1
|
Wang NQ, Sun PX, Shen QQ, Deng MY. Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets. Mol Neurobiol 2025; 62:6283-6307. [PMID: 39775479 DOI: 10.1007/s12035-024-04672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS). In this review, we explore the synthesis, regulation, transport, and functional roles of cholesterol in the CNS. We discuss in detail the associations between cholesterol homeostasis imbalance and CNS diseases including AD, HD, and MS, highlighting the significant role of cholesterol metabolism abnormalities in the development of these diseases. Sterol regulatory element binding protein-2 (SREBP2) and liver X receptor (LXR) are two critical transcription factors that play central roles in cholesterol synthesis and reverse transport, respectively. Their cooperative interaction finely tunes the balance of brain cholesterol metabolism, presenting potential therapeutic value for preventing and treating CNS diseases. We particularly emphasize the alterations in SREBP2 and LXR under pathological conditions and their impacts on disease progression. This review summarizes current therapeutic agents targeting these two pathways, with the hope of broadening the perspectives of CNS drug developers and encouraging further study into SREBP2 and LXR-related therapies for CNS diseases.
Collapse
Affiliation(s)
- Ning-Qi Wang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Xiang Sun
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi-Qi Shen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Kemeh MM, Furnelli AJ, Lazo ND. Differential Effects of Aβ Peptides on the Plasmin-Dependent Degradation of ApoE3 and ApoE4. ACS Chem Neurosci 2025; 16:1227-1237. [PMID: 40019771 DOI: 10.1021/acschemneuro.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
The ApoE4 allele of apolipoprotein E (ApoE4) is the strongest hereditary predisposition to Alzheimer's disease, even though ApoE4 only differs from the more common ApoE3 by a single amino acid substitution. Previous studies have shown that ApoE4 is more susceptible to proteolytic degradation than ApoE3. This is an important finding because of ApoE's role in cholesterol homeostasis and lipid transport in the brain. The molecular determinants of the increased susceptibility of ApoE4 to proteolysis are unknown. Here, we apply a combination of spectrometric and spectroscopic methods to show that amyloid-β (Aβ) peptides, including Aβ(1-40) and Aβ(pyroE3-42), differentially modulate the plasmin-dependent degradation of ApoE3 and ApoE4. In particular, our data reveal that while the Aβ peptides do not affect the proteolysis of ApoE3, the peptides enhance the degradation of ApoE4 significantly. Overall, this work motivates therapeutic development that targets the Aβ-induced dysregulation of ApoE4 homeostasis in individuals carrying the ApoE4 allele.
Collapse
Affiliation(s)
- Merc M Kemeh
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Anthony J Furnelli
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| |
Collapse
|
3
|
Borràs C, Canyelles M, Santos D, Rotllan N, Núñez E, Vázquez J, Maspoch D, Cano-Sarabia M, Carmona-Iragui M, Sirisi S, Lleó A, Fortea J, Alcolea D, Blanco-Vaca F, Escolà-Gil JC, Tondo M. Impaired Cerebrospinal Fluid Lipoprotein-Mediated Cholesterol Delivery to Neurons in Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5682870. [PMID: 39764088 PMCID: PMC11703344 DOI: 10.21203/rs.3.rs-5682870/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
In the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals. Additionally, we explored the ability of reconstituted HDL containing different APOE isoforms to regulate cholesterol transport. We evaluated the capacity of CSF HDL-like particles to facilitate radiolabeled unesterified cholesterol efflux from A172 human glioblastoma astrocytes and to deliver cholesterol to SH-SY5Y human neuronal cells. The HDL-like proteome in the AD and control groups was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Reconstituted HDL nanoparticles were prepared by combining phospholipids and cholesterol with human APOE3 or APOE4, followed by radiolabeling with unesterified cholesterol. Our results showed that cholesterol efflux from astrocytes to CSF were similar between AD patients and controls, both under baseline conditions and after activation of ATP-binding cassette transporters A1 and G1. However, CSF HDL-like particle-mediated neuronal cholesterol uptake was significantly reduced in the AD group. LC-MS/MS analysis identified 775 proteins associated with HDL-like particles in both groups, with no major alterations in proteins linked to cholesterol metabolism. However, 27 proteins involved in non-cholesterol-related processes were differentially expressed. Notably, synthetic reconstituted HDL particles containing APOE4 exhibited reduced capacity to deliver cholesterol to neurons compared to those with APOE3. These findings indicate that CSF HDL-like particles from patients with AD demonstrate impaired cholesterol delivery to neurons. Our study highlights APOE4 as a critical contributor to abnormal neuronal cholesterol uptake in AD pathophysiology.
Collapse
Affiliation(s)
| | | | - David Santos
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas
| | | | - Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
6
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. Cell Mol Life Sci 2023; 80:376. [PMID: 38010414 PMCID: PMC11061799 DOI: 10.1007/s00018-023-05026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Mari N Nakamura
- Undergraduate program, Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT, 05753, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551703. [PMID: 37577501 PMCID: PMC10418262 DOI: 10.1101/2023.08.04.551703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Mari N. Nakamura
- Undergraduate program, Department of Chemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT 05753VT United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
8
|
Zhang ZA, Xin X, Liu C, Liu YH, Duan HX, Qi LL, Zhang YY, Zhao HM, Chen LQ, Jin MJ, Gao ZG, Huang W. Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo. J Nanobiotechnology 2021; 19:453. [PMID: 34963449 PMCID: PMC8715648 DOI: 10.1186/s12951-021-01097-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid β-protein (Aβ)-CN peptide (PTX/Aβ-CN-PMs). Aβ-CN peptide, like the Aβ1–42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aβ-CN-PMs (ApoE/PTX/Aβ-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood–brain barrier and glioma, effectively mediating brain-targeted delivery. Methods PTX/Aβ-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC–MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aβ-CN-PMs were also well studied. Results The average size and zeta potential of PTX/Aβ-CN-PMs and ApoE/PTX/Aβ-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aβ-CN-PMs, and the PTX release from rhApoE/PTX/Aβ-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aβ-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood–brain tumor barrier in vitro. Meanwhile, PTX/Aβ-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aβ-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. Conclusions The designed PTX/Aβ-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01097-8.
Collapse
Affiliation(s)
- Zhe-Ao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan-Hong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Xia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Ling Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - He-Ming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Aβ Clearance. J Neurosci 2020; 40:5347-5361. [PMID: 32457076 DOI: 10.1523/jneurosci.0250-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aβ uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aβ plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aβ uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aβ pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Collapse
|
10
|
Fanaee-Danesh E, Gali CC, Tadic J, Zandl-Lang M, Carmen Kober A, Agujetas VR, de Dios C, Tam-Amersdorfer C, Stracke A, Albrecher NM, Manavalan APC, Reiter M, Sun Y, Colell A, Madeo F, Malle E, Panzenboeck U. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer's disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2224-2245. [PMID: 31055081 DOI: 10.1016/j.bbadis.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is characterized by overproduction, impaired clearance, and deposition of amyloid-β peptides (Aβ) and connected to cholesterol homeostasis. Since the blood-brain barrier (BBB) is involved in these processes, we investigated effects of the retinoid X receptor agonist, bexarotene (Bex), and the peroxisome proliferator-activated receptor α agonist and antioxidant, astaxanthin (Asx), on pathways of cellular cholesterol metabolism, amyloid precursor protein processing/Aβ production and transfer at the BBB in vitro using primary porcine brain capillary endothelial cells (pBCEC), and in 3xTg AD mice. Asx/Bex downregulated transcription/activity of amyloidogenic BACE1 and reduced Aβ oligomers and ~80 kDa intracellular 6E10-reactive APP/Aβ species, while upregulating non-amyloidogenic ADAM10 and soluble (s)APPα production in pBCEC. Asx/Bex enhanced Aβ clearance to the apical/plasma compartment of the in vitro BBB model. Asx/Bex increased expression levels of ABCA1, LRP1, and/or APOA-I. Asx/Bex promoted cholesterol efflux, partly via PPARα/RXR activation, while cholesterol biosynthesis/esterification was suppressed. Silencing of LRP-1 or inhibition of ABCA1 by probucol reversed Asx/Bex-mediated effects on levels of APP/Aβ species in pBCEC. Murine (m)BCEC isolated from 3xTg AD mice treated with Bex revealed elevated expression of APOE and ABCA1. Asx/Bex reduced BACE1 and increased LRP-1 expression in mBCEC from 3xTg AD mice when compared to vehicle-treated or non-Tg treated mice. In parallel, Asx/Bex reduced levels of Aβ oligomers in mBCEC and Aβ species in brain soluble and insoluble fractions of 3xTg AD mice. Our results suggest that both agonists exert beneficial effects at the BBB by balancing cholesterol homeostasis and enhancing clearance of Aβ from cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Alexandra Carmen Kober
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Vicente Roca Agujetas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Department of Biomedicine, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | | | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
11
|
Ghosh S, Sil TB, Dolai S, Garai K. High‐affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid‐β. FEBS J 2019; 286:4737-4753. [DOI: 10.1111/febs.14988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shamasree Ghosh
- Tata Institute of Fundamental Research Hyderabad Hyderabad India
| | - Timir Baran Sil
- Tata Institute of Fundamental Research Hyderabad Hyderabad India
| | | | - Kanchan Garai
- Tata Institute of Fundamental Research Hyderabad Hyderabad India
| |
Collapse
|
12
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Huynh TPV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer's disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 2017; 58:824-836. [PMID: 28246336 DOI: 10.1194/jlr.r075481] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/25/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the fastest-growing causes of death and disability in persons 65 years of age or older, affecting more than 5 million Americans alone. Clinical manifestations of AD include progressive decline in memory, executive function, language, and other cognitive domains. Research efforts within the last three decades have identified APOE as the most significant genetic risk factor for late-onset AD, which accounts for >99% of cases. The apoE protein is hypothesized to affect AD pathogenesis through a variety of mechanisms, from its effects on the blood-brain barrier, the innate immune system, and synaptic function to the accumulation of amyloid-β (Aβ). Here, we discuss the role of apoE on the biophysical properties and metabolism of the Aβ peptide, the principal component of amyloid plaques and cerebral amyloid angiopathy (CAA). CAA is characterized by the deposition of amyloid proteins (including Aβ) in the leptomeningeal medium and small arteries, which is found in most AD cases but sometimes occurs as an independent entity. Accumulation of these pathologies in the brain is one of the pathological hallmarks of AD. Beyond Aβ, we will extend the discussion to the potential role of apoE on other amyloidogenic proteins found in AD, and also a number of diverse neurodegenerative diseases.
Collapse
Affiliation(s)
- Tien-Phat V Huynh
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Albert A Davis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| |
Collapse
|
14
|
Lim YY, Laws SM, Villemagne VL, Pietrzak RH, Porter T, Ames D, Fowler C, Rainey-Smith S, Snyder PJ, Martins RN, Salvado O, Bourgeat P, Rowe CC, Masters CL, Maruff P. Aβ-related memory decline inAPOEε4 noncarriers. Neurology 2016; 86:1635-42. [DOI: 10.1212/wnl.0000000000002604] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/19/2016] [Indexed: 11/15/2022] Open
|
15
|
Deroo S, Stengel F, Mohammadi A, Henry N, Hubin E, Krammer EM, Aebersold R, Raussens V. Chemical cross-linking/mass spectrometry maps the amyloid β peptide binding region on both apolipoprotein E domains. ACS Chem Biol 2015; 10:1010-6. [PMID: 25546376 DOI: 10.1021/cb500994j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E (apoE) binds the amyloid β peptide (Aβ), one of the major culprits in Alzheimer's disease development. The formation of apoE:Aβ complexes is implicated in both Aβ clearance and fibrillization. However, the binding interface between apoE and Aβ is poorly defined despite substantial previous research efforts, and the exact role of apoE in the pathology of Alzheimer's disease remains largely elusive. Here, we compared the three main isoforms of apoE (E2, E3, and E4) for their interaction with Aβ1-42 in an early stage of aggregation and at near physiological conditions. Using electron microscopy and Western blots, we showed that all three isoforms are able to prevent Aβ fibrillization and form a noncovalent complex, with one molecule of Aβ bound per apoE. Using chemical cross-linking coupled to mass spectrometry, we further examined the interface of interaction between apoE2/3/4 and Aβ. Multiple high-confidence intermolecular apoE2/3/4:Aβ cross-links confirmed that Lys16 is located in the region of Aβ binding to apoE2/3/4. Further, we demonstrated that both N- and C-terminal domains of apoE2/3/4 are interacting with Aβ. The cross-linked sites were mapped onto and evaluated in light of a recent structure of apoE. Our results support binding of the hydrophobic Aβ at the apoE domain-domain interaction interface, which would explain how apoE is able to stabilize Aβ and thereby prevent its subsequent aggregation.
Collapse
Affiliation(s)
- Stéphanie Deroo
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Stengel
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Azadeh Mohammadi
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Henry
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ellen Hubin
- ∥Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- ⊥Structural Biology Brussels, Department of Biotechnology, and Structural Biology Research Center, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva-Maria Krammer
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ruedi Aebersold
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- §Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Vincent Raussens
- †Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Josviak ND, Batistela MS, Simão-Silva DP, Bono GF, Furtado-Alle L, Souza RLRD. Revisão dos principais genes e proteínas associadas à demência frontotemporal tau-positiva. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2015. [DOI: 10.1590/1809-9823.2015.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
O objetivo desta revisão foi apresentar os genes APOE e MAPT e as proteínas ApoE e tau como marcadores genéticos que vêm sendo estudados na demência frontotemporal com inclusões tau-positivas, os quais poderão, futuramente, auxiliar no diagnóstico diferencial. A demência frontotemporal é um transtorno neurocognitivo marcado por disfunção dos lobos frontais e temporais, geralmente associada à atrofia dessas estruturas e relativa preservação das regiões cerebrais posteriores. Clinicamente, manifesta-se por volta dos 57 anos de idade, com igual incidência entre homens e mulheres. A demência frontotemporal tem início insidioso e caráter progressivo, com discreto comprometimento da memória episódica, mas com importantes alterações comportamentais, de personalidade e na linguagem. Devido às semelhanças possíveis entre as manifestações clínicas das demências inclusive a doença de Alzheimer, há grande dificuldade no diagnóstico diferencial, sendo necessário um exame clínico e neuropsicológico detalhado do indivíduo acometido, além de exames bioquímicos e de neuroimagem. O gene MAPT codifica a proteína tau e sua função principal é estabilizar os microtúbulos. Em células nervosas sadias, a proteína tau é normalmente encontrada nos axônios, ao contrário dos achados descritos nos transtornos neurocognitivos, em que a proteína se encontra distribuída no corpo celular e nos dendritos. A apolipoproteína E ApoE é uma glicoproteína polimórfica, codificada pelo gene APOE, que tem importante papel na absorção, transporte e redistribuição de colesterol, necessário ao reparo e manutenção do tecido nervoso. Com o aumento da expectativa de vida e controle da natalidade, o envelhecimento populacional tornou-se fato, trazendo consigo maior prevalência de doenças crônico-degenerativas, de modo que é de extrema importância conhecer melhor essas doenças, no sentido de buscar novas formas de tratamento, visto que as demências não dispõem ainda de cura. Sabe-se que o diagnóstico definitivo da maioria das síndromes demenciais depende do exame neuropatológico, mas conclui-se que, com o avanço tecnológico, bem como técnicas de biologia e genética molecular, novas perspectivas têm surgido para o diagnóstico diferencial e precoce das demências.
Collapse
|
17
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
18
|
O'Callaghan P, Noborn F, Sehlin D, Li JP, Lannfelt L, Lindahl U, Zhang X. Apolipoprotein E increases cell association of amyloid-β 40 through heparan sulfate and LRP1 dependent pathways. Amyloid 2014; 21:76-87. [PMID: 24491019 DOI: 10.3109/13506129.2013.879643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The increased risk of Alzheimer's disease (AD) associated with specific apolipoprotein E (ApoE) isoforms appears to relate to altered amyloid-β (Aβ) homeostasis. Clearance of Aβ from the brain is reduced in the presence of the AD-associated ApoE4 isoform, which may contribute to the accumulation of Aβ deposits in the parenchyma and vasculature. The low-density lipoprotein receptor-related protein 1 (LRP1) and heparan sulfate proteoglycans (HSPGs), both established ApoE receptors, are involved in Aβ uptake, with LRP1 additionally implicated in Aβ transcytosis across the blood-brain barrier. In this study, we detected the co-distribution of heparan sulfate (HS), ApoE and LRP1 in Aβ(1-40)-positive brain microvessels from individuals with Down's syndrome diagnosed with AD. In addition, ApoE was pulled-down from AD cerebrospinal fluid with anti-Aβ antibodies. Using Chinese hamster ovary cells deficient in HS or LRP1, we found that ApoE increases cell association of Aβ in a HSPG- and LRP1-dependent manner; and further, ApoE processing is altered in the absence of cellular HS. These interactions may facilitate Aβ clearance from the brain, but if overwhelmed could contribute to Aβ accumulation and the pathogenesis of AD.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory C11, Uppsala University , Uppsala , Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Kim SH, Kothari S, Patel AB, Bielicki JK, Narayanaswami V. A pyrene based fluorescence approach to study conformation of apolipoprotein E3 in macrophage-generated nascent high density lipoprotein. Biochem Biophys Res Commun 2014; 450:124-8. [PMID: 24866239 DOI: 10.1016/j.bbrc.2014.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 12/18/2022]
Abstract
Apolipoprotein E3 (apoE3) is an anti-atherogenic apolipoprotein with the ability to exist in lipid-free and lipoprotein-associated states. During atherosclerosis, its function in promoting cholesterol efflux from macrophages via the ATP-binding cassette transporter A1 (ABCA1) takes a prominent role, leading to generation of nascent high density lipoprotein (nHDL) particles. The objective of this study is to understand the conformation adopted by apoE3 in macrophage-generated nHDL using a fluorescence spectroscopic approach involving pyrene. Pyrene-labeled recombinant human apoE3 displayed a robust ability to stimulate ABCA1-mediated cholesterol efflux from cholesterol-loaded J774 macrophages (which do not express apoE), comparable to that elicited by unlabeled apoE3. The nHDL recovered from the conditioned medium revealed the presence of apoE3 by immunoblot analysis. A heterogeneous population of nHDL bearing exogenously added apoE3 was generated with particle size varying from ∼12 to ∼19 nm in diameter, corresponding to molecular mass of ∼450 to ∼700 kDa. The lipid: apoE3 ratio varied from ∼60:1 to 10:1. A significant extent of pyrene excimer emission was noted in nHDL, indicative of spatial proximity between Cys112 on neighboring apoE3 molecules similar to that noted in reconstituted HDL. Cross-linking analysis using Cys-specific cross-linkers revealed the predominant presence of dimers. Taken together the data indicate a double belt arrangement of apoE molecules on nHDL. A similar organization of the C-terminal tail of apoE on nHDL was noted when pyrene-apoEA277C(201-299) was used as the cholesterol acceptor. These studies open up the possibility of using exogenously labeled apoE3 to generate nHDL for structural and conformational analysis.
Collapse
Affiliation(s)
- Sea H Kim
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Shweta Kothari
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Arti B Patel
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - John K Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
20
|
Hauser PS, Ryan RO. Impact of apolipoprotein E on Alzheimer's disease. Curr Alzheimer Res 2014; 10:809-17. [PMID: 23919769 DOI: 10.2174/15672050113109990156] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 11/22/2022]
Abstract
A key feature of Alzheimer's disease (AD) is deposition of extracellular amyloid plaque comprised chiefly of the amyloid β (Aβ) peptide. Studies of Aβ have shown that it may be catabolized by proteolysis or cleared from brain via members of the low-density lipoprotein receptor family. Alternatively, Aβ can undergo a conformational transition from α-helix to β-sheet, a conformer that displays a propensity to self-associate, oligomerize and form fibrils. Furthermore, β- sheet conformers catalyze conversion of other α-helical Aβ peptides to β-sheet, feeding the oligomer and fibril assembly process. A factor that influences the fate of Aβ in the extracellular space is apolipoprotein (apo) E. Polymorphism at position 112 or 158 in apoE give rise to three major isoforms. One isoform in particular, apoE4 (Arg at 112 and 158), has generated considerable interest since the discovery that it is the major genetic risk factor for development of late onset AD. Despite this striking correlation, the molecular mechanism underlying apoE4's association with AD remains unclear. A tertiary structural feature distinguishing apoE4 from apoE2 and apoE3, termed domain interaction, is postulated to affect the conformation and orientation of its' two independently folded domains. This feature has the potential to influence apoE4's interaction with Aβ, its sensitivity to proteolysis or its lipid accrual and receptor binding activities. Thus, domain interaction may constitute the principal molecular feature of apoE4 that predisposes carriers to late onset AD. By understanding the contribution of apoE4 to AD at the molecular level new therapeutic or prevention strategies will emerge.
Collapse
Affiliation(s)
- Paul S Hauser
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609 USA.
| | | |
Collapse
|
21
|
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron 2014; 81:740-54. [PMID: 24559670 DOI: 10.1016/j.neuron.2014.01.045] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
Among the three human apolipoprotein E (apoE) isoforms, apoE4 increases the risk of Alzheimer's disease (AD). While transporting cholesterol is a primary function, apoE also regulates amyloid-β (Aβ) metabolism, aggregation, and deposition. Although earlier work suggests that different affinities of apoE isoforms to Aβ might account for their effects on Aβ clearance, recent studies indicate that apoE also competes with Aβ for cellular uptake through apoE receptors. Thus, several factors probably determine the variable effects apoE has on Aβ. In this Review, we examine biochemical, structural, and functional studies and propose testable models that address the complex mechanisms underlying apoE-Aβ interaction and how apoE4 may increase AD risk and also serve as a target pathway for therapy.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
22
|
Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer's disease. Neurosci Bull 2014; 30:317-30. [PMID: 24652457 DOI: 10.1007/s12264-013-1422-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/23/2014] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptides in the brain. Neuroinflammation occurs in the AD brain and plays a critical role in the neurodegenerative pathology. Particularly, Aβ evokes an inflammatory response that leads to synaptic dysfunction, neuronal death, and neurodegeneration. Apolipoprotein E (ApoE) proteins are involved in cholesterol transport, Aβ binding and clearance, and synaptic functions in the brain. The ApoE4 isoform is a key risk factor for AD, while the ApoE2 isoform has a neuroprotective effect. However, studies have reached different conclusions about the roles of the isoforms; some show that both ApoE3 and ApoE4 have anti-inflammatory effects, while others show that ApoE4 causes a predisposition to inflammation or promotes an inflammatory response following lipopolysaccharide treatment. These discrepancies may result from the differences in models, cell types, experimental conditions, and inflammatory stimuli used. Further, little was known about the role of ApoE isoforms in the Aβ-induced inflammatory response and in the neuroinflammation of AD. Our recent work showed that ApoE isoforms differentially regulate and modify the Aβ-induced inflammatory response in neural cells, with ApoE2 suppressing and ApoE4 promoting the response. In this article, we review the roles, mechanisms, and interrelations among Aβ, ApoE, and neuroinflammation in AD.
Collapse
|
23
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
24
|
ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A 2013; 110:E1807-16. [PMID: 23620513 DOI: 10.1073/pnas.1220484110] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.
Collapse
|
25
|
Hunter S, Arendt T, Brayne C. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 2013; 48:556-70. [PMID: 23546742 DOI: 10.1007/s12035-013-8445-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD) is a progressive, neurodegenerative disease characterised in life by cognitive decline and behavioural symptoms and post-mortem by the neuropathological hallmarks including the microtubule-associated protein tau-reactive tangles and neuritic plaques and amyloid-beta-protein-reactive senile plaques. Greater than 95 % of AD cases are sporadic (SAD) with a late onset and <5 % of AD cases are familial (FAD) with an early onset. FAD is associated with various genetic mutations in the amyloid precursor protein (APP) and the presenilins (PS)1 and PS2. As yet, no disease pathway has been fully accepted and there are no treatments that prevent, stop or reverse the cognitive decline associated with AD. Here, we review and integrate available environmental and genetic evidence associated with all forms of AD. We present the senescence hypothesis of AD progression, suggesting that factors associated with AD can be seen as partial stressors within the matrix of signalling pathways that underlie cell survival and function. Senescence pathways are triggered when stressors exceed the cells ability to compensate for them. The APP proteolytic system has many interactions with pathways involved in programmed senescence and APP proteolysis can both respond to and be driven by senescence-associated signalling. Disease pathways associated with sporadic disease may be different to those involving familial genetic mutations. The interpretation we provide strongly points to senescence as an additional underlying causal process in dementia progression in both SAD and FAD via multiple disease pathways.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK,
| | | | | |
Collapse
|
26
|
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 2012; 4:10. [PMID: 22498202 PMCID: PMC3583130 DOI: 10.1186/alzrt108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and in its familial form is associated with mutations in the amyloid precursor protein (APP) and the presenilins (PSs). Much data regarding the interactions of APP, its proteolytic fragments and PS have been generated, expanding our understanding of the roles of these proteins in mechanisms underlying cognitive function and revealing many complex relationships with wide ranging cellular systems. In this review, we examine the multiple interactions of APP and its proteolytic fragments with other neuronal systems in terms of feedback loops and use these relationships to build a map. We highlight the complexity involved in the APP proteolytic system and discuss alternative perspectives on the roles of APP and its proteolytic fragments in dynamic processes associated with disease progression in AD. We highlight areas where data are missing and suggest potential confounding factors. We suggest that a systems biology approach enhances representations of the data and may be more useful in modelling both normal cognition and disease processes.
Collapse
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| |
Collapse
|
27
|
Garai K, Baban B, Frieden C. Self-association and stability of the ApoE isoforms at low pH: implications for ApoE-lipid interactions. Biochemistry 2011; 50:6356-64. [PMID: 21699199 DOI: 10.1021/bi2006702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apolipoprotein E (apoE) isoforms are known to differentially accumulate in the lysosomes of neuronal cells, and the deleterious effects of the apoE4 isoform in Alzheimer's disease may relate to its properties at the low lysosomal pH. However, the effect of pH on the molecular properties of full-length apoE is unclear. Here we examine the pH dependence of the monomer-dimer-tetramer reaction, of lipid binding, and of the stability of the three major apoE isoforms. Using FRET measurements, we find that the association-dissociation behavior of apoE proteins changes dramatically with changes in pH. At pH 4.5, approximating the pH of the lysosome, rate constants for association and dissociation are 2-10 times faster than those at pH 7.4. Aggregation beyond the tetrameric form is also more evident at lower pH values. Stability, as measured by urea denaturation at pH 4.5, is found to be considerably greater than that at neutral pH and to be isoform dependent. Lipid binding, as measured by turbidity clearance of unilamellar vesicles of DMPC, is faster at acidic pH values and consistent with our previous hypothesis that it is only the monomeric form of apoE that binds lipid tightly. Since apoE is more stable at pH 4.5 than at neutral pH, the more rapid apoE-lipid interactions at low pH are not correlated with the stability of the apoE isoforms, but rather to the faster association-dissociation behavior. Our results indicate that pathological behavior of apoE4 may arise from altered molecular properties of this protein at the acidic pH of the lysosome.
Collapse
Affiliation(s)
- Kanchan Garai
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
28
|
Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-β in human Alzheimer brain. PLoS One 2011; 6:e14586. [PMID: 21297948 PMCID: PMC3031506 DOI: 10.1371/journal.pone.0014586] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 01/02/2011] [Indexed: 11/19/2022] Open
Abstract
We applied a novel application of FLIM-FRET to in situ measurement and quantification of protein interactions to explore isoform specific differences in Aβ-ApoE interaction and ApoE tertiary conformation in senile plaques in human Alzheimer brain. ApoE3 interacts more closely with Aβ than ApoE4, but a greater proportion of Aβ molecules within plaques are decorated with ApoE4 than ApoE3, lending strong support to the hypothesis that isoform specific differences in ApoE are linked with Aβ deposition. We found an increased number of ApoE N-terminal fragments in ApoE4 plaques, consistent with the observation that ApoE4 is more easily cleaved than ApoE3. In addition, we measured a small but significant isoform specific difference in ApoE domain interaction. Based on our in situ data, supported by traditional biochemical data, we propose a pathway by which isoform specific conformational differences increase the level of cleavage at the hinge region of ApoE4, leading to a loss of ApoE function to mediate clearance of Aβ and thereby increase the risk of AD for carriers of the APOEε4 allele.
Collapse
|
29
|
Sakamoto K, Bu G, Chen S, Takei Y, Hibi K, Kodera Y, McCormick LM, Nakao A, Noda M, Muramatsu T, Kadomatsu K. Premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1. J Biol Chem 2011; 286:8405-8413. [PMID: 21212259 DOI: 10.1074/jbc.m110.176479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein production within the secretory pathway is accomplished by complex but organized processes. Here, we demonstrate that the growth factor midkine interacts with LDL receptor-related protein 1 (LRP1) at high affinity (K(d) value, 2.7 nm) not only at the cell surface but also within the secretory pathway during biosynthesis. The latter premature ligand-receptor interaction resulted in aggregate formation and consequently suppressed midkine secretion and LRP1 maturation. We utilized an endoplasmic reticulum (ER) retrieval signal and an LRP1 fragment, which strongly bound to midkine and the LRP1-specialized chaperone receptor-associated protein (RAP), to construct an ER trapper. The ER trapper efficiently trapped midkine and RAP and mimicked the premature ligand-receptor interaction, i.e. suppressed maturation of the ligand and receptor. The ER trapper also diminished the inhibitory function of LRP1 on platelet-derived growth factor-mediated cell migration. Complementary to these results, an increased expression of RAP was closely associated with midkine expression in human colorectal carcinomas (33 of 39 cases examined). Our results suggest that the premature ligand-receptor interaction plays a role in protein production within the secretory pathway.
Collapse
Affiliation(s)
| | - Guojun Bu
- the Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sen Chen
- From the Departments of Biochemistry and
| | | | - Kenji Hibi
- Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Kodera
- Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Lynn M McCormick
- the Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Akimasa Nakao
- Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masaharu Noda
- the Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan, and
| | - Takashi Muramatsu
- the Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 480-0195, Japan
| | | |
Collapse
|
30
|
Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 2010; 50:62-74. [PMID: 20854843 DOI: 10.1016/j.plipres.2010.09.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/04/2010] [Accepted: 09/12/2010] [Indexed: 12/17/2022]
Abstract
Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE's function as a ligand for cell-surface receptors of the low-density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic "knock-in" and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform-specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform-specific effects relating to disease mechanism.
Collapse
Affiliation(s)
- Paul S Hauser
- Center for Prevention of Obesity, Cardiovascular Disease and Diabetes, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
31
|
Patel AB, Khumsupan P, Narayanaswami V. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E. Biochemistry 2010; 49:1766-75. [PMID: 20073510 DOI: 10.1021/bi901902e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain (CT) of apolipoprotein E (apoE), a critical protein involved in cholesterol transport in the plasma and brain, plays an important role in high-affinity lipoprotein binding. Although high-resolution structural information is available for the N-terminal domain of apoE, the structural organization of the CT (residues 201-299) is largely unknown. In this study, we employ site-specific fluorescence labeling with pyrene maleimide to gain insight into the structure and conformation of apoE CT in its naturally self-associated state in buffer at physiologically relevant concentrations (5-50 microg/mL). Pyrene is a highly sensitive fluorophore that reports on spatial proximity between desired sites by displaying unique spectral features. Pyrene was covalently attached to single cysteine-containing recombinant human apoE CT at position 223 or 255 to probe the first predicted helical segment and at position 277 to monitor the terminal predicted helical segment. Regardless of the location of the probe, all three pyrene-labeled apoE CT variants display an intense and dramatic fluorescence excimer band at 460 nm, a signature feature of pyrene, which indicates that two pyrene moieties are within 10 A of each other. In addition, an intense peak at 387 nm (indicative of a highly hydrophobic environment) was noted in all cases. Fluorescence emission quenching by potassium iodide indicates that the accessibility to the probes was restricted at these locations. The possibility that the hydrophobicity of the pyrene moiety was the driving force for helix-helix interaction was excluded because pyrene located at position 209, which is predicted to be located in a nonhelical segment, did not display the above intense unique features. Lastly, denaturation studies suggest that the terminal helix unfolds prior to the first predicted helix in apoE CT. Our studies indicate that there are extensive intermolecular helix-helix contacts throughout the entire CT in the lipid-free state with two apoE CT molecules oriented parallel to each other to form a dimer, which dimerizes further to yield a tetramer. Such an organization allows helix-helix interactions to be replaced by helix-lipid interactions upon encountering a lipoprotein surface, with the terminal helix likely initiating the binding interaction. This study presents the possibility of employing pyrene fluorophores as powerful new alternatives to obtain conformational information of proteins at physiologically relevant concentrations.
Collapse
Affiliation(s)
- Arti B Patel
- Department of Chemistry and Biochemistry, 1250 Bellflower Boulevard, California State University Long Beach, Long Beach, California 90840, USA
| | | | | |
Collapse
|
32
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Harris JR, Milton NGN. Cholesterol in Alzheimer's disease and other amyloidogenic disorders. Subcell Biochem 2010; 51:47-75. [PMID: 20213540 DOI: 10.1007/978-90-481-8622-8_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex association of cholesterol metabolism and Alzheimer's disease is presented in depth, including the possible benefits to be gained from cholesterol-lowering statin therapy. Then follows a survey of the role of neuronal membrane cholesterol in Abeta pore formation and Abeta fibrillogenesis, together with the link with membrane raft domains and gangliosides. The contribution of structural studies to Abeta fibrillogenesis, using TEM and AFM, is given some emphasis. The role of apolipoprotein E and its isoforms, in particular ApoE4, in cholesterol and Abeta binding is presented, in relation to genetic risk factors for Alzheimer's disease. Increasing evidence suggests that cholesterol oxidation products are of importance in generation of Alzheimer's disease, possibly induced by Abeta-produced hydrogen peroxide. The body of evidence for a link between cholesterol in atherosclerosis and Alzheimer's disease is increasing, along with an associated inflammatory response. The possible role of cholesterol in tau fibrillization, tauopathies and in some other non-Abeta amyloidogenic disorders is surveyed.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099, Mainz, Germany.
| | | |
Collapse
|
34
|
Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009; 10:333-44. [PMID: 19339974 DOI: 10.1038/nrn2620] [Citation(s) in RCA: 811] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) cases are late-onset and their development is probably influenced by both genetic and environmental risk factors. A strong genetic risk factor for late-onset AD is the presence of the epsilon4 allele of the apolipoprotein E (APOE) gene, which encodes a protein with crucial roles in cholesterol metabolism. There is mounting evidence that APOE4 contributes to AD pathogenesis by modulating the metabolism and aggregation of amyloid-beta peptide and by directly regulating brain lipid metabolism and synaptic functions through APOE receptors. Emerging knowledge of the contribution of APOE to the pathophysiology of AD presents new opportunities for AD therapy.
Collapse
|
35
|
de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. ACTA ACUST UNITED AC 2008; 3:505-530. [PMID: 19649144 DOI: 10.2217/17460875.3.5.505] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol can be detrimental or vital, and must be present in the right place at the right time and in the right amount. This is well known in the heart and the vascular system. However, in the CNS cholesterol is still an enigma, although several of its fundamental functions in the brain have been identified. Brain cholesterol has attracted additional attention owing to its close connection to ApoE, a key polymorphic transporter of extracellular cholesterol in humans. Indeed, both cholesterol and ApoE are so critical to fundamental activities of the brain, that the brain regulates their synthesis autonomously. Yet, similar control mechanisms of ApoE and cholesterol homeostasis may exist on either sides of the blood-brain barrier. One indication is that the APOE ε4 allele is associated with hypercholesterolemia and a proatherogenic profile on the vascular side and with increased risk of Alzheimer's disease on the CNS side. In this review, we draw attention to the association between cholesterol and ApoE in the aging and diseased brain, and to the behavior of the ApoE4 protein at the molecular level. The attempt to correlate in vivo and in vitro observations is challenging but crucial for developing future strategies to address ApoE-related aberrations in cholesterol metabolism selectively in the brain.
Collapse
|