1
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
T. G. S, Siddiqui SA, Dubey KD. Unraveling key interactions and the mechanism of demethylation during hAGT-mediated DNA repair via simulations. Front Mol Biosci 2022; 9:975046. [PMID: 36188219 PMCID: PMC9515978 DOI: 10.3389/fmolb.2022.975046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alkylating agents pose the biggest threat to the genomic integrity of cells by damaging DNA bases through regular alkylation. Such damages are repaired by several automated types of machinery inside the cell. O6-alkylguanine-DNA alkyltransferase (AGT) is an enzyme that performs the direct repair of an alkylated guanine base by transferring the alkyl group to a cysteine residue. In the present study, using extensive MD simulations and hybrid QM/MM calculations, we have investigated the key interactions between the DNA lesion and the hAGT enzyme and elucidated the mechanisms of the demethylation of the guanine base. Our simulation shows that the DNA lesion is electrostatically stabilized by the enzyme and the Arg135 of hAGT enzyme provides the main driving force to flip the damaged base into the enzyme. The QM/MM calculations show demethylation of the damaged base as a three-step process in a thermodynamically feasible and irreversible manner. Our calculations show that the final product forms via Tyr114 in a facile way in contrast to the previously proposed Lys-mediated route.
Collapse
Affiliation(s)
- Shruti T. G.
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Uttar Pradesh, India
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Uttar Pradesh, India
| |
Collapse
|
3
|
Chen X, Bradley NP, Lu W, Wahl KL, Zhang M, Yuan H, Hou XF, Eichman B, Tang GL. Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance. Nucleic Acids Res 2022; 50:2417-2430. [PMID: 35191495 PMCID: PMC8934636 DOI: 10.1093/nar/gkac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases-TxnU2, TxnU4, LldU1 and LldU5-important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.
Collapse
Affiliation(s)
- Xiaorong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Wei Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Katherine L Wahl
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Yuan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Gong-Li Tang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Koirala RP, Pokhrel R, Baral P, Tiwari PB, Chapagain PP, Adhikari NP. Structural insights into the repair mechanism of AGT for methyl-induced DNA damage. Biol Chem 2021; 402:1203-1211. [PMID: 34192828 DOI: 10.1515/hsz-2021-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023]
Abstract
Methylation induced DNA base-pairing damage is one of the major causes of cancer. O6-alkylguanine-DNA alkyltransferase (AGT) is considered a demethylation agent of the methylated DNA. Structural investigations with thermodynamic properties of the AGT-DNA complex are still lacking. In this report, we modeled two catalytic states of AGT-DNA interactions and an AGT-DNA covalent complex and explored structural features using molecular dynamics (MD) simulations. We utilized the umbrella sampling method to investigate the changes in the free energy of the interactions in two different AGT-DNA catalytic states, one with methylated GUA in DNA and the other with methylated CYS145 in AGT. These non-covalent complexes represent the pre- and post-repair complexes. Therefore, our study encompasses the process of recognition, complex formation, and separation of the AGT and the damaged (methylated) DNA base. We believe that the use of parameters for the amino acid and nucleotide modifications and for the protein-DNA covalent bond will allow investigations of the DNA repair mechanism as well as the exploration of cancer therapeutics targeting the AGT-DNA complexes at various functional states as well as explorations via stabilization of the complex.
Collapse
Affiliation(s)
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Prabin Baral
- Department of Physics, Florida International University, Miami, FL, USA
| | | | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | |
Collapse
|
5
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
6
|
Abdu K, Aiertza MK, Wilkinson OJ, Senthong P, Craggs TD, Povey AC, Margison GP, Williams DM. Synthesis of oligodeoxyribonucleotides containing a tricyclic thio analogue of O6-methylguanine and their recognition by MGMT and Atl1. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1108-1121. [PMID: 32449465 DOI: 10.1080/15257770.2020.1764971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Promutagenic O6-alkylguanine adducts in DNA are repaired in humans by O6-methylguanine-DNA-methyltransferase (MGMT) in an irreversible reaction. Here we describe the synthesis of a phosphoramidite that allows the preparation of oligodeoxyribonucleotides (ODNs) containing a novel tricyclic thio analogue of O6-methylguanine in which the third ring bridges the 6-thio group and C7 of a 7-deazapurine. These ODNs are very poor substrates for MGMT and poorly recognised by the alkyltransferase-like protein, Atl1. Examination of the active sites of both MGMT and Atl1 suggest large steric clashes hindering binding of the analogue. Such analogues, if mutagenic, are likely to be highly toxic.
Collapse
Affiliation(s)
- Kabir Abdu
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Kano, Nigeria
| | - Miren K Aiertza
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Oliver J Wilkinson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | | | - Timothy D Craggs
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Andrew C Povey
- Centre of Epidemiology, Faculty of Biology, Medicine and Health
| | | | - David M Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Copp W, O'Flaherty DK, Wilds CJ. Covalent capture of OGT's active site using engineered human-E. coli chimera and intrastrand DNA cross-links. Org Biomol Chem 2018; 16:9053-9058. [PMID: 30430154 DOI: 10.1039/c8ob02453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B1R6, Canada.
| | | | | |
Collapse
|
8
|
Sacre L, O'Flaherty DK, Archambault P, Copp W, Peslherbe GH, Muchall HM, Wilds CJ. O 4 -Alkylated-2-Deoxyuridine Repair by O 6 -Alkylguanine DNA Alkyltransferase is Augmented by a C5-Fluorine Modification. Chembiochem 2018; 19:575-582. [PMID: 29243336 DOI: 10.1002/cbic.201700660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/10/2022]
Abstract
Oligonucleotides containing various adducts, including ethyl, benzyl, 4-hydroxybutyl and 7-hydroxyheptyl groups, at the O4 atom of 5-fluoro-O4 -alkyl-2'-deoxyuridine were prepared by solid-phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5-fluoro-2'-deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B-form DNA structure. O6 -Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5-fluoro-O4 -benzyl-2'-deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4 -ethyl and benzyl adducts of 5-fluoro-2-deoxyuridine. Computational assessment of N1-methyl analogues of the O4 -alkylated nucleobases revealed that the C5-fluorine modification had an influence on reducing the electron density of the O4 -Cα bond, relative to thymine (C5-methyl) and uracil (C5-hydrogen). These results reveal the positive influence of the C5-fluorine atom on the repair of larger O4 -alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.
Collapse
Affiliation(s)
- Lauralicia Sacre
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Derek K O'Flaherty
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada.,Present address: Howard Hughes Medical Institute, Department of Molecular Biology and, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Philippe Archambault
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - William Copp
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Heidi M Muchall
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
9
|
O'Flaherty DK, Wilds CJ. Site-specific covalent capture of human O 6-alkylguanine-DNA-alkyltransferase using single-stranded intrastrand cross-linked DNA. Org Biomol Chem 2018; 15:189-196. [PMID: 27886318 DOI: 10.1039/c6ob02246d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A methodology is reported to conjugate human O6-alkylguanine-DNA-alkyltransferase (hAGT) to the 3'-end of DNA in excellent yields with short reaction times by using intrastrand cross-linked (IaCL) DNA probes. This strategy exploited the substrate specificity of hAGT to generate the desired DNA-protein covalent complex. IaCL DNA linking two thymidine residues, or linking a thymidine residue to a 2'-deoxyguanosine residue (either in a 5'→3' or 3'→5' fashion), lacking a phosphodiester linkage at the cross-linked site, were prepared using a phosphoramidite strategy followed by solid-phase synthesis. All duplexes containing the model IaCL displayed a reduction in thermal stability relative to unmodified control duplexes. The O4-thymidine-alkylene-O4-thymidine and the (5'→3') O6-2'-deoxyguanosine-alkylene-O4-thymidine IaCL DNA adducts were not repaired by any of the AGTs evaluated (human AGT and Escherichia coli homologues, OGT and Ada-C). The (5'→3') O4-thymidine-alkylene-O6-2'-deoxyguanosine IaCL DNA containing a butylene or heptylene tethers were efficiently repaired by the human variant, whereas Ada-C was capable of modestly repairing the heptylene IaCL adduct. The IaCL strategy has expanded the toolbox for hAGT conjugation to DNA strands, without requiring the presence of a complementary DNA sequence. Finally, hAGT was functionalized with a fluorescently-labelled DNA sequence to demonstrate the applicability of this conjugation method.
Collapse
Affiliation(s)
- D K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B1R6, Canada.
| | - C J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B1R6, Canada.
| |
Collapse
|
10
|
O'Flaherty DK, Wilds CJ. AGT Activity Towards Intrastrand Crosslinked DNA is Modulated by the Alkylene Linker. Chembiochem 2017; 18:2351-2357. [PMID: 28980757 DOI: 10.1002/cbic.201700450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/12/2022]
Abstract
DNA oligomers containing dimethylene and trimethylene intrastrand crosslinks (IaCLs) between the O4 and O6 atoms of neighboring thymidine (T) and 2'-deoxyguanosine (dG) residues were prepared by solid-phase synthesis. UV thermal denaturation (Tm ) experiments revealed that these IaCLs had a destabilizing effect on the DNA duplex relative to the control. Circular dichroism spectroscopy suggested these IaCLs induced minimal structural distortions. Susceptibility to dealkylation by reaction with various O6 -alkylguanine DNA alkyltransferases (AGTs) from human and Escherichia coli was evaluated. It was revealed that only human AGT displayed activity towards the IaCL DNA, with reduced efficiency as the IaCL shortened (from four to two methylene linkages). Changing the site of attachment of the ethylene linkage at the 5'-end of the IaCL to the N3 atom of T had minimal influence on duplex stability and structure, and was refractory to AGT activity.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University Montreal, 7141 Sherbrooke Street W., Montreal, Quebec, H4B 1R6, Canada.,Present address: Howard Hughes Medical Institute, Department of Molecular Biology and, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University Montreal, 7141 Sherbrooke Street W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
11
|
Altering Residue 134 Confers an Increased Substrate Range of Alkylated Nucleosides to the E. coli OGT Protein. Molecules 2017; 22:molecules22111948. [PMID: 29137116 PMCID: PMC6150290 DOI: 10.3390/molecules22111948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/20/2023] Open
Abstract
O6-Alkylguanine-DNA alkyltransferases (AGTs) are proteins responsible for the removal of mutagenic alkyl adducts at the O6-atom of guanine and O4-atom of thymine. In the current study we set out to understand the role of the Ser134 residue in the Escherichia coli AGT variant OGT on substrate discrimination. The S134P mutation in OGT increased the ability of the protein to repair both O6-adducts of guanine and O4-adducts of thymine. However, the S134P variant was unable, like wild-type OGT, to repair an interstrand cross-link (ICL) bridging two O6-atoms of guanine in a DNA duplex. When compared to the human AGT protein (hAGT), the S134P OGT variant displayed reduced activity towards O6-alkylation but a much broader substrate range for O4-alkylation damage reversal. The role of residue 134 in OGT is similar to its function in the human homolog, where Pro140 is crucial in conferring on hAGT the capability to repair large adducts at the O6-position of guanine. Finally, a method to generate a covalent conjugate between hAGT and a model nucleoside using a single-stranded oligonucleotide substrate is demonstrated.
Collapse
|
12
|
Framski G, Goslinski T, Januszczyk P, Golankiewicz B, Ostrowski T. Alkylation of 9-substituted guanine derivatives with α,ω-dihaloalkanes. HETEROATOM CHEMISTRY 2017. [DOI: 10.1002/hc.21399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Grzegorz Framski
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs; Poznan University of Medical Sciences; Poznan Poland
| | - Piotr Januszczyk
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
| | | | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
| |
Collapse
|
13
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1185] [Impact Index Per Article: 148.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
14
|
Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Methods Enzymol 2017; 592:417-455. [PMID: 28668129 DOI: 10.1016/bs.mie.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions.
Collapse
Affiliation(s)
- Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Zamal Ahmed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Susan P Lees-Miller
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
15
|
Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. Structural basis of interstrand cross-link repair by O6-alkylguanine DNA alkyltransferase. Org Biomol Chem 2017; 15:8361-8370. [DOI: 10.1039/c7ob02093g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformation of the alkylene lesion may play a role in interstrand cross-link repair by O6-alkylguanine DNA alkyltransferases.
Collapse
Affiliation(s)
- Alexey Y. Denisov
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Francis P. McManus
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | | - Anne M. Noronha
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | |
Collapse
|
16
|
O'Flaherty DK, Wilds CJ. Preparation of Intrastrand {G}O(6) -Alkylene-O(6) {G} Cross-Linked Oligonucleotides. ACTA ACUST UNITED AC 2016; 66:5.17.1-5.17.24. [PMID: 27584704 DOI: 10.1002/cpnc.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes the preparation O(6) -2'-deoxyguanosine-butylene-O(6) -2'-deoxyguanosine dimer phosphoramidites and precursors for incorporation of site-specific intrastrand cross-links (IaCL) into DNA oligonucleotides. Protected 2'-deoxyguanosine dimers are produced using the Mitsunobu reaction. IaCL DNA containing the intradimer phosphodiester are first chemically phosphorylated, followed by a ring-closing reaction using the condensing reagent 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole. Phosphoramidites are incorporated into oligonucleotides by solid-phase synthesis and standard deprotection and cleavage protocols are employed. This approach allows for the preparation of IaCL DNA substrates in amounts and purity amenable for biophysical characterization, and biochemical studies as substrates to investigate DNA repair and bypass pathways. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
17
|
Ray D, Kidane D. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer. J Cancer 2016; 7:1421-30. [PMID: 27471558 PMCID: PMC4964126 DOI: 10.7150/jca.15480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota are required for host nutrition, energy balance, and regulating immune homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted (dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by base excision repair (BER), however, the role of this altered function of BER, as well as microbiota-mediated genomic instability and colon cancer development, is still poorly understood. In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of dysbiotic microbiota mediated genomic instability and colon cancer.
Collapse
Affiliation(s)
- Debolina Ray
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
18
|
O'Flaherty DK, Wilds CJ. O
6
-Alkylguanine DNA Alkyltransferase Repair Activity Towards Intrastrand Cross-Linked DNA is Influenced by the Internucleotide Linkage. Chem Asian J 2016; 11:576-83. [PMID: 26692563 DOI: 10.1002/asia.201501253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Derek K. O'Flaherty
- Department of Chemistry&Biochemistry; Concordia University; 7141 Sherbrooke St. West Montréal Québec (Canada
| | - Christopher J. Wilds
- Department of Chemistry&Biochemistry; Concordia University; 7141 Sherbrooke St. West Montréal Québec (Canada
| |
Collapse
|
19
|
Kusano S, Ishiyama S, Lam SL, Mashima T, Katahira M, Miyamoto K, Aida M, Nagatsugi F. Crosslinking reactions of 4-amino-6-oxo-2-vinylpyrimidine with guanine derivatives and structural analysis of the adducts. Nucleic Acids Res 2015; 43:7717-30. [PMID: 26245348 PMCID: PMC4652779 DOI: 10.1093/nar/gkv797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/28/2015] [Indexed: 12/28/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion.
Collapse
Affiliation(s)
- Shuhei Kusano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Shogo Ishiyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tsukasa Mashima
- Institute of Advanced Energy, Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kengo Miyamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University,1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Department of Chemistry, Graduate School of Science, Hiroshima University,1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| |
Collapse
|
20
|
O'Flaherty DK, Wilds CJ. Synthesis, Characterization, and Repair of a Flexible O(6) -2'-Deoxyguanosine-alkylene-O(6) -2'-deoxyguanosine Intrastrand Cross-Link. Chemistry 2015; 21:10522-9. [PMID: 26075346 DOI: 10.1002/chem.201501103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/19/2022]
Abstract
Oligonucleotides tethered by an alkylene linkage between the O(6) -atoms of two consecutive 2'-deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross-linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene- and heptylene-linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B-form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O(6) -alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada-C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec (Canada)
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec (Canada).
| |
Collapse
|
21
|
McManus FP, Wilds CJ. O(6) -alkylguanine-DNA alkyltransferase-mediated repair of O(4) -alkylated 2'-deoxyuridines. Chembiochem 2014; 15:1966-77. [PMID: 25087488 DOI: 10.1002/cbic.201402169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/06/2022]
Abstract
O(6) -Alkylguanine-DNA alkyltransferases (AGTs) are responsible for the removal of O(6) -alkyl 2'-deoxyguanosine (dG) and O(4) -alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O(6) -alkylguanine-DNA-alkyltransferase) protein, which can repair a range of O(4) -alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O(4) -alkyl 2'-deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada-C and OGT), human AGT, and an OGT/hAGT chimera to remove O(4) -methyl and larger adducts (4-hydroxybutyl and 7-hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O(4) -methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O(4) atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct-containing oligonucleotides and the amounts of repair measured.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6 (Canada)
| | | |
Collapse
|
22
|
Chowdhury G, Cho SH, Pegg AE, Guengerich FP. Detection and Characterization of 1,2-Dibromoethane-Derived DNA Crosslinks Formed with O6-Alkylguanine-DNA Alkyltransferase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Chowdhury G, Cho SH, Pegg AE, Guengerich FP. Detection and characterization of 1,2-dibromoethane-derived DNA crosslinks formed with O(6) -alkylguanine-DNA alkyltransferase. Angew Chem Int Ed Engl 2013; 52:12879-82. [PMID: 24130045 DOI: 10.1002/anie.201307580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Indexed: 01/05/2023]
Abstract
A combination of chemical modifications and LC-tandem MS was used for the structure elucidation of various ethylene crosslinks of DNA with O(6) -alkylguanine-DNA alkyltransferase (AGT, see picture). The elucidation of the chemical structures of such DNA-protein crosslinks is necessary to understand mechanisms of mutagenesis.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Department of Biochemistry, Vanderbilt University School of Medicine, 638 RRB, 2220 Pierce Ave., Nashville, TN 37232 (USA)
| | | | | | | |
Collapse
|
24
|
Kotsarenko KV, Lylo VV, Macewicz LL, Babenko LA, Kornelyuk AI, Ruban TA, Lukash LL. Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Fang Q. DNA-protein crosslinks processed by nucleotide excision repair and homologous recombination with base and strand preference in E. coli model system. Mutat Res 2013; 741-742:1-10. [PMID: 23500083 DOI: 10.1016/j.mrfmmm.2013.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/24/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Bis-electrophiles including dibromoethane and epibromohydrin can react with O(6)-alkylguanine-DNA alkyltransferase (AGT) and form AGT-DNA crosslinks in vitro and in vivo. The presence of human AGT (hAGT) paradoxically increases the mutagenicity and cytotoxicity of bis-electrophiles in cells. Here we establish a bacterial system to study the repair mechanism and cellular responses to DNA-protein crosslinks (DPCs) in vivo. Results show that both nucleotide excision repair (NER) and homologous recombination (HR) pathways can process hAGT-DNA crosslinks with HR playing a dominant role. Mutation spectra show that HR has no strand preference but NER favors processing of the DPCs in the transcribed strand; UvrA, UvrB and Mfd can interfere with small size DPCs but only UvrA can interfere with large size DPCs in the transcribed strand processed by HR. Further, we found that DPCs at TA deoxynucleotide sites are very inefficiently processed by NER and the presence of NER can interfere with these DNA lesions processed by HR. These data indicate that NER and HR can process DPCs cooperatively and competitively and NER processes DPCs with base and strand preference. Therefore, the formation of hAGT-DNA crosslinks can be a plausible and specific system to study the repair mechanism and effects of DPCs precisely in vivo.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
26
|
McManus FP, Khaira A, Noronha AM, Wilds CJ. Preparation of covalently linked complexes between DNA and O(6)-alkylguanine-DNA alkyltransferase using interstrand cross-linked DNA. Bioconjug Chem 2013; 24:224-33. [PMID: 23347328 DOI: 10.1021/bc300553u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O(6)-alkylguanine-DNA alkyltransferases (AGT) are responsible for the removal of alkylation at both the O(6) atom of guanine and O(4) atom of thymine. AGT homologues show vast substrate differences with respect to the size of the adduct and which alkylated atoms they can restore. The human AGT (hAGT) has poor capabilities for removal of methylation at the O(4) atom of thymidine, which is not the case in most homologues. No structural data are available to explain this poor hAGT repair. We prepared and characterized O(6)G-butylene-O(4)T (XLGT4) and O(6)G-heptylene-O(4)T (XLGT7) interstrand cross-linked (ICL) DNA as probes for hAGT and the Escherichia coli homologues, OGT and Ada-C, for the formation of DNA-AGT covalent complexes. XLGT7 reacted only with hAGT and did so with a cross-linking efficiency of 25%, while XLGT4 was inert to all AGT tested. The hAGT mediated repair of XLGT7 occurred slowly, on the order of hours as opposed to the repair of O(6)-methyl-2'-deoxyguanosine which requires seconds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the repair reaction revealed the formation of a covalent complex with an observed migration in accordance with a DNA-AGT complex. The identity of this covalent complex, as determined by mass spectrometry, was composed of a heptamethylene bridge between the O(4) atom of thymidine (in an 11-mer DNA strand) to residue Cys145 of hAGT. This procedure can be applied to produce well-defined covalent complexes between AGT with DNA.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6
| | | | | | | |
Collapse
|
27
|
Abstract
Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Collapse
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
28
|
McManus FP, Wilds CJ. Engineering of a O6-alkylguanine-DNA alkyltransferase chimera and repair of O4-alkyl thymidine adducts and O6-alkylene-2′-deoxyguanosine cross-linked DNA. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20075a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. O4-Alkyl-2′-deoxythymidine cross-linked DNA to probe recognition and repair by O6-alkylguanine DNA alkyltransferases. Org Biomol Chem 2012; 10:7078-90. [DOI: 10.1039/c2ob25705j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Wilds CJ, Booth JDM, Noronha AM. Synthesis of building blocks and oligonucleotides with {G}O⁶-alkyl-O⁶{G} cross-links. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2011; Chapter 5:Unit5.9. [PMID: 21400706 DOI: 10.1002/0471142700.nc0509s44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes two methods for preparing oligonucleotides containing an O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand cross-link by a solid-phase synthesis approach. Depending on the desired orientation of the cross-link in the DNA duplex, either a bis- or a mono-phosphoramidite synthesis strategy can be employed. Both procedures require the preparation of a protected 2'-deoxyguanosine-containing dimer where the two nucleosides are attached at the O(6)-atoms by an alkyl linker. This linker is introduced as a protected diol using two successive Mitsunobu reactions to produce a cross-linked amidite that is incorporated into an oligonucleotide via solid-phase synthesis. The use of a protected diol lends versatility to this method, as cross-links of variable chain length may be prepared. The bis-phosphoramidite approach is a direct method to preparing the cross-linked duplex, whereas the mono-phosphoramidite strategy requires additional manipulation of the solid support to prepare cross-linked oligonucleotides. Once all synthetic steps are completed, these oligonucleotides can then be removed from the solid support and deprotected, and then purified via ion-exchange HPLC to produce sufficient quantities of substrates that can be used in DNA repair studies.
Collapse
|
31
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 PMCID: PMC3095683 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
32
|
Ono T, Yoshida K, Saotome Y, Sakabe R, Okamoto I, Ono A. Synthesis of covalently linked parallel and antiparallel DNA duplexes containing the metal-mediated base pairs T–Hg(ii)–T and C–Ag(i)–C. Chem Commun (Camb) 2011; 47:1542-4. [DOI: 10.1039/c0cc02028a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Op de Beeck M, Madder A. Unprecedented C-selective interstrand cross-linking through in situ oxidation of furan-modified oligodeoxynucleotides. J Am Chem Soc 2010; 133:796-807. [PMID: 21162525 DOI: 10.1021/ja1048169] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reagents that form interstrand cross-links have been used for a long time in cancer therapy. They covalently link two strands of DNA, thereby blocking transcription. Cross-link repair enzymes, however, can restore the transcription processes, causing resistance to certain anti-cancer drugs. The mechanism of these cross-link repair processes has not yet been fully revealed. One of the obstacles in this study is the lack of sufficient amounts of well-defined, stable, cross-linked duplexes to study the pathways of cross-link repair enzymes. Our group has developed a cross-link strategy where a furan moiety is incorporated into oligodeoxynucleotides (ODNs). These furan-modified nucleic acids can form interstrand cross-links upon selective furan oxidation with N-bromosuccinimide. We here report on the incorporation of the furan moiety at the 2'-position of a uridine through an amido or ureido linker. The resulting modified ODNs display an unprecedented selectivity for cross-linking toward a cytidine opposite the modified residue, forming one specific cross-linked duplex, which could be isolated in good yield. Furthermore, the structure of the formed cross-linked duplexes could be unambiguously characterized.
Collapse
Affiliation(s)
- Marieke Op de Beeck
- Laboratory for Organic and Biomimetic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
34
|
McManus FP, Fang Q, Booth JDM, Noronha AM, Pegg AE, Wilds CJ. Synthesis and characterization of an O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand cross-link in a 5'-GNC motif and repair by human O(6)-alkylguanine-DNA alkyltransferase. Org Biomol Chem 2010; 8:4414-26. [PMID: 20714665 PMCID: PMC3021135 DOI: 10.1039/c0ob00093k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.
Collapse
Affiliation(s)
- Francis P. McManus
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6
| | - Qingming Fang
- Departments of Cellular and Molecular Physiology and Pharmacology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA, USA, 17033
| | - Jason D. M. Booth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6
| | - Anne M. Noronha
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6
| | - Anthony E. Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA, USA, 17033
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, Canada H4B 1R6
| |
Collapse
|
35
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|
36
|
Fang Q, Kanugula S, Tubbs JL, Tainer JA, Pegg AE. Repair of O4-alkylthymine by O6-alkylguanine-DNA alkyltransferases. J Biol Chem 2009; 285:8185-95. [PMID: 20026607 DOI: 10.1074/jbc.m109.045518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O(6)-methylguanine (m(6)G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O(4)-methylthymine (m(4)T) efficiently, the human AGT (hAGT) acts poorly on m(4)T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m(4)T. Construct hAGT-03 (where hAGT sequence -V(149)CSSGAVGN(157)- was replaced with the corresponding Ogt -I(143)GRNGTMTG(151)-) exhibited enhanced m(4)T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N'-nitro-N-nitrosoguanidine and caused a reduction in m(6)G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m(4)T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O(4)-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O(4)-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
37
|
Adams CA, Melikishvili M, Rodgers DW, Rasimas JJ, Pegg AE, Fried MG. Topologies of complexes containing O6-alkylguanine-DNA alkyltransferase and DNA. J Mol Biol 2009; 389:248-63. [PMID: 19358853 PMCID: PMC2736636 DOI: 10.1016/j.jmb.2009.03.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n+3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.
Collapse
Affiliation(s)
- Claire A. Adams
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - David W. Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Joseph J. Rasimas
- Department of Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033
| | - Anthony E. Pegg
- Department of Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033
| | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
38
|
Couvé S, Macé-Aimé G, Rosselli F, Saparbaev MK. The human oxidative DNA glycosylase NEIL1 excises psoralen-induced interstrand DNA cross-links in a three-stranded DNA structure. J Biol Chem 2009; 284:11963-70. [PMID: 19258314 PMCID: PMC2673265 DOI: 10.1074/jbc.m900746200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we have demonstrated that human oxidative DNA glycosylase NEIL1 excises photoactivated psoralen-induced monoadducts but not genuine interstrand cross-links (ICLs) in duplex DNA. It has been postulated that the repair of ICLs in mammalian cells is mainly linked to DNA replication and proceeds via dual incisions in one DNA strand that bracket the cross-linked site. This process, known as "unhooking," enables strand separation and translesion DNA synthesis through the gap, yielding a three-stranded DNA repair intermediate composed of a short unhooked oligomer covalently bound to the duplex. At present, the detailed molecular mechanism of ICL repair in mammalian cells remains unclear. Here, we constructed and characterized three-stranded DNA structures containing a single ICL as substrates for the base excision repair proteins. We show that NEIL1 excises with high efficiency the unhooked ICL fragment within a three-stranded DNA structure. Complete reconstitution of the repair of unhooked ICL shows that it can be processed in a short patch base excision repair pathway. The new substrate specificity of NEIL1 points to a preferential involvement in the replication-associated repair of ICLs. Based on these data, we propose a model for the mechanism of ICL repair in mammalian cells that implicates the DNA glycosylase activity of NEIL1 downstream of Xeroderma Pigmentosum group F/Excision Repair Cross-Complementing 1 endonuclease complex (XPF/ERCC1) and translesion DNA synthesis repair steps. Finally, our data demonstrate that Nei-like proteins from Escherichia coli to human cells can excise bulky unhooked psoralen-induced ICLs via hydrolysis of glycosidic bond between cross-linked base and deoxyribose sugar, thus providing an alternative heuristic solution for the removal of complex DNA lesions.
Collapse
Affiliation(s)
- Sophie Couvé
- Groupe "Réparation de l'ADN," CNRS UMR 8126, F-94805 Villejuif Cedex, France
| | | | | | | |
Collapse
|