1
|
Development of Assay Systems for Amber Codon Decoding at the Steps of Initiation and Elongation in Mycobacteria. J Bacteriol 2018; 200:JB.00372-18. [PMID: 30181124 DOI: 10.1128/jb.00372-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of the mechanism of protein synthesis in Gram-positive bacteria has remained largely unexplored because of the unavailability of appropriate in vivo assay systems. We developed chloramphenicol acetyltransferase (CAT)-based in vivo reporter systems to study translation initiation and elongation in Mycobacterium smegmatis The CAT reporters utilize specific decoding of amber codons by mutant initiator tRNA (i-tRNA, metU) molecules containing a CUA anticodon (metU CUA). The assay systems allow structure-function analyses of tRNAs without interfering with the cellular protein synthesis and function with or without the expression of heterologous GlnRS from Escherichia coli We show that despite their naturally occurring slow-growth phenotypes, the step of i-tRNA formylation is vital in translation initiation in mycobacteria and that formylation-deficient i-tRNA mutants (metU CUA/A1, metU CUA/G72, and metU CUA/G72G73) with a Watson-Crick base pair at the 1·72 position participate in elongation. In the absence of heterologous GlnRS expression, the mutant tRNAs are predominantly aminoacylated (glutamylated) by nondiscriminating GluRS. Acid urea gels show complete transamidation of the glutamylated metU CUA/G72G73 tRNA to its glutaminylated form (by GatCAB) in M. smegmatis In contrast, the glutamylated metU CUA/G72 tRNA did not show a detectable level of transamidation. Interestingly, the metU CUA/A1 mutant showed an intermediate activity of transamidation and accumulated in both glutamylated and glutaminylated forms. These observations suggest important roles for the discriminator base position and/or a weak Watson-Crick base pair at 1·72 for in vivo recognition of the glutamylated tRNAs by M. smegmatis GatCAB.IMPORTANCE Genetic analysis of the translational apparatus in Gram-positive bacteria has remained largely unexplored because of the unavailability of appropriate in vivo assay systems. We developed chloramphenicol acetyltransferase (CAT)-based reporters which utilize specific decoding of amber codons by mutant tRNAs at the steps of initiation and/or elongation to allow structure-function analysis of the translational machinery. We show that formylation of the initiator tRNA (i-tRNA) is crucial even for slow-growing bacteria and that i-tRNA mutants with a CUA anticodon are aminoacylated by nondiscriminating GluRS. The discriminator base position, and/or a weak Watson-Crick base pair at the top of the acceptor stem, provides important determinants for transamidation of the i-tRNA-attached Glu to Gln by the mycobacterial GatCAB.
Collapse
|
2
|
Akbergenov R, Duscha S, Fritz AK, Juskeviciene R, Oishi N, Schmitt K, Shcherbakov D, Teo Y, Boukari H, Freihofer P, Isnard-Petit P, Oettinghaus B, Frank S, Thiam K, Rehrauer H, Westhof E, Schacht J, Eckert A, Wolfer D, Böttger EC. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep 2018; 19:embr.201846193. [PMID: 30237157 PMCID: PMC6216279 DOI: 10.15252/embr.201846193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
The 1555 A to G substitution in mitochondrial 12S A‐site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G‐mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read‐through of mtDNA‐encoded MT‐CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knock‐in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noise‐induced hearing damage and anxiety‐related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stress‐related behavioral and physiological adaptations.
Collapse
Affiliation(s)
- Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Ann-Kristina Fritz
- Anatomisches Institut, Universität Zürich, Zürich, Switzerland.,Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zürich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Naoki Oishi
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Karen Schmitt
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Pietro Freihofer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | | | - Björn Oettinghaus
- Neuro- und Ophthalmopathologie, Universitätsspital Basel, Basel, Switzerland
| | - Stephan Frank
- Neuro- und Ophthalmopathologie, Universitätsspital Basel, Basel, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, Zürich, Switzerland
| | - Eric Westhof
- Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - David Wolfer
- Anatomisches Institut, Universität Zürich, Zürich, Switzerland.,Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zürich, Switzerland
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Osterman IA, Khabibullina NF, Komarova ES, Kasatsky P, Kartsev VG, Bogdanov AA, Dontsova OA, Konevega AL, Sergiev PV, Polikanov YS. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Nucleic Acids Res 2017; 45:7507-7514. [PMID: 28505372 PMCID: PMC5499580 DOI: 10.1093/nar/gkx413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.
Collapse
Affiliation(s)
- Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ekaterina S Komarova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow 119992, Russia
| | - Pavel Kasatsky
- Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Gatchina 188300, Russia
| | | | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Gatchina 188300, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow region 143025, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Liu J, Bruhn DF, Lee RB, Zheng Z, Janusic T, Scherbakov D, Scherman MS, Boshoff HI, Das S, Rakesh, Waidyarachchi SL, Brewer TA, Gracia B, Yang L, Bollinger J, Robertson GT, Meibohm B, Lenaerts AJ, Ainsa J, Böttger EC, Lee RE. Structure-Activity Relationships of Spectinamide Antituberculosis Agents: A Dissection of Ribosomal Inhibition and Native Efflux Avoidance Contributions. ACS Infect Dis 2017; 3:72-88. [PMID: 28081607 DOI: 10.1021/acsinfecdis.6b00158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spectinamides are a novel class of antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Their antitubercular activity is derived from both ribosomal affinity and their ability to overcome intrinsic efflux mediated by the Mycobacterium tuberculosis Rv1258c efflux pump. This study explores the structure-activity relationships through analysis of 50 targeted spectinamides. Compounds are evaluated for ribosomal translational inhibition, MIC activity in Rv1258c efflux pump deficient and wild type tuberculosis strains, and efficacy in an acute model of tuberculosis infection. The results of this study show a narrow structure-activity relationship, consistent with a tight ribosome-binding pocket and strict structural requirements to overcome native efflux. Rationalization of ribosomal inhibition data using molecular dynamics simulations showed stable complex formation for halogenated spectinamides consistent with the long post antibiotic effects observed. The lead spectinamides identified in this study demonstrated potent MIC activity against MDR and XDR tuberculosis and had desirable antitubercular class specific features including low protein binding, low microsomal metabolism, no cytotoxicity, and significant reductions in bacterial burdens in the lungs of mice infected with M. tuberculosis. The structure-activity relationships detailed here emphasize the need to examine efflux-mediated resistance in the design of antituberculosis drugs and demonstrate that it is possible to overcome intrinsic efflux with synthetic modification. The ability to understand the structure requirements for this class has produced a variety of new substituted spectinamides, which may provide useful alternative candidates and promote the further development of this class.
Collapse
Affiliation(s)
- Jiuyu Liu
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - David F. Bruhn
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Robin B. Lee
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Zhong Zheng
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Tanja Janusic
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Dimitri Scherbakov
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Michael S. Scherman
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Helena I. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute for Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, Bethesda, Maryland 20814, United States
| | - Sourav Das
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Rakesh
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Samanthi L. Waidyarachchi
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Tiffany A. Brewer
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
- Department
of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Begoña Gracia
- Departamento
de Microbiologı́a, Medicina Preventiva y Salud Pública,
and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 50009 Zaragoza, Spain
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - John Bollinger
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Gregory T. Robertson
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Bernd Meibohm
- Department
of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Anne J. Lenaerts
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Jose Ainsa
- Departamento
de Microbiologı́a, Medicina Preventiva y Salud Pública,
and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 50009 Zaragoza, Spain
| | - Erik C. Böttger
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Richard E. Lee
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
5
|
Freihofer P, Akbergenov R, Teo Y, Juskeviciene R, Andersson DI, Böttger EC. Nonmutational compensation of the fitness cost of antibiotic resistance in mycobacteria by overexpression of tlyA rRNA methylase. RNA (NEW YORK, N.Y.) 2016; 22:1836-1843. [PMID: 27698071 PMCID: PMC5113204 DOI: 10.1261/rna.057257.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/31/2016] [Indexed: 05/08/2023]
Abstract
Several studies over the last few decades have shown that antibiotic resistance mechanisms frequently confer a fitness cost and that these costs can be genetically ameliorated by intra- or extragenic second-site mutations, often without loss of resistance. Another, much less studied potential mechanism by which the fitness cost of antibiotic resistance could be reduced is via a regulatory response where the deleterious effect of the resistance mechanism is lowered by a physiological alteration that buffers the mutational effect. In mycobacteria, resistance to the clinically used tuberactinomycin antibiotic capreomycin involves loss-of-function mutations in rRNA methylase TlyA or point mutations in 16S rRNA (in particular the A1408G mutation). Both of these alterations result in resistance by reducing drug binding to the ribosome. Here we show that alterations of tlyA gene expression affect both antibiotic drug susceptibility and fitness cost of drug resistance. In particular, we demonstrate that the common resistance mutation A1408G is accompanied by a physiological change that involves increased expression of the tlyA gene. This gene encodes an enzyme that methylates neighboring 16S rRNA position C1409, and as a result of increased TlyA expression the fitness cost of the A1408G mutation is significantly reduced. Our findings suggest that in mycobacteria, a nonmutational mechanism (i.e., gene regulatory) can restore fitness to genetically resistant bacteria. Our results also point to a new and clinically relevant treatment strategy to combat evolution of resistance in multidrug-resistant tuberculosis. Thus, by utilizing antagonistic antibiotic interactions, resistance evolution could be reduced.
Collapse
Affiliation(s)
- Pietro Freihofer
- Institute of Medical Microbiology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Rashid Akbergenov
- Institute of Medical Microbiology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Youjin Teo
- Institute of Medical Microbiology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Reda Juskeviciene
- Institute of Medical Microbiology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, CH-8006 Zurich, Switzerland
| |
Collapse
|
6
|
Srivastava A, Asahara H, Zhang M, Zhang W, Liu H, Cui S, Jin Q, Chong S. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli. PLoS One 2016; 11:e0162020. [PMID: 27564552 PMCID: PMC5001721 DOI: 10.1371/journal.pone.0162020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis), purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis), and an aminoacyl-tRNA synthetase (AARS) mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens.
Collapse
Affiliation(s)
- Aashish Srivastava
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, United States of America
| | - Haruichi Asahara
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, United States of America
| | - Meng Zhang
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Weijia Zhang
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Haiying Liu
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Sheng Cui
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Qi Jin
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Shaorong Chong
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, United States of America
- * E-mail:
| |
Collapse
|
7
|
Prisic S, Hwang H, Dow A, Barnaby O, Pan TS, Lonzanida JA, Chazin WJ, Steen H, Husson RN. Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis. Mol Microbiol 2015; 97:263-80. [PMID: 25858183 DOI: 10.1111/mmi.13022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis genome encodes five putative 'alternative' ribosomal proteins whose expression is repressed at high Zn(2+) concentration. Each alternative protein has a primary homologue that is predicted to bind Zn(2+). We hypothesized that zinc triggers a switch between these paired homologous proteins and therefore chose one of these pairs, S18-1/S18-2, to study mechanisms of the predicted competition for their incorporation into ribosomes. Our data show that Zn(2+)-depletion causes accumulation of both S18-2 mRNA and protein. In contrast, S18-1 mRNA levels are unchanged to slightly elevated under Zn(2+)-limited conditions. However, the amount of S18-1 protein is markedly decreased. We further demonstrate that both S18 proteins interact with ribosomal protein S6, a committed step in ribosome biogenesis. Zn(2+) is absolutely required for the S18-1/S6 interaction while it is dispensable for S18-2/S6 dimer formation. These data suggest a model in which S18-1 is the dominant ribosome constituent in high zinc conditions, e.g. inside of phagosomes, but that it can be replaced by S18-2 when zinc is deficient, e.g. in the extracellular milieu. Consequently, Zn(2+)-depletion may serve as a signal for building alternative ribosomes when M. tuberculosis is released from macrophages, to allow survival in the extracellular environment.
Collapse
Affiliation(s)
- Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA.,Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Hyonson Hwang
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Allexa Dow
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Omar Barnaby
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Tenny S Pan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | | | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh, Waidyarachchi SL, Sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Böttger EC, Lenaerts AJ. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 2014; 20:152-158. [PMID: 24464186 PMCID: PMC3972818 DOI: 10.1038/nm.3458] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross resistance with existing tuberculosis therapeutics, activity against multidrug-resistant (MDR) and extensively drug-resistant tuberculosis and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage-induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target-based tuberculosis drug discovery.
Collapse
Affiliation(s)
- Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Pavan K Vaddady
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhong Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jianjun Qi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dora B Madhura
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chetan Rathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashit Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Cristina Villellas
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Samanthi L Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dianqing Sun
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael R McNeil
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Jose A Ainsa
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 2014; 58:2038-44. [PMID: 24449778 DOI: 10.1128/aac.02394-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.
Collapse
|
10
|
Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, Boukari H, Patak R, Dubbaka SR, Lang K, Meyer M, Akbergenov R, Freihofer P, Vaddi S, Thommes P, Ramakrishnan V, Vasella A, Böttger EC. 4'-O-substitutions determine selectivity of aminoglycoside antibiotics. Nat Commun 2014; 5:3112. [PMID: 24473108 PMCID: PMC3942853 DOI: 10.1038/ncomms4112] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/16/2013] [Indexed: 02/04/2023] Open
Abstract
Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
Collapse
Affiliation(s)
- Déborah Perez-Fernandez
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
- These authors contributed equally to this work
| | - Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
- These authors contributed equally to this work
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ng Chyan Leong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- These authors contributed equally to this work
| | - Iwona Kudyba
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashmi Patak
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Srinivas Reddy Dubbaka
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Kathrin Lang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Martin Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Pietro Freihofer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Swapna Vaddi
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - Pia Thommes
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| |
Collapse
|
11
|
Davydov II, Wohlgemuth I, Artamonova II, Urlaub H, Tonevitsky AG, Rodnina MV. Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat Commun 2013; 4:1387. [DOI: 10.1038/ncomms2373] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
|
12
|
Salian S, Matt T, Akbergenov R, Harish S, Meyer M, Duscha S, Shcherbakov D, Bernet BB, Vasella A, Westhof E, Böttger EC. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups. Antimicrob Agents Chemother 2012; 56:6104-8. [PMID: 22948879 PMCID: PMC3497201 DOI: 10.1128/aac.01326-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/26/2012] [Indexed: 11/20/2022] Open
Abstract
The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.
Collapse
Affiliation(s)
- Sumantha Salian
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Shinde Harish
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Martin Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Bruno B. Bernet
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique, Strasbourg, France
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Identification of antituberculosis agents that target ribosomal protein interactions using a yeast two-hybrid system. Proc Natl Acad Sci U S A 2012; 109:17412-7. [PMID: 23045703 DOI: 10.1073/pnas.1110271109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis kills about 2 million people annually and antibiotic resistance is a cause of increased mortality. Therefore, development of new antituberculosis drugs is urgent for the control of widespread tuberculosis infections. For this purpose, we performed an innovative screen to identify new agents that disrupt the function of ribosomes in M. tuberculosis. Two bacterial ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors (EFs) during translation. Therefore, the L12-L10 interaction should be essential for ribosomal function and protein synthesis. We established a yeast two-hybrid system to identify small molecules that block the interaction between L12 and L10 proteins from M. tuberculosis. Using this system, we identified two compounds T766 and T054 that show strong bactericidal activity against tuberculosis but with low toxicity to mice and other bacterial strains. Moreover, using surface plasmon resonance (SPR) assay, we have demonstrated that these compounds bind specifically to L12 to disrupt L12-L10 interaction. Overproduction of L12 protein, but not L10, lowers the antibacterial activity of T766 and T054, indicating that the ribosome is likely the cellular target. Therefore, our data demonstrate that this yeast two-hybrid system is a useful tool to identify unique antituberculosis agents targeting the ribosomal protein L12-L10 interaction.
Collapse
|
14
|
Shasmal M, Sengupta J. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features. PLoS One 2012; 7:e31742. [PMID: 22384065 PMCID: PMC3286452 DOI: 10.1371/journal.pone.0031742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/12/2012] [Indexed: 12/25/2022] Open
Abstract
Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.
Collapse
Affiliation(s)
| | - Jayati Sengupta
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
15
|
Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob Agents Chemother 2011; 55:4712-7. [PMID: 21768509 DOI: 10.1128/aac.00628-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin and the structurally similar compound viomycin are cyclic peptide antibiotics which are particularly active against Mycobacterium tuberculosis, including multidrug resistant strains. Both antibiotics bind across the ribosomal interface involving 23S rRNA helix 69 (H69) and 16S rRNA helix 44 (h44). The binding site of tuberactinomycins in h44 partially overlaps with that of aminoglycosides, and they share with these drugs the side effect of irreversible hearing loss. Here we studied the drug target interaction on ribosomes modified by site-directed mutagenesis. We identified rRNA residues in h44 as the main determinants of phylogenetic selectivity, predict compensatory evolution to impact future resistance development, and propose mechanisms involved in tuberactinomycin ototoxicity, which may enable the development of improved, less-toxic derivatives.
Collapse
|
16
|
Garcia MJ, Nuñez MC, Cox RA. Measurement of the rates of synthesis of three components of ribosomes of Mycobacterium fortuitum: a theoretical approach to qRT-PCR experimentation. PLoS One 2010; 5:e11575. [PMID: 20644643 PMCID: PMC2904383 DOI: 10.1371/journal.pone.0011575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 06/10/2010] [Indexed: 11/19/2022] Open
Abstract
Background Except for the ribosomal protein L12 (rplL), ribosomal proteins are present as one copy per ribosome; L12 (rplL) is unusual because it is present as four copies per ribosome. Thus, the strategies used by Mycobacterium fortuitum to regulate ribosomal protein synthesis were investigated, including evaluations of the rates of chain elongations of 16S rRNA, rplL and ribosomal protein S12 (rpsL). Methodology RNA was isolated from cell cultures and cDNA was prepared. The numbers of cDNA copies of 16S rRNA, precursor-16S rRNA and transcripts of rpsL and rplL were quantified by qRT-PCR and then related to the rates of 16S rRNA, rpsL and rplL chain elongations by means of a mathematical framework for coupled transcription/translation. Principal Findings The rates of synthesis of 16S rRNA, rpsL and rplL respectively were found to be approximately 50×103 nucleotides h−1, 1.6×103 amino acid residues h−1 and 3.4×103 amino acid residues h−1. The number of transcripts of rplL was approximately twice that of rpsL. These data account for the presence of one copy of rpsL and four copies of rplL per ribosome, and reveal that the rate of M. fortuitum ribosome synthesis was closer to that of M. tuberculosis than to E. coli. Except for rplJ, the elongation rate obtained for rpsL was inferred to be appropriate for all other proteins present as one copy per ribosome. Significance The results obtained provide the basis for a comprehensive view of the kinetics of ribosome synthesis, and of the ways that bacterial cells utilize genes encoding ribosomal proteins. The methodology also applies to proteins involved in transcription, energy generation and to bacterial proteins in general. The method proposed for measuring the fidelity of cDNA preparations is intrinsically much more sensitive than procedures that measure the integrity of 16S rRNA.
Collapse
Affiliation(s)
- Maria Jesus Garcia
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma, Madrid, Spain
| | - Maria Carmen Nuñez
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma, Madrid, Spain
| | - Robert Ashley Cox
- Division of Mycobacterial Research, National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Seshadri A, Singh NS, Varshney U. Recycling of the posttermination complexes of Mycobacterium smegmatis and Escherichia coli ribosomes using heterologous factors. J Mol Biol 2010; 401:854-65. [PMID: 20561528 DOI: 10.1016/j.jmb.2010.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/19/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
Abstract
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule.
Collapse
Affiliation(s)
- Anuradha Seshadri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
18
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|