1
|
Mondragón-García A, Ramírez-Sánchez E, Francia-Ramírez D, Hernández-González O, Rojano-Posada Y, Ortega-Tinoco S, Garduño J, Verdugo-Díaz L, Hernández-López S. S-(+)-mecamylamine increases the firing rate of serotonin neurons and diminishes depressive-like behaviors in an animal model of stress. Neuroscience 2024; 562:75-89. [PMID: 39454712 DOI: 10.1016/j.neuroscience.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Mecamylamine, a noncompetitive blocker of nicotinic acetylcholine receptors (nAChRs), is the racemic mixture of two stereoisomers: S-(+)-mecamylamine (S-mec) and R-(-)-mecamylamine (R-mec), with distinct interactions with α4β2 nAChRs. It has been shown that mecamylamine increases glutamate release and excites serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN). In this study, we separately evaluated the effects of S-mec and R-mec on 5-HT neuron excitability. S-mec (3 μM) increased firing frequency by 40 %, while R-mec (3 μM) raised it by only 22 %. S-mec acts as a positive allosteric modulator on high-sensitivity (HS) α4β2 nAChRs at glutamate terminals, enhancing spontaneous excitatory postsynaptic currents (sEPSCs) in 5-HT neurons. Conversely, R-mec decreased sEPSCs by blocking HS α4β2 nAChRs and reduced GABA-mediated inhibitory currents (sIPSCs) by blocking α7 nAChRs at GABAergic terminals. These mechanisms make S-mec more effective than R-mec in enhancing 5-HT neuron firing. Moreover, combining S-mec with TC-2559, a selective agonist of HS α4β2 nAChRs, increased firing frequency by 65 %, exceeding the effect of S-mec alone. To validate these findings, we evaluated the antidepressant effects of S-mec (1 mg/kg) combined with TC-2559 or RJR-2403, another α4β2 nAChR agonist. This combination successfully reduced depression-like behaviors, suggesting a potential treatment strategy for patients resistant to conventional antidepressants.
Collapse
Affiliation(s)
- A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - D Francia-Ramírez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - O Hernández-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - Y Rojano-Posada
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - L Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico.
| |
Collapse
|
2
|
Hardege I, Morud J, Courtney A, Schafer WR. A Novel and Functionally Diverse Class of Acetylcholine-Gated Ion Channels. J Neurosci 2023; 43:1111-1124. [PMID: 36604172 PMCID: PMC9962794 DOI: 10.1523/jneurosci.1516-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Recent Advances in the Discovery of Nicotinic Acetylcholine Receptor Allosteric Modulators. Molecules 2023; 28:molecules28031270. [PMID: 36770942 PMCID: PMC9920195 DOI: 10.3390/molecules28031270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent agonists, allosteric activating PAMs and neutral or silent allosteric modulators are compounds capable of modulating the nicotinic receptor by interacting at allosteric modulatory sites distinct from the orthosteric sites. This survey is focused on the compounds that have been shown or have been designed to interact with nicotinic receptors as allosteric modulators of different subtypes, mainly α7 and α4β2. Minimal chemical changes can cause a different pharmacological profile, which can then lead to the design of selective modulators. Experimental evidence supports the use of allosteric modulators as therapeutic tools for neurological and non-neurological conditions.
Collapse
|
4
|
Abstract
Despite the evidence that the muscarinic agonist arecoline is a drug of abuse throughout Southeast Asia, its stimulus characteristics have not been well studied. The goal of this work was to understand more about the mediation of discriminative stimulus effects of arecoline. Arecoline (1.0 mg/kg s.c.) was trained as a discriminative stimulus in a group of eight rats. The ability of various cholinergic agonists and antagonists to mimic or antagonize the discriminative stimulus effects of arecoline and to modify its rate-suppressing effects was evaluated. A muscarinic antagonist, but neither of two nicotinic antagonists, was able to modify the discriminative stimulus effects of arecoline, suggesting a predominant muscarinic basis of arecoline's discriminative stimulus effects in this assay. However, both nicotine itself and two nicotine agonists with selective affinity for the α4β2* receptor (ispronicline and metanicotine) produced full arecoline-like discriminative stimulus effects in these rats. The discriminative stimulus effects of the selective nicotine agonists were blocked by both the general nicotine antagonist mecamylamine and by the selective α4β2* antagonist, dihydro-beta-erythroidine (DHβE). Surprisingly, only DHβE antagonized the rate-suppressing effects of the selective nicotine agonists. These data indicate a selective α4β2* nicotine receptor component to the behavioral effects of arecoline. Although the nicotinic aspects of arecoline's behavior effects could suggest that abuse of arecoline-containing material (e.g. betel nut chewing) is mediated through nicotinic rather than muscarinic actions, further research, specifically on the reinforcing effects of arecoline, is necessary before this conclusion can be supported.
Collapse
Affiliation(s)
- Gail Winger
- Department of Pharmacology, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
5
|
Winger G. Nicotine-like discriminative and aversive effects of two α4β2-selective nicotine agonists, ispronicline and metanicotine. Behav Pharmacol 2021; 32:497-504. [PMID: 34320519 DOI: 10.1097/fbp.0000000000000644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An attempt to determine the receptor selective nature of some of nicotine's behavioral effects was undertaken through the evaluation of the ability of two nicotinic α4β2*-selective receptor agonists to produce nicotine-like effects and modify rates of responding in a discrimination assay and in an aversive stimulus assay. A group of eight rats was trained to discriminate the presence of 1 mg/kg nicotine base. Another group of 4-6 rats was trained to report the aversive effects of nicotine by selecting a lever that produced one food pellet over a second lever that produced two food pellets and an intravenous injection of nicotine. Ispronicline and metanicotine, two α4β2*-selective receptor agonists, increased selection of the nicotine-appropriate lever in a dose-related manner, up to a maximum of approximately 75%. The α4β2*-selective receptor antagonist, dihydro-beta-erythroidine blocked both the discriminative stimulus effects and the rate-suppressing effects of ispronicline, metanicotine, and small, but not large doses of nicotine. The nonselective antagonist, mecamylamine, antagonized the discriminative stimulus effects of each of the three nicotine agonists as well as the rate-decreasing effects of nicotine and metanicotine. Mecamylamine did not modify the rate-decreasing effects of ispronicline. Both ispronicline and metanicotine as well as nicotine were avoided in the drug + food vs. food choice situation. The receptor-selective nature of ispronicline and metanicotine was hereby confirmed in a behavioral assay, as were earlier reports that the discriminative stimulus effects of relatively small doses of nicotine are likely mediated by activity at the α4β2* nicotine receptor.
Collapse
Affiliation(s)
- Gail Winger
- Department of Pharmacology, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
6
|
Lyukmanova EN, Bychkov ML, Sharonov GV, Efremenko AV, Shulepko MA, Kulbatskii DS, Shenkarev ZO, Feofanov AV, Dolgikh DA, Kirpichnikov MP. Human secreted proteins SLURP-1 and SLURP-2 control the growth of epithelial cancer cells via interactions with nicotinic acetylcholine receptors. Br J Pharmacol 2018; 175:1973-1986. [PMID: 29505672 DOI: 10.1111/bph.14194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (nAChRs) are a promising target for development of new anticancer therapies. Here we have investigated the effects of the endogenous human proteins SLURP-1 and SLURP-2, antagonists of nAChRs, on human epithelial cancer cells. EXPERIMENTAL APPROACH Growth of epithelial cancer cells (A431, SKBR3, MCF-7, A549, HT-29) exposed to SLURP-1, SLURP-2, mecamylamine, atropine, timolol and gefitinib was measured by the WST-1 test. Expression levels of SLURP-1, α7-nAChR and EGF receptors and their distribution in cancer cells were studied by confocal microscopy and flow cytometry. Secretion of endogenous SLURP-1 by A431 cells under treatment with recombinant SLURP-1 was analysed by Western-blotting. KEY RESULTS SLURP-1 and SLURP-2 significantly inhibited growth of A431, SKBR3, MCF-7 and HT-29 cells at concentrations above 1 nM, to 40-70% of the control, in 24 h. Proliferation of A549 cells was inhibited only by SLURP-1. The anti-proliferative activity of SLURPs on A431 cells was associated with nAChRs, but not with β-adrenoceptors or EGF receptors. Action of gefitinib and SLURPs was additive and resulted almost complete inhibition of A431 cell proliferation during 24 h. Exposure of A431 cells to recombinant SLURP-1 down-regulated α7-nAChR expression and induced secretion of endogenous SLURP-1 from intracellular depots, increasing its concentration in the extracellular media. CONCLUSIONS AND IMPLICATIONS SLURPs inhibit growth of epithelial cancer cells in vitro and merit further investigation as potential agents for anticancer therapy. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- E N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Moscow Institute of Physics and Technology, Moscow Region, Russian Federation
| | - M L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - G V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - A V Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - M A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - D S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Moscow Institute of Physics and Technology, Moscow Region, Russian Federation
| | - A V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - D A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
7
|
Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 2017; 175:1805-1821. [PMID: 28199738 DOI: 10.1111/bph.13745] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2)2 α5, (α4β2)2 β3 and (α6β2)2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Jingyi Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Bupropion and its photoreactive analog (±)-SADU-3-72 interact with luminal and non-luminal sites at human α4β2 nicotinic acetylcholine receptors. Neurochem Int 2016; 100:67-77. [DOI: 10.1016/j.neuint.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022]
|
9
|
Henderson BJ, Lester HA. Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology 2015; 96:178-93. [PMID: 25660637 DOI: 10.1016/j.neuropharm.2015.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Mowrey DD, Kinde MN, Xu Y, Tang P. Atomistic insights into human Cys-loop receptors by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:307-14. [PMID: 24680782 DOI: 10.1016/j.bbamem.2014.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.
Collapse
Affiliation(s)
- David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|