1
|
Dissanayake UC, Roy A, Maghsoud Y, Polara S, Debnath T, Cisneros GA. Computational studies on the functional and structural impact of pathogenic mutations in enzymes. Protein Sci 2025; 34:e70081. [PMID: 40116283 PMCID: PMC11926659 DOI: 10.1002/pro.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Enzymes are critical biological catalysts involved in maintaining the intricate balance of metabolic processes within living organisms. Mutations in enzymes can result in disruptions to their functionality that may lead to a range of diseases. This review focuses on computational studies that investigate the effects of disease-associated mutations in various enzymes. Through molecular dynamics simulations, multiscale calculations, and machine learning approaches, computational studies provide detailed insights into how mutations impact enzyme structure, dynamics, and catalytic activity. This review emphasizes the increasing impact of computational simulations in understanding molecular mechanisms behind enzyme (dis)function by highlighting the application of key computational methodologies to selected enzyme examples, aiding in the prediction of mutation effects and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Upeksha C. Dissanayake
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Arkanil Roy
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Yazdan Maghsoud
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Sarthi Polara
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Tanay Debnath
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - G. Andrés Cisneros
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
2
|
Ryder EL, Nasir N, Durgan AEO, Jenkyn-Bedford M, Tye S, Zhang X, Wu Q. Structural mechanisms of SLF1 interactions with Histone H4 and RAD18 at the stalled replication fork. Nucleic Acids Res 2024; 52:12405-12421. [PMID: 39360622 PMCID: PMC11551741 DOI: 10.1093/nar/gkae831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
DNA damage that obstructs the replication machinery poses a significant threat to genome stability. Replication-coupled repair mechanisms safeguard stalled replication forks by coordinating proteins involved in the DNA damage response (DDR) and replication. SLF1 (SMC5-SMC6 complex localization factor 1) is crucial for facilitating the recruitment of the SMC5/6 complex to damage sites through interactions with SLF2, RAD18, and nucleosomes. However, the structural mechanisms of SLF1's interactions are unclear. In this study, we determined the crystal structure of SLF1's ankyrin repeat domain bound to an unmethylated histone H4 tail, illustrating how SLF1 reads nascent nucleosomes. Using structure-based mutagenesis, we confirmed a phosphorylation-dependent interaction necessary for a stable complex between SLF1's tandem BRCA1 C-Terminal domain (tBRCT) and the phosphorylated C-terminal region (S442 and S444) of RAD18. We validated a functional role of conserved phosphate-binding residues in SLF1, and hydrophobic residues in RAD18 that are adjacent to phosphorylation sites, both of which contribute to the strong interaction. Interestingly, we discovered a DNA-binding property of this RAD18-binding interface, providing an additional domain of SLF1 to enhance binding to nucleosomes. Our results provide critical structural insights into SLF1's interactions with post-replicative chromatin and phosphorylation-dependent DDR signalling, enhancing our understanding of SMC5/6 recruitment and/or activity during replication-coupled DNA repair.
Collapse
Affiliation(s)
- Emma L Ryder
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nazia Nasir
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Amy E O Durgan
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Jenkyn-Bedford
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CambridgeCB2 1GA, UK
| | - Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qian Wu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Barua SA, Choudhary RK, Gawde J, Mishra N, Varma AK. Structural dynamics of clinically-reported VUS in the BARD1 ARD-BRCT region to predict the molecular basis of alterations. J Biomol Struct Dyn 2024; 42:5475-5484. [PMID: 37418175 DOI: 10.1080/07391102.2023.2233028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
The functional domains of BARD1, comprise the Ankyrin Repeat Domain (ARD), C-Terminal domains (BRCTs), and a linker between ARD and the BRCTs, which are known to bind to Cleavage stimulation Factor complex-subunit of 50 kDa (CstF-50). The pathogenic mutation Q564H in the BARD1 ARD-linker-BRCT region has been reported to abrogate the binding between BARD1 and CstF-50. Intermediate penetrance variants of BARD1 are associated with the occurrence of breast cancer. Therefore, seven missense variants of unknown significance (VUS), L447V, P454L, N470S, V507M, I509T, C557S, and Q564H of BARD1, reported in the ARD domain and the linker region were evaluated via molecular dynamics (MD) simulations. The mutants revealed statistically significantly different distributions of RMSD (root mean square deviation), residuewise RMSF (root mean square fluctuation), Rg (radius of gyration), SASA (solvent accessible surface area), and COM (centre of mass)-to-COM distance between the ARD and the BRCT repeat, between the wild type and each mutant. The secondary structural composition of the mutants was slightly altered relative to that of the wild type. However, the reported in-silico based prediction require further validation using in-vitro, biophysical and structure-based approachCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Siddhartha A Barua
- Varma Lab, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Rajan K Choudhary
- Varma Lab, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Jitendra Gawde
- Varma Lab, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Neha Mishra
- Varma Lab, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Ashok K Varma
- Varma Lab, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
4
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Huang W, Qiu F, Zheng L, Shi M, Shen M, Zhao X, Xiang S. Structural insights into Rad18 targeting by the SLF1 BRCT domains. J Biol Chem 2023; 299:105288. [PMID: 37748650 PMCID: PMC10598736 DOI: 10.1016/j.jbc.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Fangjie Qiu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Lin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Miaomiao Shen
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Xiaolan Zhao
- Department of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China.
| |
Collapse
|
6
|
Wu D, Huang H, Chen T, Gai X, Li Q, Wang C, Yao J, Liu Y, Cai S, Yu X. The BRCA1/BARD1 complex recognizes pre-ribosomal RNA to facilitate homologous recombination. Cell Discov 2023; 9:99. [PMID: 37789001 PMCID: PMC10547766 DOI: 10.1038/s41421-023-00590-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/16/2023] [Indexed: 10/05/2023] Open
Abstract
The BRCA1/BARD1 complex plays a key role in the repair of DNA double-strand breaks (DSBs) in both somatic cells and germ cells. However, the underlying molecular mechanism by which this complex mediates DSB repair is not fully understood. Here, we examined the XY body of male germ cells, where DSBs are accumulated. We show that the recruitment of the BRCA1/BARD1 complex to the unsynapsed axis of the XY body is mediated by pre-ribosomal RNA (pre-rRNA). Similarly, the BRCA1/BARD1 complex associates with pre-rRNA in somatic cells, which not only forms nuclear foci in response to DSBs, but also targets the BRCA1/BARD1 complex to DSBs. The interactions between the BRCT domains of the BRCA1/BARD1 complex and pre-rRNA induce liquid-liquid phase separations, which may be the molecular basis of DSB-induced nuclear foci formation of the BRCA1/BARD1 complex. Moreover, cancer-associated mutations in the BRCT domains of BRCA1 and BARD1 abolish their interactions with pre-rRNA. Pre-rRNA also mediates BRCA1-dependent homologous recombination, and suppression of pre-rRNA biogenesis sensitizes cells to PARP inhibitor treatment. Collectively, this study reveals that pre-rRNA is a functional partner of the BRCA1/BARD1 complex in the DSB repair.
Collapse
Affiliation(s)
- Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huang Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tenglong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jia Yao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shang Cai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Kurochkina N, Sapio MR, Iadarola MJ, Hall BE, Kulkarni AB. Multiprotein Assemblies, Phosphorylation and Dephosphorylation in Neuronal Cytoskeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545989. [PMID: 37502949 PMCID: PMC10370197 DOI: 10.1101/2023.06.21.545989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies. In particular, BRCA1 accumulation within neurofibrillary tangles and colocalization with tau aggregates in the cytoplasm of AD patients implicates the involvement of mutant forms of BRCA1/BARD1 proteins in disease pathogenesis. The purpose of this study is to show that the location of mutations in the translated BARD1, specifically within ankyrin repeats, has strong correlation with the Cdk5 motifs for phosphorylation. Mapping of the mutation sites on the protein's three-dimensional structure and estimation of the backbone dihedral angles show transitions between the canonical helical and extended conformations of the tetrapeptide sequence of ankyrin repeats. Clustering of mutations in BARD1 ankyrin repeats near the N-termini of the helices with T/SXXH motifs provides a basis for conformational transitions that might be necessary to ensure the compatibility of the substrate with active site geometry and accessibility of the substrate to the kinase. Ankyrin repeats are interaction sites for phosphorylation-dependent dynamic assembly of proteins including those involved in transcription regulation and signaling, and present potential targets for the design of new drugs.
Collapse
Affiliation(s)
- Natalya Kurochkina
- Department of Biophysics, The School of Theoretical Modeling, Washington, DC, 20006, USA
| | - Matthew R. Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
9
|
Barua S, Goswami N, Mishra N, Sawant UU, Varma AK. In Silico and Structure-Based Assessment of Similar Variants Discovered in Tandem Repeats of BRCT Domains of BRCA1 and BARD1 To Characterize the Folding Pattern. ACS OMEGA 2022; 7:44772-44785. [PMID: 36530327 PMCID: PMC9753114 DOI: 10.1021/acsomega.2c04782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BRCA1 and BARD1 are important proteins in the homologous DNA damage repair pathways. Different genetic variants identified in these proteins have been clinically correlated with the occurrence of hereditary breast and ovarian cancer (HBOC). Variants of unknown significance (VUS) reported in the BRCT domains of BRCA1 and BARD1 substantiate the importance of BRCT domain-containing proteins for genomic integrity. To classify the pathogenicity of variants, in silico, structural and molecular dynamics (MD)-based approaches were explored. Different variants reported in the BRCT region were retrieved from cBioPortal, LOVD3, BRCA Exchange, and COSMIC databases to evaluate the pathogenicity. Multiple sequence alignment and superimposition of the structures of BRCA1 BRCT and BARD1 BRCT domains were performed to compare alterations in folding patterns. From 11 in silico predictions servers, variants reported to be pathogenic by 70% of the servers were considered for structural analysis. To our observations, four residue pairs of both the proteins were reported, harboring 11 variants, H1686Y, W1718L, P1749L, P1749S, and W1837L variants for BRCA1 BRCT and H606D, H606N, W635L, P657L, P657S, and W762F for BARD1 BRCT. MD simulations of the BRCT repeat regions of these variants and wild-type proteins were performed to evaluate the differences of folding patterns. Root mean square deviation (RMSD), R g, solvent-accessible surface area (SASA), and root mean square fluctuation (RMSF) of variants showed slight differences in the folding patterns from the wild-type proteins. Furthermore, principal components analysis of H1686Y, P1749S, and W1718L variants of BRCA1 showed less flexibility than the wild type, whereas that of H606D, W635L, and W762F of BARD1 showed more flexibility than the wild type. Normal mode analysis of the energy minima from the simulation trajectories revealed that most of the variants do not show much differences in the flexibility compared to the wild-type proteins, except for the discrete regions in the BRCT repeats, most prominently in the 1798-1801 amino acid region of BRCA1 and at the residue 744 in BARD1.
Collapse
Affiliation(s)
- Siddhartha
A. Barua
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Nabajyoti Goswami
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Neha Mishra
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Ulka U. Sawant
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Ashok K. Varma
- Advanced
Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi
Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| |
Collapse
|
10
|
Thirumal Kumar D, Udhaya Kumar S, Jain N, Sowmya B, Balsekar K, Siva R, Kamaraj B, Sidenna M, George Priya Doss C, Zayed H. Computational structural assessment of BReast CAncer type 1 susceptibility protein (BRCA1) and BRCA1-Associated Ring Domain protein 1 (BARD1) mutations on the protein-protein interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:375-397. [PMID: 35534113 DOI: 10.1016/bs.apcsb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer type 1 susceptibility protein (BRCA1) is closely related to the BRCA2 (breast cancer type 2 susceptibility protein) and BARD1 (BRCA1-associated RING domain-1) proteins. The homodimers were formed through their RING fingers; however they form more compact heterodimers preferentially, influencing BRCA1 residues 1-109 and BARD1 residues 26-119. We implemented an integrative computational pipeline to screen all the mutations in BRCA1 and identify the most significant mutations influencing the Protein-Protein Interactions (PPI) in the BRCA1-BARD1 protein complex. The amino acids involved in the PPI regions were identified from the PDBsum database with the PDB ID: 1JM7. We screened 2118 missense mutations in BRCA1 and none in BARD1 for pathogenicity and stability and analyzed the amino acid sequences for conserved residues. We identified the most significant mutations from these screenings as V11G, M18K, L22S, and T97R positioned in the PPI regions of the BRCA1-BARD1 protein complex. We further performed protein-protein docking using the ZDOCK server. The native protein-protein complex showed the highest binding score of 2118.613, and the V11G mutant protein complex showed the least binding score of 1992.949. The other three mutation protein complexes had binding scores between the native and V11G protein complexes. Finally, a molecular dynamics simulation study using GROMACS was performed to comprehend changes in the BRCA1-BARD1 complex's binding pattern due to the mutation. From the analysis, we observed the highest deviation with lowest compactness and a decrease in the intramolecular h-bonds in the BRCA1-BARD1 protein complex with the V11G mutation compared to the native complex or the complexes with other mutations.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Jain
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Baviri Sowmya
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kamakshi Balsekar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Siva
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Mariem Sidenna
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Chen T, Yeh HW, Chen PP, Huang WT, Wu CY, Liao TC, Lin SL, Chen YY, Lin KT, Hsu STD, Cheng HC. BARD1 is an ATPase activating protein for OLA1. Biochim Biophys Acta Gen Subj 2022; 1866:130099. [DOI: 10.1016/j.bbagen.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
12
|
Day M, Oliver AW, Pearl LH. Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair (Amst) 2021; 108:103232. [PMID: 34678589 PMCID: PMC8651625 DOI: 10.1016/j.dnarep.2021.103232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.
Collapse
Affiliation(s)
- Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
13
|
Rofes P, Pineda M, Feliubadaló L, Menéndez M, de Cid R, Gómez C, Montes E, Capellá G, Brunet J, Del Valle J, Lázaro C. RNA assay identifies a previous misclassification of BARD1 c.1977A>G variant. Sci Rep 2021; 11:22948. [PMID: 34824355 PMCID: PMC8617171 DOI: 10.1038/s41598-021-02465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Case–control studies have shown an association of BARD1 with hereditary breast and/or ovarian cancer (HBOC) predisposition. BARD1 alternatively spliced isoforms are abundant and some are highly expressed in different cancer types. In addition, a number of BARD1 germline pathogenic variants have been reported among HBOC patients. In previous reports, BARD1 c.1977A>G variant has been classified as pathogenic since it produces a frameshift transcript lacking exons 2 to 9. In the present study, we sought to validate the mRNA splicing results previously published and to contribute with new evidence to refine the classification of this substitution according to ACMG/AMP guidelines. The presence of the variant was screened in patients and controls. RT-PCR was performed in order to compare the transcriptional profiles of two variant carriers and ten non-carrier controls. In addition, allele-specific expression was assessed. No differences in variant frequency were detected between patients and controls. The RNA assay confirmed the presence of the shorter transcript lacking exons 2–9, but it was detected both in carriers and non-carriers. Furthermore, allelic imbalance was discarded and no significant differences in the proportion of full-length and shorter transcript were detected between carriers and controls. The shorter transcript detected corresponds to BARD1 isoform η, constituted by exons 1, 10 and 11. Our results support that this transcript is a constitutive splicing product rather than an aberrant transcript caused by BARD1 c.1977A>G variant, and for this reason this variant should be considered as likely benign following ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lídia Feliubadaló
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Mireia Menéndez
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT Lab Group, Institut Germans Trias i Pujol (IGTP) (on behalf of the GCAT project), 08916, Badalona, Spain
| | - Carolina Gómez
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain
| | - Eva Montes
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell) Program, Catalan Institute of Oncology, IDIBELL, Av. Gran Via 199-203, 08908, L'Hospitalet de Llobregat, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
14
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
15
|
Becker JR, Clifford G, Bonnet C, Groth A, Wilson MD, Chapman JR. BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature 2021; 596:433-437. [PMID: 34321663 DOI: 10.1038/s41586-021-03776-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination at sites of DNA double-strand breaks (DSBs) by RNF168 recruits BRCA1 and 53BP11,2, which are mediators of the homologous recombination and non-homologous end joining DSB repair pathways, respectively3. Non-homologous end joining relies on 53BP1 binding directly to ubiquitinated lysine 15 on H2A-type histones (H2AK15ub)4,5 (which is an RNF168-dependent modification6), but how RNF168 promotes BRCA1 recruitment and function remains unclear. Here we identify a tandem BRCT-domain-associated ubiquitin-dependent recruitment motif (BUDR) in BRCA1-associated RING domain protein 1 (BARD1) (the obligate partner protein of BRCA1) that, by engaging H2AK15ub, recruits BRCA1 to DSBs. Disruption of the BUDR of BARD1 compromises homologous recombination and renders cells hypersensitive to PARP inhibition and cisplatin. We further show that BARD1 binds nucleosomes through multivalent interactions: coordinated binding of H2AK15ub and unmethylated H4 lysine 20 by its adjacent BUDR and ankyrin repeat domains, respectively, provides high-affinity recognition of DNA lesions in replicated chromatin and promotes the homologous recombination activities of the BRCA1-BARD1 complex. Finally, our genetic epistasis experiments confirm that the need for BARD1 chromatin-binding activities can be entirely relieved upon deletion of RNF168 or 53BP1. Thus, our results demonstrate that by sensing DNA-damage-dependent and post-replication histone post-translation modification states, BRCA1-BARD1 complexes coordinate the antagonization of the 53BP1 pathway with promotion of homologous recombination, establishing a simple paradigm for the governance of the choice of DSB repair pathway.
Collapse
Affiliation(s)
- Jordan R Becker
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clara Bonnet
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anja Groth
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - J Ross Chapman
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Nature 2021; 596:438-443. [PMID: 34321665 PMCID: PMC8680157 DOI: 10.1038/s41586-021-03716-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.
Collapse
|
17
|
Dai L, Dai Y, Han J, Huang Y, Wang L, Huang J, Zhou Z. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin. Mol Cell 2021; 81:2765-2777.e6. [PMID: 34102105 DOI: 10.1016/j.molcel.2021.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
The BRCA1-BARD1 complex directs the DNA double-strand break (DSB) repair pathway choice to error-free homologous recombination (HR) during the S-G2 stages. Targeting BRCA1-BARD1 to DSB-proximal sites requires BARD1-mediated nucleosome interaction and histone mark recognition. Here, we report the cryo-EM structure of BARD1 bound to a ubiquitinated nucleosome core particle (NCPUb) at 3.1 Å resolution and illustrate how BARD1 simultaneously recognizes the DNA damage-induced mark H2AK15ub and DNA replication-associated mark H4K20me0 on the nucleosome. In vitro and in vivo analyses reveal that the BARD1-NCPUb complex is stabilized by BARD1-nucleosome interaction, BARD1-ubiquitin interaction, and BARD1 ARD domain-BARD1 BRCT domain interaction, and abrogating these interactions is detrimental to HR activity. We further identify multiple disease-causing BARD1 mutations that disrupt BARD1-NCPUb interactions and hence impair HR. Together, this study elucidates the mechanism of BRCA1-BARD1 complex recruitment and retention by DSB-flanking nucleosomes and sheds important light on cancer therapeutic avenues.
Collapse
Affiliation(s)
- Linchang Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaxin Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhua Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Longge Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Rofes P, Del Valle J, Torres-Esquius S, Feliubadaló L, Stradella A, Moreno-Cabrera JM, López-Doriga A, Munté E, De Cid R, Campos O, Cuesta R, Teulé Á, Grau È, Sanz J, Capellá G, Díez O, Brunet J, Balmaña J, Lázaro C. BARD1 Pathogenic Variants are Associated with Triple-Negative Breast Cancer in a Spanish Hereditary Breast and Ovarian Cancer Cohort. Genes (Basel) 2021; 12:genes12020150. [PMID: 33498765 PMCID: PMC7911518 DOI: 10.3390/genes12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10–6.48; p = 1.16 × 10−5). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10–7.70; p = 5.45 × 10−5). Furthermore, deleterious BARD1 variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77–18.15; p = 0.001) compared to other BC subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Lídia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Agostina Stradella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - José Marcos Moreno-Cabrera
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Adriana López-Doriga
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Rafael De Cid
- Genomes for Life-GCAT Lab Group, IGTP, Institut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Olga Campos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Raquel Cuesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Álex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Èlia Grau
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IGTP, 08916 Badalona, Spain
| | - Judit Sanz
- Genetic Counselling Unit, Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, 08243 Manresa, Spain;
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
| | - Orland Díez
- Catalan Health Institute, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain;
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Joan Brunet
- Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, 17007 Girona, Spain
- Medical Sciences Department, School of Medicine, University of Girona, 17007 Girona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.T.-E.); (J.B.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (P.R.); (J.D.V.); (L.F.); (A.S.); (J.M.M.-C.); (E.M.); (O.C.); (R.C.); (Á.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2607145
| |
Collapse
|
19
|
p50 mono-ubiquitination and interaction with BARD1 regulates cell cycle progression and maintains genome stability. Nat Commun 2020; 11:5007. [PMID: 33024116 PMCID: PMC7538584 DOI: 10.1038/s41467-020-18838-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/15/2020] [Indexed: 01/14/2023] Open
Abstract
p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity. p50 is a constitutively produced NF-κB subunit that modulates the response to DNA damage. Here, the authors show that activation of ATR during S phase induces p50 interaction with BARD1 resulting in p50 mono-ubiquitination, facilitating cell cycle progression and promoting chromosome integrity.
Collapse
|
20
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
21
|
Choudhary RK, Siddiqui MQ, Gadewal N, Kumar NS, Kuligina ES, Varma AK. Biophysical evaluation to categorize pathogenicity of cancer-predisposing mutations identified in the BARD1 BRCT domain. RSC Adv 2018; 8:34056-34068. [PMID: 35548793 PMCID: PMC9086705 DOI: 10.1039/c8ra06524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
The BRCT domain of BARD1 (BARD1 BRCT) is involved in many cellular processes such as DNA damage repair (DDR) and cell-cycle checkpoint regulation. BARD1 BRCT performs tumor suppressor function by recruiting BRCA1 at DNA damage site via interactions with other DNA damage repair (DDR) proteins. Considering the importance of the BRCT domain in genomic integrity, we decided to evaluate reported mutations of BARD1 BRCT Cys645Arg, Val695Leu, and Ser761Asn for their pathogenicity. To explore the effect of the mutation on the structure and function, BARD1 BRCT wild-type proteins and the mutant proteins were studied using different biochemical, biophysical and in silico techniques. Comparative fluorescence, circular dichroism (CD) spectroscopy and limited proteolysis studies demonstrate the well-folded structural conformation of wild-type and mutant proteins. However, thermal and chemical denaturation studies revealed similarity in the folding pattern of BARD1 BRCT wild-type and Cys645Arg mutant proteins, whereas there was a significant loss in the thermodynamic stability of Val695Leu and Ser761Asn mutants. Molecular dynamics (MD) simulation studies on wild-type and mutant protein structures indicate the loss in structural integrity of mutants compared with the wild-type protein.
Collapse
Affiliation(s)
- Rajan Kumar Choudhary
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalem 91904Israel
| | - M. Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,University of Nebraska Medical CentreOmahaNEUSA
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University)Aizawl – 796 004MizoramIndia
| | - Ekaterina S. Kuligina
- Laboratory of Molecular Oncology, Department of Tumor Growth Biology, N.N. Petrov Institute of OncologyRU-197758, Pesochny-2St.-PetersburgRussia
| | - Ashok K. Varma
- Advanced Centre for Treatment, Research and Education in CancerKhargharNavi MumbaiMaharashtra 410 210India+91-22-2740 5085+91-22-2740 5112,Homi Bhabha National Institute, Training School ComplexAnushaktinagarMumbai - 400 094India
| |
Collapse
|
22
|
Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, Jiang W, Zha S, Szabolcs M, Lin CS, Ciccia A, Baer R. The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 2018; 72:127-139.e8. [PMID: 30244837 DOI: 10.1016/j.molcel.2018.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/23/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.
Collapse
Affiliation(s)
- David Billing
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Silvia Alvarez Nanez
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Zheng F, Wei L, Zhao L, Ni F. Pathway Network Analysis of Complex Diseases Based on Multiple Biological Networks. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5670210. [PMID: 30151386 PMCID: PMC6091292 DOI: 10.1155/2018/5670210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Abstract
Biological pathways play important roles in the development of complex diseases, such as cancers, which are multifactorial complex diseases that are usually caused by multiple disorders gene mutations or pathway. It has become one of the most important issues to analyze pathways combining multiple types of high-throughput data, such as genomics and proteomics, to understand the mechanisms of complex diseases. In this paper, we propose a method for constructing the pathway network of gene phenotype and find out disease pathogenesis pathways through the analysis of the constructed network. The specific process of constructing the network includes, firstly, similarity calculation between genes expressing data combined with phenotypic mutual information and GO ontology information, secondly, calculating the correlation between pathways based on the similarity between differential genes and constructing the pathway network, and, finally, mining critical pathways to identify diseases. Experimental results on Breast Cancer Dataset using this method show that our method is better. In addition, testing on an alternative dataset proved that the key pathways we found were more accurate and reliable as biological markers of disease. These results show that our proposed method is effective.
Collapse
Affiliation(s)
- Fang Zheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430079, China
| | - Le Wei
- College of Informatics, Huazhong Agricultural University, Wuhan 430079, China
| | - Liang Zhao
- College of Informatics, Huazhong Agricultural University, Wuhan 430079, China
| | - FuChuan Ni
- College of Informatics, Huazhong Agricultural University, Wuhan 430079, China
| |
Collapse
|
24
|
Yoshino Y, Qi H, Fujita H, Shirota M, Abe S, Komiyama Y, Shindo K, Nakayama M, Matsuzawa A, Kobayashi A, Ogoh H, Watanabe T, Ishioka C, Chiba N. BRCA1-Interacting Protein OLA1 Requires Interaction with BARD1 to Regulate Centrosome Number. Mol Cancer Res 2018; 16:1499-1511. [PMID: 29858377 DOI: 10.1158/1541-7786.mcr-18-0269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
BRCA1 functions as a tumor suppressor in DNA repair and centrosome regulation. Previously, Obg-like ATPase 1 (OLA1) was shown to interact with BARD1, a heterodimer partner of BRCA1. OLA1 binds to BRCA1, BARD1, and γ-tubulin and functions in centrosome regulation. This study determined that overexpression of wild-type OLA1 (OLA1-WT) caused centrosome amplification due to centriole overduplication in mammary tissue-derived cells. Centrosome amplification induced by overexpression of the cancer-derived OLA1 mutant, which is deficient at regulating centrosome number, occurred in significantly fewer cells than in that induced by overexpression of OLA1-WT. Thus, it was hypothesized that overexpression of OLA1 with normal function efficiently induces centrosome amplification, but not that of OLA1 mutants, which are deficient at regulating centrosome number. We analyzed whether overexpression of OLA1 missense mutants of nine candidate phosphorylation residues, three residues modified with acetylation, and two ATP-binding residues caused centrosome amplification and identified five missense mutants that are deficient in the regulation of centrosome number. Three of them did not bind to BARD1. Two phosphomimetic mutations restored the binding to BARD1 and the efficient centrosome amplification by their overexpression. Knockdown and overexpression of BARD1 also caused centrosome amplification. BARD1 mutant reported in cancer failed to bind to OLA1 and rescue the BARD1 knockdown-induced centrosome amplification and reduced its centrosomal localization. Combined, these data reveal that the OLA1-BARD1 interaction is important for the regulation of centrosome number.Implications: Regulation of centrosome number by BRCA1/BARD1 together with OLA1 is important for the genome integrity to prevent tumor development. Mol Cancer Res; 16(10); 1499-511. ©2018 AACR.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shun Abe
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuhei Komiyama
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kazuha Shindo
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Akihiro Kobayashi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|
25
|
Torrezan GT, de Almeida FGDSR, Figueiredo MCP, Barros BDDF, de Paula CAA, Valieris R, de Souza JES, Ramalho RF, da Silva FCC, Ferreira EN, de Nóbrega AF, Felicio PS, Achatz MI, de Souza SJ, Palmero EI, Carraro DM. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer. Front Genet 2018; 9:161. [PMID: 29868112 PMCID: PMC5949367 DOI: 10.3389/fgene.2018.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4) and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.
Collapse
Affiliation(s)
- Giovana T Torrezan
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | | | - Márcia C P Figueiredo
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Bruna D de Figueiredo Barros
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Cláudia A A de Paula
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Renan Valieris
- Laboratory of Bioinformatics and Computational Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Jorge E S de Souza
- Instituto de Bioinformática e Biotecnologia-2bio, Natal, Brazil.,Instituto Metrópole Digital, Federal University of Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo F Ramalho
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Felipe C C da Silva
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Elisa N Ferreira
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,Research and Development, Fleury Group, São Paulo, Brazil
| | | | - Paula S Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Maria I Achatz
- Oncogenetics Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Sandro J de Souza
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.,Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil.,Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
26
|
Pilyugin M, André PA, Ratajska M, Kuzniacka A, Limon J, Tournier BB, Colas J, Laurent G, Irminger-Finger I. Antagonizing functions of BARD1 and its alternatively spliced variant BARD1δ in telomere stability. Oncotarget 2018; 8:9339-9353. [PMID: 28030839 PMCID: PMC5354735 DOI: 10.18632/oncotarget.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Previous reports have shown that expression of BARD1δ, a deletion-bearing isoform of BARD1, correlates with tumor aggressiveness and progression. We show that expression of BARD1δ induces cell cycle arrest in vitro and in vivo in non-malignant cells. We investigated the mechanism that leads to proliferation arrest and found that BARD1δ overexpression induced mitotic arrest with chromosome and telomere aberrations in cell cultures, in transgenic mice, and in cells from human breast and ovarian cancer patients with BARD1 mutations. BARD1δ binds more efficiently than BARD1 to telomere binding proteins and causes their depletion from telomeres, leading to telomere and chromosomal instability. While this induces cell cycle arrest, cancer cells lacking G2/M checkpoint controls might continue to proliferate despite the BARD1δ-induced chromosomal instability. These features of BARD1δ may make it a genome permutator and a driver of continuous uncontrolled proliferation of cancer cells.
Collapse
Affiliation(s)
- Maxim Pilyugin
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Pierre-Alain André
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Poland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Alina Kuzniacka
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Benjamin B Tournier
- Department of Neuropsychiatry, Vulnerability Biomarkers Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Julien Colas
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Geoff Laurent
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Irmgard Irminger-Finger
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
27
|
Zuntini R, Cortesi L, Calistri D, Pippucci T, Martelli PL, Casadio R, Capizzi E, Santini D, Miccoli S, Medici V, Danesi R, Marchi I, Zampiga V, Fiorentino M, Ferrari S, Turchetti D. BRCA1 p.His1673del is a pathogenic mutation associated with a predominant ovarian cancer phenotype. Oncotarget 2017; 8:22640-22648. [PMID: 28186987 PMCID: PMC5410251 DOI: 10.18632/oncotarget.15151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
We have investigated the clinical significance of the BRCA1 variant p.His1673del in 14 families from the Emilia-Romagna region of Italy, including 20 breast and 23 ovarian cancer cases; four families displayed site-specific ovarian cancer. The variant, absent in human variation databases, has been reported three times in BRCA1 specific databases; all probands shared the same rare haplotype at the BRCA1 locus, consistent with a common ancestor. The multifactorial likelihood method by Goldgar, used to estimate the probability of the variant being causative, gave a ratio of 2,263,474:1 in favor of causality. Moreover, in silico modeling suggested that His1673-lacking BRCA1 protein may have a decreased ability to bind BARD1 and other related proteins. All six ovarian carcinomas and two out of four breast carcinomas available showed a loss of the BRCA1 wild-type allele, which in three out of four ovarian carcinomas analyzed by FISH was associated with duplication of the chromosome 17 containing the variant. Although the pathogenicity of the allele is strongly supported by the multifactorial ratio, we cannot exclude that p.His1673del is not itself deleterious, but is linked to another undetected mutation on the same ancestral allele.
Collapse
Affiliation(s)
- Roberta Zuntini
- Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca sui Tumori Ereditari, UO Genetica Medica, Università di Bologna, Bologna, Italy
| | - Laura Cortesi
- Dipartimento di Oncologia ed Ematologia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Daniele Calistri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Tommaso Pippucci
- Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca sui Tumori Ereditari, UO Genetica Medica, Università di Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, BIGEA/Giorgio Prodi Interdepartmental Center for Cancer Research, Università di Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, BIGEA/Giorgio Prodi Interdepartmental Center for Cancer Research, Università di Bologna, Bologna, Italy
| | - Elisa Capizzi
- UO Anatomia Patologica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Donatella Santini
- UO Anatomia Patologica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Sara Miccoli
- Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca sui Tumori Ereditari, UO Genetica Medica, Università di Bologna, Bologna, Italy
| | - Veronica Medici
- Dipartimento di Oncologia ed Ematologia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Rita Danesi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Isabella Marchi
- Dipartimento di Oncologia ed Ematologia, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Valentina Zampiga
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michelangelo Fiorentino
- UO Anatomia Patologica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Simona Ferrari
- Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca sui Tumori Ereditari, UO Genetica Medica, Università di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Dipartimento di Scienze Mediche e Chirurgiche, Centro di Ricerca sui Tumori Ereditari, UO Genetica Medica, Università di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Ma J, Dai Q, Li X, Zhu X, Ma T, Qiao X, Shen S, Liu X. Dipentaerythritol penta-/hexa-acrylate based-highly cross-linked hybrid monolithic column: Preparation and its applications for ultrahigh efficiency separation of proteins. Anal Chim Acta 2017; 963:143-152. [DOI: 10.1016/j.aca.2017.01.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
|
29
|
Choudhary RK, Vikrant, Siddiqui QM, Thapa PS, Raikundalia S, Gadewal N, Kumar NS, Hosur M, Varma AK. Multimodal approach to explore the pathogenicity of BARD1, ARG 658 CYS, and ILE 738 VAL mutants. J Biomol Struct Dyn 2015; 34:1533-44. [DOI: 10.1080/07391102.2015.1082149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rajan Kumar Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Vikrant
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Quadir M. Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Pankaj S. Thapa
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Sweta Raikundalia
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl 796 004, Mizoram, India
| | - M.V. Hosur
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| | - Ashok K. Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410 210, Maharashtra, India
| |
Collapse
|
30
|
Esteban-Jurado C, Vila-Casadesús M, Garre P, Lozano JJ, Pristoupilova A, Beltran S, Muñoz J, Ocaña T, Balaguer F, López-Cerón M, Cuatrecasas M, Franch-Expósito S, Piqué JM, Castells A, Carracedo A, Ruiz-Ponte C, Abulí A, Bessa X, Andreu M, Bujanda L, Caldés T, Castellví-Bel S. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet Med 2015; 17:131-142. [PMID: 25058500 PMCID: PMC4318970 DOI: 10.1038/gim.2014.89] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Colorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases. METHODS Exome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0-0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen. RESULTS Twenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1. CONCLUSION We identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm.
Collapse
Affiliation(s)
- Clara Esteban-Jurado
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Maria Vila-Casadesús
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan José Lozano
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Anna Pristoupilova
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Sergi Beltran
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
| | - Jenifer Muñoz
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Maria López-Cerón
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | | | - Sebastià Franch-Expósito
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Josep M. Piqué
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Antoni Castells
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Angel Carracedo
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
| | - Clara Ruiz-Ponte
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
| | - Anna Abulí
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Xavier Bessa
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia – Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Country University (UPV/EHU), San Sebastián, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Sergi Castellví-Bel
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - the EPICOLON Consortium
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Department of Pathology, Hospital Clinic, Barcelona, Spain
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
- Gastroenterology Department, Hospital Donostia – Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Country University (UPV/EHU), San Sebastián, Spain
| |
Collapse
|
31
|
Huang YMM, Chang CEA. Achieving peptide binding specificity and promiscuity by loops: case of the forkhead-associated domain. PLoS One 2014; 9:e98291. [PMID: 24870410 PMCID: PMC4037201 DOI: 10.1371/journal.pone.0098291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.
Collapse
Affiliation(s)
- Yu-ming M. Huang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| | - Chia-en A. Chang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| |
Collapse
|
32
|
Espinosa O, Mitsopoulos K, Hakas J, Pearl F, Zvelebil M. Deriving a mutation index of carcinogenicity using protein structure and protein interfaces. PLoS One 2014; 9:e84598. [PMID: 24454733 PMCID: PMC3893166 DOI: 10.1371/journal.pone.0084598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/16/2013] [Indexed: 11/29/2022] Open
Abstract
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/.
Collapse
Affiliation(s)
- Octavio Espinosa
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Konstantinos Mitsopoulos
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Jarle Hakas
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Frances Pearl
- UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
- Translational Drug Discovery Group, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Marketa Zvelebil
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
33
|
Liu X, Ladias JAA. Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1. Biochemistry 2013; 52:7618-27. [PMID: 24073851 DOI: 10.1021/bi400714v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The breast and ovarian cancer susceptibility protein 1 (BRCA1) plays a central role in DNA damage response (DDR). Two tandem BRCA1 C-terminal (BRCT) domains interact with several proteins that function in DDR and contain the generally accepted motif pS-X-X-F (pS denoting phosphoserine and X any amino acid), including the ATR-interacting protein (ATRIP) and the BRCA1-associated protein required for ATM activation-1 (BAAT1). The crystal structures of the BRCA1 BRCTs bound to the phosphopeptides ATRIP (235-PEACpSPQFG-243) and BAAT1 (266-VARpSPVFSS-274) were determined at 1.75 Å and 2.2 Å resolution, respectively. The pSer and Phe(+3) anchor the phosphopeptides into the BRCT binding groove, with adjacent peptide residues contributing to the interaction. In the BRCA1-ATRIP structure, Gln(+2) is accommodated through a conformational change of the BRCA1 E1698 side chain. Importantly, isothermal titration calorimetry experiments showed that the size and charge of the side chains at peptide positions +1 and +2 contribute significantly to the BRCA1 BRCT-peptide binding affinity. In particular, the Asp(+1) and Glu(+2) in the human CDC27 peptide 816-HAAEpSDEF-823 abrogate the interaction with the BRCA1 BRCTs due in large part to electrostatic repulsion between Glu(+2) and E1698, indicating a preference of these domains for specific side chains at positions +1 and +2. These results emphasize the need for a systematic assessment of the contribution of the peptide residues surrounding pSer and Phe(+3) to the binding affinity and specificity of the BRCA1 BRCTs in order to elucidate the molecular mechanisms underlying the hierarchy of target selection by these versatile domains during DDR and tumorigenesis.
Collapse
Affiliation(s)
- Xuying Liu
- Molecular Medicine Laboratory and Macromolecular Crystallography Unit, Department of Medicine, Harvard Medical School , Boston Massachusetts 02215, United States
| | | |
Collapse
|
34
|
Li M, Yu X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 2013; 23:693-704. [PMID: 23680151 PMCID: PMC3759356 DOI: 10.1016/j.ccr.2013.03.025] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/15/2013] [Accepted: 03/23/2013] [Indexed: 12/12/2022]
Abstract
Carriers of BRCA1 germline mutations are predisposed to breast and ovarian cancers. Accumulated evidence shows that BRCA1 is quickly recruited to DNA lesions and plays an important role in the DNA damage response. However, the mechanism by which BRCA1 is recruited to DNA damage sites remains elusive. BRCA1 forms a Ring-domain heterodimer with BARD1, a major partner of BRCA1 that contains tandem BRCA1 C-terminus (BRCT) motifs. Here, we identify the BRCTs of BARD1 as a poly(ADP-ribose) (PAR)-binding module. The binding of the BARD1 BRCTs to PAR targets the BRCA1/BARD1 heterodimer to DNA damage sites. Thus, our study uncovers a PAR-dependent mechanism of rapid recruitment of BRCA1/BARD1 to DNA damage sites.
Collapse
Affiliation(s)
| | - Xiaochun Yu
- Corresponding author: Phone: (734)615-4945; FAX: (734)936-6684;
| |
Collapse
|
35
|
1 0 6. Cancer Biomark 2012. [DOI: 10.1201/b14318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Alshatwi AA, Hasan TN, Syed NA, Shafi G, Grace BL. Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: based on data procured from dbSNP database. PLoS One 2012; 7:e43939. [PMID: 23056176 PMCID: PMC3467277 DOI: 10.1371/journal.pone.0043939] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The BARD1 gene encodes for the BRCA1-associated RING domain (BARD1) protein. Germ line and somatic mutations in BARD1 are found in sporadic breast, ovarian and uterine cancers. There is a plethora of single nucleotide polymorphisms (SNPs) which may or may not be involved in the onset of female cancers. Hence, before planning a larger population study, it is advisable to sort out the possible functional SNPs. To accomplish this goal, data available in the dbSNP database and different computer programs can be used. To the best of our knowledge, until now there has been no such study on record for the BARD1 gene. Therefore, this study was undertaken to find the functional nsSNPs in BARD1. RESULT 2.85% of all SNPs in the dbSNP database were present in the coding regions. SIFT predicted 11 out of 50 nsSNPs as not tolerable and PolyPhen assessed 27 out of 50 nsSNPs as damaging. FastSNP revealed that the rs58253676 SNP in the 3' UTR may have splicing regulator and enhancer functions. In the 5' UTR, rs17489363 and rs17426219 may alter the transcriptional binding site. The intronic region SNP rs67822872 may have a medium-high risk level. The protein structures 1JM7, 3C5R and 2NTE were predicted by PDBSum and shared 100% similarity with the BARD1 amino acid sequence. Among the predicted nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364 were identified as deleterious and damaging by the SIFT and PolyPhen programs. Additionally, I-Mutant showed a decrease in stability for these nsSNPs upon mutation. Finally, the ExPASy-PROSIT program revealed that the predicted deleterious mutations are contained in the ankyrin ring and BRCT domains. CONCLUSION Using the available bioinformatics tools and the data present in the dbSNP database, the four nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364, were identified as deleterious, reducing the protein stability of BARD1. Hence, these SNPs can be used for the larger population-based studies of female cancers.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Molecular Cancer Biology Research Laboratory, Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
37
|
Thanassoulas A, Nomikos M, Theodoridou M, Stavros P, Mastellos D, Nounesis G. Thermal and chemical denaturation of the BRCT functional module of human 53BP1. Int J Biol Macromol 2011; 49:297-304. [DOI: 10.1016/j.ijbiomac.2011.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
|
38
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
39
|
Coquelle N, Green R, Glover JNM. Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry 2011; 50:4579-89. [PMID: 21473589 PMCID: PMC3100782 DOI: 10.1021/bi2003795] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.
Collapse
Affiliation(s)
- Nicolas Coquelle
- Department of Biochemistry, School of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
40
|
Huo YG, Bai L, Xu M, Jiang T. Crystal structure of the N-terminal region of human Topoisomerase IIβ binding protein 1. Biochem Biophys Res Commun 2010; 401:401-5. [PMID: 20858457 DOI: 10.1016/j.bbrc.2010.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/15/2010] [Indexed: 11/15/2022]
Abstract
Human DNA Topoisomerase IIβ binding protein 1 (TopBP1) is a modulating protein that plays an essential role in the response to DNA damage. The N-terminal region of TopBP1, which contains predicted BRCA1-carboxy terminal (BRCT) domains 1 and 2, binds to Rad9, a component of the cell cycle checkpoint clamp Rad9-Hus1-Rad1 complex. Here, we report the crystal structure of the TopBP1N-terminal region (residues 1-290) at 2.4Å resolution. Interestingly, in addition to the predicted tandem BRCT1-2 repeats (residues 103-284), residues 7-98 form a previously unreported BRCT domain (here, BRCT0). In contrast to both BRCT1 and BRCT2, which possess the conventional phosphopeptide binding residues within a surface pocket, the corresponding pocket in BRCT0 is largely hydrophobic. Structural comparisons together with peptide binding studies indicate that the tandem BRCT1-2 domains are the binding region for phosphorylated Ser387 in Rad9.
Collapse
Affiliation(s)
- Yan-Gao Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | |
Collapse
|
41
|
Thanassoulas A, Nomikos M, Theodoridou M, Yannoukakos D, Mastellos D, Nounesis G. Thermodynamic study of the BRCT domain of BARD1 and its interaction with the -pSER-X-X-Phe- motif-containing BRIP1 peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1908-16. [PMID: 20451671 DOI: 10.1016/j.bbapap.2010.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/15/2010] [Accepted: 04/26/2010] [Indexed: 01/14/2023]
Abstract
The BRCA1-associated RING domain protein 1 (BARD1) is the heterodimeric partner of BRCA1. The BRCA1/BARD1 complex demonstrates ubiquitin ligase activity and has been implicated in genomic stability and tumor suppression. Both proteins possess a structurally conserved C-terminal domain (BRCT). While BRCA1-BRCT has been shown to mediate BRCA1 interactions with phosphoproteins such as BRIP1 by recognizing the pSer-X-X-Phe motif, attempts to demonstrate analogous interactions of its dimeric counterpart BARD1-BRCT, have so far been unsuccessful. In this study, chemical-denaturation experiments of BARD1-BRCT domain suggest that its low thermodynamic stability (DeltaG=2.5 kcal/mol) at room temperature, may affect some of its biochemical properties, such as its interaction with phosphopeptides. The stability of BARD1-BRCT domain at 10 degrees C, increases to 7.5 kcal/mol and isothermal titration calorimetry (ITC) experiments at this lower temperature showed binding to the BRIP1 phosphopeptide via an enthalpy-driven interaction, which appears to be specific to the pSer-X-X-Phe peptide-binding motif. Substitution of either pSer at position 0 with Ser (non-phosphorylated peptide) or Phe with Val at position +3, leads to no-binding ITC results. While these findings are indicative that BRIP1 is a potential BARD1 binding partner, it becomes evident that in vitro binding assays involving the entire BARD1 protein and in vivo experiments are also needed to establish its binding partners and its potential role in tumor suppression pathways.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- Biomolecular Physics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", 153 10 Aghia Paraskevi, Greece
| | | | | | | | | | | |
Collapse
|
42
|
Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Biol 2009; 29:3163-72. [PMID: 19332554 DOI: 10.1128/mcb.01895-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.
Collapse
|
43
|
Edwards RA, Lee MS, Tsutakawa SE, Williams RS, Tainer JA, Glover JNM. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50. Biochemistry 2008; 47:11446-56. [PMID: 18842000 PMCID: PMC2654182 DOI: 10.1021/bi801115g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/20/2008] [Indexed: 12/19/2022]
Abstract
The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.
Collapse
Affiliation(s)
| | | | | | | | | | - J. N. Mark Glover
- Address correspondence to this author. Tel: (780) 492-2136. Fax: (780) 492-0886. E-mail:
| |
Collapse
|
44
|
Fox D, Le Trong I, Rajagopal P, Brzovic PS, Stenkamp RE, Klevit RE. Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences. J Biol Chem 2008; 283:21179-86. [PMID: 18480049 DOI: 10.1074/jbc.m802333200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BARD1 is the constitutive nuclear partner to the breast and ovarian cancer-specific tumor suppressor BRCA1. Together, they form a heterodimeric complex responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. We report the 2.0A structure of the BARD1 ankyrin repeat domain. The structure includes four ankyrin repeats with a non-canonical C-terminal capping ankyrin repeat and a well ordered extended loop preceding the first repeat. Conserved surface features show an acidic patch and an acidic pocket along the surface typically used by ankyrin repeat domains for binding cognate proteins. We also demonstrate that two reported mutations, N470S and V507M, in the ankyrin repeat domain do not result in observable structural defects. These results provide a structural basis for exploring the biological function of the ankyrin repeat domain and for modeling BARD1 isoforms.
Collapse
Affiliation(s)
- David Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
45
|
Shen Y, Tong L. Structural evidence for direct interactions between the BRCT domains of human BRCA1 and a phospho-peptide from human ACC1. Biochemistry 2008; 47:5767-73. [PMID: 18452305 DOI: 10.1021/bi800314m] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 A resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.
Collapse
Affiliation(s)
- Yang Shen
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | | |
Collapse
|
46
|
Laufer M, Nandula SV, Modi AP, Wang S, Jasin M, Murty VVVS, Ludwig T, Baer R. Structural requirements for the BARD1 tumor suppressor in chromosomal stability and homology-directed DNA repair. J Biol Chem 2007; 282:34325-33. [PMID: 17848578 DOI: 10.1074/jbc.m705198200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The BRCA1 tumor suppressor exists as a heterodimeric complex with BARD1, and this complex is thought to mediate many of the functions ascribed to BRCA1, including its role in tumor suppression. The two proteins share a common structural organization that features an N-terminal RING domain and two C-terminal BRCT motifs, whereas BARD1 alone also contains three tandem ankyrin repeats. In normal cells, the BRCA1/BARD1 heterodimer is believed to enhance chromosome stability by promoting homology-directed repair (HDR) of double strand DNA breaks. Here we have investigated the structural requirements for BARD1 in this process by complementation of Bard1-null mouse mammary carcinoma cells. Our results demonstrate that the ankyrin and BRCT motifs of BARD1 are each essential for both chromosome stability and HDR. Tandem BRCT motifs, including those found at the C terminus of BARD1, are known to form a phosphoprotein recognition module. Nonetheless, the HDR function of BARD1 was not perturbed by synthetic mutations predicted to ablate the phospho-recognition activity of its BRCT sequences, suggesting that some functions of the BRCT domains are not dependent on their ability to bind phosphorylated ligands. Also, cancer-associated missense mutations in the BRCT domains of BARD1 (e.g. C557S, Q564H, V695L, and S761N) have been observed in patients with breast, ovarian, and endometrial tumors. However, none of these was found to affect the HDR activity of BARD1, suggesting that any increased cancer risk conferred by these mutations is not because of defects in this repair mechanism.
Collapse
Affiliation(s)
- Marsha Laufer
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University College of Physicians & Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|