3
|
Nguyen TK, Negishi H, Abe S, Ueno T. Construction of supramolecular nanotubes from protein crystals. Chem Sci 2019; 10:1046-1051. [PMID: 30774900 PMCID: PMC6346403 DOI: 10.1039/c8sc04167a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
Investigations involving the design of protein assemblies for the development of biomaterials are receiving significant attention. In nature, proteins can be driven into assemblies frequently by various non-covalent interactions. Assembly of proteins into supramolecules can be conducted under limited conditions in solution. These factors force the assembly process into an equilibrium state with low stability. Here, we report a new method for preparing assemblies using protein crystals as non-equilibrium molecular scaffolds. Protein crystals provide an ideal environment with a highly ordered packing of subunits in which the supramolecular assembled structures are formed in the crystalline matrix. Based on this feature, we demonstrate the self-assembly of supramolecular nanotubes constructed from protein crystals triggered by co-oxidation with cross-linkers. The assembly of tubes is driven by the formation of disulfide bonds to retain the intermolecular interactions within each assembly in the crystalline matrix after dissolution of the crystals.
Collapse
Affiliation(s)
- Tien Khanh Nguyen
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Hashiru Negishi
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Satoshi Abe
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Takafumi Ueno
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| |
Collapse
|
6
|
Alvarez FJD, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 2015; 98:878-94. [PMID: 26268698 DOI: 10.1111/mmi.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.
Collapse
Affiliation(s)
| | - Cédric Orelle
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruchika Bajaj
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Michael Everly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
18
|
Yanagisawa S, Crowley PB, Firbank SJ, Lawler AT, Hunter DM, McFarlane W, Li C, Kohzuma T, Banfield MJ, Dennison C. π-Interaction Tuning of the Active Site Properties of Metalloproteins. J Am Chem Soc 2008; 130:15420-8. [DOI: 10.1021/ja8038135] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sachiko Yanagisawa
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Peter B. Crowley
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Susan J. Firbank
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Anne T. Lawler
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - David M. Hunter
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - William McFarlane
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Chan Li
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Takamitsu Kohzuma
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Mark J. Banfield
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K., UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, School of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K., and Institute of Applied Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|