jamar Borland
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Clayton L Brown
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Tory A Johnson
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Zorawar Singh
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University , Stanford, California 94305, United States.,Departments of Chemical Engineering and Chemistry, and Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University , Stanford, California 94305, United States
| |
Collapse
|
39
|
Sigala PA, Morante K, Tsumoto K, Caaveiro JMM, Goldberg DE. In-Cell Enzymology To Probe His-Heme Ligation in Heme Oxygenase Catalysis. Biochemistry 2016; 55:4836-49. [PMID: 27490825 DOI: 10.1021/acs.biochem.6b00562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heme oxygenase (HO) is a ubiquitous enzyme with key roles in inflammation, cell signaling, heme disposal, and iron acquisition. HO catalyzes the oxidative conversion of heme to biliverdin (BV) using a conserved histidine to coordinate the iron atom of bound heme. This His-heme interaction has been regarded as being essential for enzyme activity, because His-to-Ala mutants fail to convert heme to biliverdin in vitro. We probed a panel of proximal His mutants of cyanobacterial, human, and plant HO enzymes using a live-cell activity assay based on heterologous co-expression in Escherichia coli of each HO mutant and a fluorescent biliverdin biosensor. In contrast to in vitro studies with purified proteins, we observed that multiple HO mutants retained significant activity within the intracellular environment of bacteria. X-ray crystallographic structures of human HO1 H25R with bound heme and additional functional studies suggest that HO mutant activity inside these cells does not involve heme ligation by a proximal amino acid. Our study reveals unexpected plasticity in the active site binding interactions with heme that can support HO activity within cells, suggests important contributions by the surrounding active site environment to HO catalysis, and can guide efforts to understand the evolution and divergence of HO function.
Collapse
Affiliation(s)
- Paul A Sigala
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Koldo Morante
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan.,Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo , Minato-ku, Tokyo 108-8639, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
40
|
Lamba V, Yabukarski F, Pinney M, Herschlag D. Evaluation of the Catalytic Contribution from a Positioned General Base in Ketosteroid Isomerase. J Am Chem Soc 2016; 138:9902-9. [PMID: 27410422 DOI: 10.1021/jacs.6b04796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proton transfer reactions are ubiquitous in enzymes and utilize active site residues as general acids and bases. Crystal structures and site-directed mutagenesis are routinely used to identify these residues, but assessment of their catalytic contribution remains a major challenge. In principle, effective molarity measurements, in which exogenous acids/bases rescue the reaction in mutants lacking these residues, can estimate these catalytic contributions. However, these exogenous moieties can be restricted in reactivity by steric hindrance or enhanced by binding interactions with nearby residues, thereby resulting in over- or underestimation of the catalytic contribution, respectively. With these challenges in mind, we investigated the catalytic contribution of an aspartate general base in ketosteroid isomerase (KSI) by exogenous rescue. In addition to removing the general base, we systematically mutated nearby residues and probed each mutant with a series of carboxylate bases of similar pKa but varying size. Our results underscore the need for extensive and multifaceted variation to assess and minimize steric and positioning effects and determine effective molarities that estimate catalytic contributions. We obtained consensus effective molarities of ∼5 × 10(4) M for KSI from Comamonas testosteroni (tKSI) and ∼10(3) M for KSI from Pseudomonas putida (pKSI). An X-ray crystal structure of a tKSI general base mutant showed no additional structural rearrangements, and double mutant cycles revealed similar contributions from an oxyanion hole mutation in the wild-type and base-rescued reactions, providing no indication of mutational effects extending beyond the general base site. Thus, the high effective molarities suggest a large catalytic contribution associated with the general base. A significant portion of this effect presumably arises from positioning of the base, but its large magnitude suggests the involvement of additional catalytic mechanisms as well.
Collapse
Affiliation(s)
- Vandana Lamba
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Filip Yabukarski
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Margaux Pinney
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
41
|
Sunden F, Peck A, Salzman J, Ressl S, Herschlag D. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site. eLife 2015; 4. [PMID: 25902402 PMCID: PMC4438272 DOI: 10.7554/elife.06181] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/22/2015] [Indexed: 01/30/2023] Open
Abstract
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.
Collapse
Affiliation(s)
- Fanny Sunden
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
| | - Ariana Peck
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
| | - Julia Salzman
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
| | - Susanne Ressl
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, United States
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, United States
| |
Collapse
|
42
|
|
43
|
Bhabha G, Biel JT, Fraser JS. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Acc Chem Res 2015; 48:423-30. [PMID: 25539415 PMCID: PMC4334266 DOI: 10.1021/ar5003158] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CONSPECTUS: Because living organisms are in constant motion, the word "dynamics" can hold many meanings to biologists. Here we focus specifically on the conformational changes that occur in proteins and how studying these protein dynamics may provide insights into enzymatic catalysis. Advances in integrating techniques such as X-ray crystallography, nuclear magnetic resonance, and electron cryomicroscopy (cryo EM) allow us to model the dominant structures and exchange rates for many proteins and protein complexes. For proteins amenable to atomic resolution techniques, the major questions shift from simply describing the motions to discovering their role in function. Concurrently, there is an increasing need for using perturbations to test predictive models of dynamics-function relationships. Examples are the catalytic cycles of dihydrofolate reductase (DHFR) and cyclophilin A (CypA). In DHFR, mutations that alter the ability of the active site to sample productive higher energy states on the millisecond time scale reduce the rate of hydride transfer significantly. Recently identified rescue mutations restore function, but the mechanism by which they do so remains unclear. The exact role of any changes in the dynamics remains an open question. For CypA, a network of side chains that exchange between two conformations is critical for catalysis. Mutations that lock the network in one state also reduce catalytic activity. A further understanding of enzyme dynamics of well-studied enzymes such as dihydrofolate reductase and cyclophilin A will lead to improvement in ability to modulate the functions of computationally designed enzymes and large macromolecular machines. In designed enzymes, directed evolution experiments increase catalytic rates. Detailed X-ray studies suggest that these mutations likely limit the conformational space explored by residues in the active site. For proteins where atomic resolution information is currently inaccessible, other techniques such as cryo-EM and high-resolution single molecule microscopy continue to advance. Understanding the conformational dynamics of larger systems such as protein machines will likely become more accessible and provide new opportunities to rationally modulate protein function.
Collapse
Affiliation(s)
- Gira Bhabha
- Department
of Cellular and Molecular Pharmacology and the Howard Hughes Medical
Institute, University of California, San Francisco, California 94158, United States
| | - Justin T. Biel
- Biophysics Graduate Group, University of California, San Francisco, California 94158, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic
Science and California Institute for Quantitative Biology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
44
|
Hanoian P, Liu CT, Hammes-Schiffer S, Benkovic S. Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc Chem Res 2015; 48:482-9. [PMID: 25565178 PMCID: PMC4334233 DOI: 10.1021/ar500390e] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Enzymes
are essential for all living organisms, and their effectiveness as
chemical catalysts has driven more than a half century of research
seeking to understand the enormous rate enhancements they provide.
Nevertheless, a complete understanding of the factors that govern
the rate enhancements and selectivities of enzymes remains elusive,
due to the extraordinary complexity and cooperativity that are the
hallmarks of these biomolecules. We have used a combination of site-directed
mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear
magnetic resonance (NMR), vibrational and fluorescence spectroscopies,
resonance energy transfer, and computer simulations to study the implications
of conformational motions and electrostatic interactions on enzyme
catalysis in the enzyme dihydrofolate reductase (DHFR). We have
demonstrated that modest equilibrium conformational changes are functionally
related to the hydride transfer reaction. Results obtained for mutant
DHFRs illustrated that reductions in hydride transfer rates are correlated
with altered conformational motions, and analysis of the evolutionary
history of DHFR indicated that mutations appear to have occurred to
preserve both the hydride transfer rate and the associated conformational
changes. More recent results suggested that differences in local electrostatic
environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination
of primary and solvent kinetic isotope effects, we demonstrated that
the reaction mechanism is consistent across a broad pH range, and
computer simulations suggested that deprotonation of the active site
Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into
the ecDHFR active site provided an experimental tool
for interrogating these microenvironments and for investigating changes
in electrostatics along the DHFR catalytic cycle. Complementary molecular
dynamics simulations in conjunction with mixed quantum mechanical/molecular
mechanical calculations accurately reproduced the vibrational frequency
shifts in these probes and provided atomic-level insight into the
residues influencing these changes. Our findings indicate that conformational
and electrostatic changes are intimately related and functionally
essential. This approach can be readily extended to the study of other
enzyme systems to identify more general trends in the relationship
between conformational fluctuations and electrostatic interactions.
These results are relevant to researchers seeking to design novel
enzymes as well as those seeking to develop therapeutic agents that
function as enzyme inhibitors.
Collapse
Affiliation(s)
- Philip Hanoian
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - C. Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stephen Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
45
|
Reyes A, Zhai X, Morgan KT, Reinhardt CJ, Amyes TL, Richard JP. The activating oxydianion binding domain for enzyme-catalyzed proton transfer, hydride transfer, and decarboxylation: specificity and enzyme architecture. J Am Chem Soc 2015; 137:1372-82. [PMID: 25555107 PMCID: PMC4311969 DOI: 10.1021/ja5123842] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/29/2022]
Abstract
The kinetic parameters for activation of yeast triosephosphate isomerase (ScTIM), yeast orotidine monophosphate decarboxylase (ScOMPDC), and human liver glycerol 3-phosphate dehydrogenase (hlGPDH) for catalysis of reactions of their respective phosphodianion truncated substrates are reported for the following oxydianions: HPO3(2-), FPO3(2-), S2O3(2-), SO4(2-) and HOPO3(2-). Oxydianions bind weakly to these unliganded enzymes and tightly to the transition state complex (E·S(‡)), with intrinsic oxydianion Gibbs binding free energies that range from -8.4 kcal/mol for activation of hlGPDH-catalyzed reduction of glycolaldehyde by FPO3(2-) to -3.0 kcal/mol for activation of ScOMPDC-catalyzed decarboxylation of 1-β-d-erythrofuranosyl)orotic acid by HOPO3(2-). Small differences in the specificity of the different oxydianion binding domains are observed. We propose that the large -8.4 kcal/mol and small -3.8 kcal/mol intrinsic oxydianion binding energy for activation of hlGPDH by FPO3(2-) and S2O3(2-), respectively, compared with activation of ScTIM and ScOMPDC reflect stabilizing and destabilizing interactions between the oxydianion -F and -S with the cationic side chain of R269 for hlGPDH. These results are consistent with a cryptic function for the similarly structured oxydianion binding domains of ScTIM, ScOMPDC and hlGPDH. Each enzyme utilizes the interactions with tetrahedral inorganic oxydianions to drive a conformational change that locks the substrate in a caged Michaelis complex that provides optimal stabilization of the different enzymatic transition states. The observation of dianion activation by stabilization of active caged Michaelis complexes may be generalized to the many other enzymes that utilize substrate binding energy to drive changes in enzyme conformation, which induce tight substrate fits.
Collapse
Affiliation(s)
- Archie
C. Reyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Xiang Zhai
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Kelsey T. Morgan
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Christopher J. Reinhardt
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
46
|
Affiliation(s)
- Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, 10623 Berlin, Germany.
| |
Collapse
|
47
|
Fried SD, Bagchi S, Boxer SG. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 2015; 346:1510-4. [PMID: 25525245 DOI: 10.1126/science.1259802] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.
Collapse
Affiliation(s)
- Stephen D Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA
| | - Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA.
| |
Collapse
|
48
|
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site. Proc Natl Acad Sci U S A 2014; 111:18454-9. [PMID: 25503367 DOI: 10.1073/pnas.1417923111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.
Collapse
|
49
|
Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis. Proc Natl Acad Sci U S A 2014; 111:17516-21. [PMID: 25422475 DOI: 10.1073/pnas.1408512111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.
Collapse
|
50
|
Tamura M, Sawabe K, Tomishige K, Satsuma A, Shimizu KI. Substrate-Specific Heterogeneous Catalysis of CeO2 by Entropic Effects via Multiple Interactions. ACS Catal 2014. [DOI: 10.1021/cs501448n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masazumi Tamura
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University 6-6-07,
Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kyoichi Sawabe
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiichi Tomishige
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University 6-6-07,
Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Satsuma
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Ken-ichi Shimizu
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
- Catalysis
Research Center, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|