1
|
Godin-Roulling A, Schmidpeter PAM, Schmid FX, Feller G. Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environ Microbiol 2015; 17:2407-20. [PMID: 25389111 DOI: 10.1111/1462-2920.12707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/26/2023]
Abstract
Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat-induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.
Collapse
Affiliation(s)
- Amandine Godin-Roulling
- Laboratory of Biochemistry, Centre for Protein Engineering, University of Liège, Liège, B-4000, Belgium
| | - Philipp A M Schmidpeter
- Laboratorium für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, D-95447, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, D-95447, Germany
| | - Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, University of Liège, Liège, B-4000, Belgium
| |
Collapse
|
2
|
Arpino JAJ, Reddington SC, Halliwell LM, Rizkallah PJ, Jones DD. Random single amino acid deletion sampling unveils structural tolerance and the benefits of helical registry shift on GFP folding and structure. Structure 2014; 22:889-98. [PMID: 24856363 PMCID: PMC4058518 DOI: 10.1016/j.str.2014.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Altering a protein’s backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFPG4Δ) conferred significantly higher cellular fluorescence. Folding analysis revealed that EGFPG4Δ retained more structure upon unfolding and refolded with almost 100% efficiency but at the expense of thermodynamic stability. The EGFPG4Δ structure revealed that G4 deletion caused a beneficial helical registry shift resulting in a new polar interaction network, which potentially stabilizes a cis proline peptide bond and links secondary structure elements. Thus, deletion mutations and registry shifts can enhance proteins through structural rearrangements not possible by substitution mutations alone. Using directed evolution, the impact of amino acid deletion on EGFP is explored Loops, helices, and strand termini are especially tolerant to amino acid deletion A deletion mutant that enhances cellular production and fluorescence is identified Structure reveals that a helical registry shift creates a new polar network
Collapse
Affiliation(s)
- James A J Arpino
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| | - Samuel C Reddington
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| | - Lisa M Halliwell
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| | - Pierre J Rizkallah
- School of Medicine, Cardiff University, WHRI, Main Building, Heath Park, Cardiff CF14 4XN, UK
| | - D Dafydd Jones
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
3
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:221-78. [PMID: 23351712 DOI: 10.1016/b978-0-12-407699-0.00004-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
4
|
O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM. Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. J Am Chem Soc 2012; 134:10920-32. [PMID: 22680285 DOI: 10.1021/ja302305u] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The E. coli chaperone trigger factor (TF) interacts directly with nascent polypeptide chains as they emerge from the ribosome exit tunnel. Small protein domains can fold under the cradle created by TF, but the co-translational folding of larger proteins is slowed down by its presence. Because of the great experimental challenges in achieving high spatial and time resolution, it is not yet known whether or not TF alters the folding properties of small proteins and if the reduced rate of folding of larger proteins is the result of kinetic or thermodynamic effects. We show, by molecular simulations employing a coarse-grained model of a series of ribosome nascent-chain complexes, that TF does not alter significantly the co-translational folding process of a small protein G domain but delays that of a large β-galactosidase domain as a result of kinetic trapping of its unfolded ensemble. We demonstrate that this trapping occurs through a combination of three distinct mechanisms: a decrease in the rate of structural rearrangements within the nascent chain, an increase in the effective exit tunnel length due to folding outside the cradle, and entanglement of the nascent chain with TF. We present evidence that this TF-induced trapping represents a trade-off between promoting co-translational folding and sterically shielding the nascent chain from aberrant cytosolic interactions that could lead to its aggregation or degradation.
Collapse
|
5
|
A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 2012; 19:403-10. [PMID: 22407015 DOI: 10.1038/nsmb.2254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/31/2012] [Indexed: 11/08/2022]
Abstract
When elongation factor G (EF-G) binds to the ribosome, it first makes contact with the C-terminal domain (CTD) of L12 before interacting with the N-terminal domain (NTD) of L11. Here we have identified a universally conserved residue, Pro22 of L11, that functions as a proline switch (PS22), as well as the corresponding center of peptidyl-prolyl cis-trans isomerase (PPIase) activity on EF-G that drives the cis-trans isomerization of PS22. Only the cis configuration of PS22 allows direct contact between the L11 NTD and the L12 CTD. Mutational analyses of both PS22 and the residues of the EF-G PPIase center reveal their function in translational GTPase (trGTPase) activity, protein synthesis and cell survival in Escherichia coli. Finally, we demonstrate that all known universal trGTPases contain an active PPIase center. Our observations suggest that the cis-trans isomerization of the L11 PS22 is a universal event required for an efficient turnover of trGTPases throughout the translation process.
Collapse
|
6
|
Huang JJT, Larsen RW, Chan SI. The interplay of turn formation and hydrophobic interactions on the early kinetic events in protein folding. Chem Commun (Camb) 2012; 48:487-97. [DOI: 10.1039/c1cc13278d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Bosisio C, Quercioli V, Chirico G, D'Alfonso L, Bettati S, Raboni S, Campanini B, Collini M. Effect of the point mutation H148G on GFPmut2 unfolding kinetics by fluorescence spectroscopy. Biophys Chem 2011; 157:24-32. [DOI: 10.1016/j.bpc.2011.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 02/09/2023]
|
8
|
Widakowich G, Zhang C, Harris S, Mitri K, Powers G, Troung KS, Hearn MTW. Effects of IMAC specific peptide tags on the stability of recombinant green fluorescent protein. Biotechnol Prog 2011; 27:1048-53. [DOI: 10.1002/btpr.546] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/21/2010] [Indexed: 11/09/2022]
|
9
|
Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:650-61. [PMID: 20132842 DOI: 10.1016/j.bbamcr.2010.01.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/22/2010] [Indexed: 01/16/2023]
Abstract
Newly synthesized proteins often require the assistance of molecular chaperones to efficiently fold into functional three-dimensional structures. At first, ribosome-associated chaperones guide the initial folding steps and protect growing polypeptide chains from misfolding and aggregation. After that folding into the native structure may occur spontaneously or require support by additional chaperones which do not bind to the ribosome such as DnaK and GroEL. Here we review the current knowledge on the best-characterized ribosome-associated chaperone at present, the Escherichia coli Trigger Factor. We describe recent progress on structural and dynamic aspects of Trigger Factor's interactions with the ribosome and substrates and discuss how these interactions affect co-translational protein folding. In addition, we discuss the newly proposed ribosome-independent function of Trigger Factor as assembly factor of multi-subunit protein complexes. Finally, we cover the functional cooperation between Trigger Factor, DnaK and GroEL in folding of cytosolic proteins and the interplay between Trigger Factor and other ribosome-associated factors acting in enzymatic processing and translocation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Anja Hoffmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Hsu STD, Blaser G, Behrens C, Cabrita LD, Dobson CM, Jackson SE. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions. J Biol Chem 2009; 285:4859-69. [PMID: 19901033 DOI: 10.1074/jbc.m109.000695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
11
|
Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:792-800. [PMID: 19786100 DOI: 10.1016/j.ibmb.2009.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The complete antimicrobial peptide repertoire of Galleria mellonella was investigated for the first time by LC/MS. Combining data from separate trypsin, Glu-C and Asp-N digests of immune hemolymph allowed detection of 18 known or putative G. mellonella antimicrobial peptides or proteins, namely lysozyme, moricin-like peptides (5), cecropins (2), gloverin, Gm proline-rich peptide 1, Gm proline-rich peptide 2, Gm anionic peptide 1 (P1-like), Gm anionic peptide 2, galiomicin, gallerimycin, inducible serine protease inhibitor 2, 6tox and heliocin-like peptide. Six of these were previously known only as nucleotide sequences, so this study provides the first evidence for expression of these genes. LC/MS data also provided insight into the expression and processing of the antimicrobial Gm proline-rich peptide 1. The gene for this peptide was isolated and shown to be unique to moths and to have an unusually long precursor region (495 bp). The precursor region contained other proline-rich peptides and LC/MS data suggested that these were being specifically processed and were present in hemolymph at very high levels. This study shows that G. mellonella can concurrently release an impressive array of at least 18 known or putative antimicrobial peptides from 10 families to defend itself against invading microbes.
Collapse
|
12
|
Andrews BT, Roy M, Jennings PA. Chromophore packing leads to hysteresis in GFP. J Mol Biol 2009; 392:218-27. [PMID: 19577576 PMCID: PMC3566660 DOI: 10.1016/j.jmb.2009.06.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/26/2009] [Accepted: 06/28/2009] [Indexed: 11/27/2022]
Abstract
Green fluorescent protein (GFP) possesses a unique folding landscape with a dual basin leading to the hysteretic folding behavior observed in experiment. While theoretical data do not have the resolution necessary to observe details of the chromophore during refolding, experimental results point to the chromophore as the cause of the observed hysteresis. With the use of NMR spectroscopy, which probes at the level of the individual residue, the hysteretic intermediate state is further characterized in the context of the loosely folded isomerized native-like state {N(iso)} predicted in simulation. In the present study, several residues located in the lid of GFP indicate heterogeneity of the native states. Some of these residues show chemical shifts when the native-like intermediate {N(iso)} responsible for GFP's hysteretic folding behavior is trapped. Observed changes in the chromophore are consistent with increased flexibility or isomerization in {N(iso)} as predicted in recent theoretical work. Here, we observed that multiple chromophore environments within the native state are averaged in the trapped intermediate, linking chromophore flexibility to mispacking in the trapped intermediate. The present work is experimental evidence for the proposed final "locking" mechanism in GFP folding forming an incorrectly or loosely packed barrel under intermediate (hysteretic) folding conditions.
Collapse
Affiliation(s)
- Benjamin T. Andrews
- Department of Chemistry & Biochemistry, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0375
| | - Melinda Roy
- Department of Chemistry & Biochemistry, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0375
| | - Patricia A. Jennings
- Department of Chemistry & Biochemistry, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0375
| |
Collapse
|
13
|
Hsu STD, Blaser G, Jackson SE. The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. Chem Soc Rev 2009; 38:2951-65. [PMID: 19771338 DOI: 10.1039/b908170b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review describes our current knowledge on the folding, stability and conformational dynamics of fluorescent proteins (FPs). The biophysical studies that have led to the elucidation of many of the key features of the complex energy landscape for folding for GFP and its variants are discussed. These illustrate some important issues surrounding how the large beta-barrel structure forms, and will be of interest to the protein folding community. In addition, the review highlights the importance of some of these results for the use of FPs in in vivo applications. The results should facilitate and aid in experimental designs of in vivo applications, as well as the interpretation of in vivo experimental data. The review is therefore of interest to all those working with FPs in vivo (103 references).
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | |
Collapse
|