1
|
The Ankyrin Repeat Protein RARP-1 Is a Periplasmic Factor That Supports Rickettsia parkeri Growth and Host Cell Invasion. J Bacteriol 2022; 204:e0018222. [PMID: 35727033 DOI: 10.1128/jb.00182-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia spp. are obligate intracellular bacterial pathogens that have evolved a variety of strategies to exploit their host cell niche. However, the bacterial factors that contribute to this intracellular lifestyle are poorly understood. Here, we show that the conserved ankyrin repeat protein RARP-1 supports Rickettsia parkeri infection. Specifically, RARP-1 promotes efficient host cell entry and growth within the host cytoplasm, but it is not necessary for cell-to-cell spread or evasion of host autophagy. We further demonstrate that RARP-1 is not secreted into the host cytoplasm by R. parkeri. Instead, RARP-1 resides in the periplasm, and we identify several binding partners that are predicted to work in concert with RARP-1 during infection. Altogether, our data reveal that RARP-1 plays a critical role in the rickettsial life cycle. IMPORTANCE Rickettsia spp. are obligate intracellular bacterial pathogens that pose a growing threat to human health. Nevertheless, their strict reliance on a host cell niche has hindered investigation of the molecular mechanisms driving rickettsial infection. This study yields much-needed insight into the Rickettsia ankyrin repeat protein RARP-1, which is conserved across the genus but has not yet been functionally characterized. Earlier work had suggested that RARP-1 is secreted into the host cytoplasm. However, the results from this work demonstrate that R. parkeri RARP-1 resides in the periplasm and is important both for invasion of host cells and for growth in the host cell cytoplasm. These results reveal RARP-1 as a novel regulator of the rickettsial life cycle.
Collapse
|
2
|
Heisdorf CJ, Griffiths WA, Thoden JB, Holden HM. Investigation of the enzymes required for the biosynthesis of an unusual formylated sugar in the emerging human pathogen Helicobacter canadensis. Protein Sci 2021; 30:2144-2160. [PMID: 34379357 DOI: 10.1002/pro.4169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023]
Abstract
It is now well established that the Gram-negative bacterium, Helicobacter pylori, causes gastritis in humans. In recent years, it has become apparent that the so-called non-pylori Helicobacters, normally infecting pigs, cats, and dogs, may also be involved in human pathology via zoonotic transmission. Indeed, more than 30 species of non-pylori Helicobacters have been identified thus far. One such organism is Helicobacter canadensis, an emerging pathogen whose genome sequence was published in 2009. Given our long-standing interest in the biosynthesis of N-formylated sugars found in the O-antigens of some Gram-negative bacteria, we were curious as to whether H. canadensis produces such unusual carbohydrates. Here, we demonstrate using both biochemical and structural techniques that the proteins encoded by the HCAN_0198, HCAN_0204, and HCAN_0200 genes in H. canadensis, correspond to a 3,4-ketoisomerase, a pyridoxal 5'-phosphate aminotransferase, and an N-formyltransferase, respectively. For this investigation, five high-resolution X-ray structures were determined and the kinetic parameters for the isomerase and the N-formyltransferase were measured. Based on these data, we suggest that the unusual sugar, 3-formamido-3,6-dideoxy-d-glucose, will most likely be found in the O-antigen of H. canadensis. Whether N-formylated sugars found in the O-antigen contribute to virulence is presently unclear, but it is intriguing that they have been observed in such pathogens as Francisella tularensis, Mycobacterium tuberculosis, and Brucella melitensis.
Collapse
Affiliation(s)
- Colton J Heisdorf
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - William A Griffiths
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Girardi NM, Thoden JB, Holden HM. Misannotations of the genes encoding sugar N-formyltransferases. Protein Sci 2020; 29:930-940. [PMID: 31867814 PMCID: PMC7096703 DOI: 10.1002/pro.3807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioinformatics techniques. Whereas these approaches are absolutely critical to the annotation of gene function, there are still issues of misidentifications, which must be experimentally corrected. For example, many of the bacterial DNA sequences encoding sugar N-formyltransferases have been annotated as l-methionyl-tRNA transferases in the databases. These mistakes may be due in part to the fact that until recently the structures and functions of these enzymes were not well known. Herein we describe the misannotation of two genes, WP_088211966.1 and WP_096244125.1, from Shewanella spp. and Pseudomonas congelans, respectively. Although the proteins encoded by these genes were originally suggested to function as l-methionyl-tRNA transferases, we demonstrate that they actually catalyze the conversion of dTDP-4-amino-4,6-dideoxy-d-glucose to dTDP-4-formamido-4,6-dideoxy-d-glucose utilizing N10 -formyltetrahydrofolate as the carbon source. For this analysis, the genes encoding these enzymes were cloned and the corresponding proteins purified. X-ray structures of the two proteins were determined to high resolution and kinetic analyses were conducted. Both enzymes display classical Michaelis-Menten kinetics and adopt the characteristic three-dimensional structural fold previously observed for other sugar N-formyltransferases. The results presented herein will aid in the future annotation of these fascinating enzymes.
Collapse
|
4
|
Chagula DB, Rechciński T, Rudnicka K, Chmiela M. Ankyrins in human health and disease - an update of recent experimental findings. Arch Med Sci 2020; 16:715-726. [PMID: 32542072 PMCID: PMC7286341 DOI: 10.5114/aoms.2019.89836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ankyrins are adaptor molecules that in eukaryotic cells form complexes with ion channel proteins, cell adhesion and signalling molecules and components of the cytoskeleton. They play a pivotal role as scaffolding proteins, in the structural anchoring to the muscle membrane, in muscle development, neurogenesis and synapse formation. Dysfunction of ankyrins is implicated in numerous diseases such as hereditary spherocytosis, neurodegeneration of Purkinje cells, cardiac arrhythmia, Brugada syndrome, bipolar disorders and schizophrenia, congenital myopathies and congenital heart disease as well as cancers. Detecting either down- or over-expression of ankyrins and ergo their use as biomarkers can provide a new paradigm in the diagnosis of these diseases. This paper provides an outline of knowledge about the structure of ankyrins, and by making use of recent experimental research studies critically discusses their role in several health disorders. Moreover, therapeutic options utilizing engineered ankyrins, designed ankyrin repeat proteins (DARPins), are discussed.
Collapse
Affiliation(s)
- Damian B. Chagula
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Rechciński
- Department of Cardiology, Bieganski Regional Speciality Hospital, Medical University of Lodz, Lodz, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Corresponding author: Prof. Magdalena Chmiela Laboratory of Gastroimmunology, Department of Immmunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Lodz, Poland, E-mail:
| |
Collapse
|
5
|
Hofmeister DL, Thoden JB, Holden HM. Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis. Protein Sci 2019; 28:707-716. [PMID: 30666752 PMCID: PMC6423709 DOI: 10.1002/pro.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
Pantoea ananatis is a Gram-negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non-pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4-formamido-4,6-dideoxy-d-glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6-dehydratase, an aminotransferase, and an N-formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N-formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis-Menten kinetics with dTDP-4-amino-4,6-dideoxy-d-glucose as the substrate and N10 -formyltetrahydrofolate as the carbon source. In addition, the X-ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N-formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N-formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non-pathogenic apparently do not contain these genes.
Collapse
Affiliation(s)
| | - James B. Thoden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| | - Hazel M. Holden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| |
Collapse
|
6
|
Kenjić N, Hoag MR, Moraski GC, Caperelli CA, Moran GR, Lamb AL. PvdF of pyoverdin biosynthesis is a structurally unique N 10-formyltetrahydrofolate-dependent formyltransferase. Arch Biochem Biophys 2019; 664:40-50. [PMID: 30689984 DOI: 10.1016/j.abb.2019.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022]
Abstract
The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.3 Å, revealing a formyltransferase fold consistent with N10-formyltetrahydrofolate dependent enzymes, such as the glycinamide ribonucleotide transformylases, N-sugar transformylases and methionyl-tRNA transformylases. Whereas the core structure, including the catalytic triad, is conserved, PvdF has three insertions of 18 or more amino acids, which we hypothesize are key to binding the OHOrn substrate. Steady state kinetics revealed a non-hyperbolic rate curve, promoting the hypothesis that PvdF uses a random-sequential mechanism, and favors folate binding over OHOrn.
Collapse
Affiliation(s)
- Nikola Kenjić
- Department of Molecular Biosciences, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, 3210 N Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, Montana State University, Bozeman, MT, 59717, USA
| | - Carol A Caperelli
- Winkle College of Pharmacy, University of Cincinnati, ML 0514, 231 Albert Sabin Way, MSB 3109B, Cincinnati, OH, 45267, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Audrey L Lamb
- Department of Molecular Biosciences, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
7
|
Reimer JM, Harb I, Ovchinnikova OG, Jiang J, Whitfield C, Schmeing TM. Structural Insight into a Novel Formyltransferase and Evolution to a Nonribosomal Peptide Synthetase Tailoring Domain. ACS Chem Biol 2018; 13:3161-3172. [PMID: 30346688 DOI: 10.1021/acschembio.8b00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) increase the chemical diversity of their products by acquiring tailoring domains. Linear gramicidin synthetase starts with a tailoring formylation (F) domain, which likely originated from a sugar formyltransferase (FT) gene. Here, we present studies on an Anoxybacillus kamchatkensis sugar FT representative of the prehorizontal gene transfer FT. Gene cluster analysis reveals that this FT acts on a UDP-sugar in a novel pathway for synthesis of a 7-formamido derivative of CMP-pseudaminic acid. We recapitulate the pathway up to and including the formylation step in vitro, experimentally demonstrating the role of the FT. We also present X-ray crystal structures of the FT alone and with ligands, which unveil contrasts with other structurally characterized sugar FTs and show close structural similarity with the F domain. The structures reveal insights into the adaptations that were needed to co-opt and evolve a sugar FT into a functional and useful NRPS domain.
Collapse
Affiliation(s)
- Janice M. Reimer
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jessie Jiang
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
8
|
TRPA1 ankyrin repeat six interacts with a small molecule inhibitor chemotype. Proc Natl Acad Sci U S A 2018; 115:12301-12306. [PMID: 30429323 DOI: 10.1073/pnas.1808142115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TRPA1, a member of the transient receptor potential channel (TRP) family, is genetically linked to pain in humans, and small molecule inhibitors are efficacious in preclinical animal models of inflammatory pain. These findings have driven significant interest in development of selective TRPA1 inhibitors as potential analgesics. The majority of TRPA1 inhibitors characterized to date have been reported to interact with the S5 transmembrane helices forming part of the pore region of the channel. However, the development of many of these inhibitors as clinical drug candidates has been prevented by high lipophilicity, low solubility, and poor pharmacokinetic profiles. Identification of alternate compound interacting sites on TRPA1 provides the opportunity to develop structurally distinct modulators with novel structure-activity relationships and more desirable physiochemical properties. In this paper, we have identified a previously undescribed potent and selective small molecule thiadiazole structural class of TRPA1 inhibitor. Using species ortholog chimeric and mutagenesis strategies, we narrowed down the site of interaction to ankyrinR #6 within the distal N-terminal region of TRPA1. To identify the individual amino acid residues involved, we generated a computational model of the ankyrinR domain. This model was used predictively to identify three critical amino acids in human TRPA1, G238, N249, and K270, which were confirmed by mutagenesis to account for compound activity. These findings establish a small molecule interaction region on TRPA1, expanding potential avenues for developing TRPA1 inhibitor analgesics and for probing the mechanism of channel gating.
Collapse
|
9
|
Brown HA, Vinogradov E, Gilbert M, Holden HM. The Mycobacterium tuberculosis complex has a pathway for the biosynthesis of 4-formamido-4,6-dideoxy-d-glucose. Protein Sci 2018; 27:1491-1497. [PMID: 29761597 DOI: 10.1002/pro.3443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
10
|
Islam Z, Nagampalli RSK, Fatima MT, Ashraf GM. New paradigm in ankyrin repeats: Beyond protein-protein interaction module. Int J Biol Macromol 2017; 109:1164-1173. [PMID: 29157912 DOI: 10.1016/j.ijbiomac.2017.11.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023]
Abstract
Classically, ankyrin repeat (ANK) proteins are built from tandems of two or more repeats and form curved solenoid structures that are associated with protein-protein interactions. These are short, widespread structural motif of around 33 amino acids repeats in tandem, having a canonical helix-loop-helix fold, found individually or in combination with other domains. The multiplicity of structural pattern enables it to form assemblies of diverse sizes, required for their abilities to confer multiple binding and structural roles of proteins. Three-dimensional structures of these repeats determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. Recent work on the ANK has proposed novel structural information, especially protein-lipid, protein-sugar and protein-protein interaction. Self-assembly of these repeats was also shown to prevent the associated protein in forming filaments. In this review, we summarize the latest findings and how the new structural information has increased our understanding of the structural determinants of ANK proteins. We discussed latest findings on how these proteins participate in various interactions to diversify the ANK roles in numerous biological processes, and explored the emerging and evolving field of designer ankyrins and its framework for protein engineering emphasizing on biotechnological applications.
Collapse
Affiliation(s)
- Zeyaul Islam
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil.
| | | | - Munazza Tamkeen Fatima
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
11
|
Dunsirn MM, Thoden JB, Gilbert M, Holden HM. Biochemical Investigation of Rv3404c from Mycobacterium tuberculosis. Biochemistry 2017; 56:3818-3825. [PMID: 28665588 DOI: 10.1021/acs.biochem.7b00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N10-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 104 M-1 s-1. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N5-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times.
Collapse
Affiliation(s)
- Murray M Dunsirn
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Michel Gilbert
- National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario K1A 0R6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Riegert AS, Chantigian DP, Thoden JB, Tipton PA, Holden HM. Biochemical Characterization of WbkC, an N-Formyltransferase from Brucella melitensis. Biochemistry 2017. [PMID: 28636341 DOI: 10.1021/acs.biochem.7b00494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has become increasingly apparent within the last several years that unusual N-formylated sugars are often found on the O-antigens of such Gram negative pathogenic organisms as Francisella tularensis, Campylobacter jejuni, and Providencia alcalifaciens, among others. Indeed, in some species of Brucella, for example, the O-antigen contains 1,2-linked 4-formamido-4,6-dideoxy-α-d-mannosyl groups. These sugars, often referred to as N-formylperosamine, are synthesized in pathways initiating with GDP-mannose. One of the enzymes required for the production of N-formylperosamine, namely, WbkC, was first identified in 2000 and was suggested to function as an N-formyltransferase. Its biochemical activity was never experimentally verified, however. Here we describe a combined structural and functional investigation of WbkC from Brucella melitensis. Four high resolution X-ray structures of WbkC were determined in various complexes to address its active site architecture. Unexpectedly, the quaternary structure of WbkC was shown to be different from that previously observed for other sugar N-formyltransferases. Additionally, the structures revealed a second binding site for a GDP molecule distinct from that required for GDP-perosamine positioning. In keeping with this additional binding site, kinetic data with the wild type enzyme revealed complex patterns. Removal of GDP binding by mutating Phe 142 to an alanine residue resulted in an enzyme variant displaying normal Michaelis-Menten kinetics. These data suggest that this nucleotide binding pocket plays a role in enzyme regulation. Finally, by using an alternative substrate, we demonstrate that WbkC can be utilized to produce a trideoxysugar not found in nature.
Collapse
Affiliation(s)
- Alexander S Riegert
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Daniel P Chantigian
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Peter A Tipton
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Woodford CR, Thoden JB, Holden HM. Molecular architecture of an N-formyltransferase from Salmonella enterica O60. J Struct Biol 2017; 200:267-278. [PMID: 28263875 DOI: 10.1016/j.jsb.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/28/2023]
Abstract
N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N10-formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes.
Collapse
Affiliation(s)
- Colin R Woodford
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
14
|
Dow GT, Gilbert M, Thoden JB, Holden HM. Structural investigation on WlaRG from Campylobacter jejuni: A sugar aminotransferase. Protein Sci 2017; 26:586-599. [PMID: 28028852 DOI: 10.1002/pro.3109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
Campylobacter jejuni is a Gram-negative bacterium that represents a leading cause of human gastroenteritis worldwide. Of particular concern is the link between C. jejuni infections and the subsequent development of Guillain-Barré syndrome, an acquired autoimmune disorder leading to paralysis. All Gram-negative bacteria contain complex glycoconjugates anchored to their outer membranes, but in most strains of C. jejuni, this lipoglycan lacks the O-antigen repeating units. Recent mass spectrometry analyses indicate that the C. jejuni 81116 (Penner serotype HS:6) lipoglycan contains two dideoxyhexosamine residues, and enzymological assay data show that this bacterial strain can synthesize both dTDP-3-acetamido-3,6-dideoxy-d-glucose and dTDP-3-acetamido-3,6-dideoxy-d-galactose. The focus of this investigation is on WlaRG from C. jejuni, which plays a key role in the production of these unusual sugars by functioning as a pyridoxal 5'-phosphate dependent aminotransferase. Here, we describe the first three-dimensional structures of the enzyme in various complexes determined to resolutions of 1.7 Å or higher. Of particular significance are the external aldimine structures of WlaRG solved in the presence of either dTDP-3-amino-3,6-dideoxy-d-galactose or dTDP-3-amino-3,6-dideoxy-d-glucose. These models highlight the manner in which WlaRG can accommodate sugars with differing stereochemistries about their C-4' carbon positions. In addition, we present a corrected structure of WbpE, a related sugar aminotransferase from Pseudomonas aeruginosa, solved to 1.3 Å resolution.
Collapse
Affiliation(s)
- Garrett T Dow
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Michel Gilbert
- National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario, K1A 0R6, Canada
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
15
|
Salinger AJ, Thoden JB, Holden HM. Structural and Functional Investigation of FdhC from Acinetobacter nosocomialis: A Sugar N-Acyltransferase Belonging to the GNAT Superfamily. Biochemistry 2016; 55:4509-18. [PMID: 27404806 DOI: 10.1021/acs.biochem.6b00602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes belonging to the GNAT superfamily are widely distributed in nature where they play key roles in the transfer of acyl groups from acyl-CoAs to primary amine acceptors. The amine acceptors run the gamut from histones to aminoglycoside antibiotics to small molecules such as serotonin. Whereas those family members that function on histones have been extensively studied, the GNAT enzymes that employ nucleotide-linked sugars as their substrates have not been well characterized. Indeed, though the structures of two of these "amino sugar" GNAT enzymes have been determined within the past 10 years, details concerning their active site architectures have been limited because of a lack of bound nucleotide-linked sugar substrates. Here we describe a combined structural and biochemical analysis of FdhC from Acinetobacter nosocomialis O2. On the basis of bioinformatics, it was postulated that FdhC catalyzes the transfer of a 3-hydroxybutanoyl group from 3-hydroxylbutanoyl-CoA to dTDP-3-amino-3,6-dideoxy-d-galactose, to yield an unusual sugar that is ultimately incorporated into the surface polysaccharides of the bacterium. We present data confirming this activity. In addition, the structures of two ternary complexes of FdhC, in the presence of CoA and either 3-hydroxybutanoylamino-3,6-dideoxy-d-galactose or 3-hydroxybutanoylamino-3,6-dideoxy-d-glucose, were solved by X-ray crystallographic analyses to high resolution. Kinetic parameters were determined, and activity assays demonstrated that FdhC can also utilize acetyl-CoA, 3-methylcrotonyl-CoA, or hexanoyl-CoA as acyl donors, albeit at reduced rates. Site-directed mutagenesis experiments were conducted to probe the catalytic mechanism of FdhC. Taken together, the data presented herein provide significantly new molecular insight into those GNAT superfamily members that function on nucleotide-linked amino sugars.
Collapse
Affiliation(s)
- Ari J Salinger
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Enzymes required for the biosynthesis of N-formylated sugars. Curr Opin Struct Biol 2016; 41:1-9. [PMID: 27209114 DOI: 10.1016/j.sbi.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/25/2022]
Abstract
The N-formyltransferases, also known as transformylases, play key roles in de novo purine biosynthesis where they catalyze the transfer of formyl groups to primary amine acceptors. These enzymes require N10-formyltetrahydrofolate for activity. Due to their biological importance they have been extensively investigated for many years, and they are still serving as targets for antifolate drug design. Most of our understanding of the N-formyltransferases has been derived from these previous studies. It is now becoming increasingly apparent, however, that N-formylation also occurs on some amino sugars found on the O-antigens of pathogenic bacteria. This review focuses on recent developments in the biochemical and structural characterization of the sugar N-formyltransferases.
Collapse
|
17
|
Genthe NA, Thoden JB, Holden HM. Structure of the Escherichia coli ArnA N-formyltransferase domain in complex with N(5) -formyltetrahydrofolate and UDP-Ara4N. Protein Sci 2016; 25:1555-62. [PMID: 27171345 DOI: 10.1002/pro.2938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.
Collapse
Affiliation(s)
- Nicholas A Genthe
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
18
|
Son J, Jo CH, Murugan RN, Bang JK, Hwang KY, Lee WC. Crystal structure of Legionella pneumophila type IV secretion system effector LegAS4. Biochem Biophys Res Commun 2015; 465:817-24. [PMID: 26315269 DOI: 10.1016/j.bbrc.2015.08.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022]
Abstract
The SET domain of LegAS4, a type IV secretion system effector of Legionella pneumophila, is a eukaryotic protein motif involved in histone methylation and epigenetic modulation. The SET domain of LegAS4 is involved in the modification of Lys4 of histone H3 (H3K4) in the nucleolus of the host cell, thereby enhancing heterochromatic rDNA transcription. Moreover, LegAS4 contains an ankyrin repeat domain of unknown function at its C-terminal region. Here, we report the crystal structure of LegAS4 in complex with S-adenosyl-l-methionine (SAM). Our data indicate that the ankyrin repeats interact extensively with the SET domain, especially with the SAM-binding amino acids, through conserved residues. Conserved surface analysis marks Glu159, Glu203, and Glu206 on the SET domain serve as candidate residues involved in interaction with the positively charged histone tail. Conserved surface residues on the ankyrin repeat domain surround a small pocket, which is suspected to serve as a binding site for an unknown ligand.
Collapse
Affiliation(s)
- Jonghyeon Son
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Chang Hwa Jo
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Ravichandran N Murugan
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk 363-883, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| | - Woo Cheol Lee
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
19
|
Genthe NA, Thoden JB, Benning MM, Holden HM. Molecular structure of an N-formyltransferase from Providencia alcalifaciens O30. Protein Sci 2015; 24:976-86. [PMID: 25752909 DOI: 10.1002/pro.2675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/05/2022]
Abstract
The existence of N-formylated sugars in the O-antigens of Gram-negative bacteria has been known since the middle 1980s, but only recently have the biosynthetic pathways for their production been reported. In these pathways, glucose-1-phosphate is first activated by attachment to a dTMP moiety. This step is followed by a dehydration reaction and an amination. The last step in these pathways is catalyzed by N-formyltransferases that utilize N(10) -formyltetrahydrofolate as the carbon source. Here we describe the three-dimensional structure of one of these N-formyltransferases, namely VioF from Providencia alcalifaciens O30. Specifically, this enzyme catalyzes the conversion of dTDP-4-amino-4,6-dideoxyglucose (dTDP-Qui4N) to dTDP-4,6-dideoxy-4-formamido-d-glucose (dTDP-Qui4NFo). For this analysis, the structure of VioF was solved to 1.9 Å resolution in both its apoform and in complex with tetrahydrofolate and dTDP-Qui4N. The crystals used in the investigation belonged to the space group R32 and demonstrated reticular merohedral twinning. The overall catalytic core of the VioF subunit is characterized by a six stranded mixed β-sheet flanked on one side by three α-helices and on the other side by mostly random coil. This N-terminal domain is followed by an α-helix and a β-hairpin that form the subunit:subunit interface. The active site of the enzyme is shallow and solvent-exposed. Notably, the pyranosyl moiety of dTDP-Qui4N is positioned into the active site by only one hydrogen bond provided by Lys 77. Comparison of the VioF model to that of a previously determined N-formyltransferase suggests that substrate specificity is determined by interactions between the protein and the pyrophosphoryl group of the dTDP-sugar substrate.
Collapse
Affiliation(s)
- Nicholas A Genthe
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | | | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|