1
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Poudel PB, Dhakal D, Magar RT, Parajuli N, Sohng JK. Genome Mining and Genetic Manipulation Reveal New Isofuranonaphthoquinones in Nocardia Species. Int J Mol Sci 2024; 25:8847. [PMID: 39201533 PMCID: PMC11354674 DOI: 10.3390/ijms25168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The identification of specialized metabolites isolated from microorganisms is urgently needed to determine their roles in treating cancer and controlling multidrug-resistant pathogens. Naphthoquinones act as anticancer agents in various types of cancers, but some toxicity indicators have been limited in their appropriate application. In this context, new isofuranonaphthoquinones (ifnq) that are less toxic to humans could be promising lead compounds for developing anticancer drugs. The aim of this study is to identify and characterize novel furanonaphthoquinones (fnqs) from Nocardia sp. CS682 and to evaluate their potential therapeutic applications. Analysis of the genome of Nocardia sp. CS682 revealed the presence of a furanonaphthoquinone (fnq) gene cluster, which displays a similar genetic organization and high nucleotide sequence identity to the ifnq gene cluster from Streptomyces sp. RI-77, a producer of the naphthoquinones JBIR-76 and JBIR-77. In this study, the overexpression of the Streptomyces antibiotic regulatory protein (SARP) in Nocardia sp. CS682DR (nargenicin gene-deleted mutant) explicitly produced new fnqs, namely, NOC-IBR1 and NOC-IBR2. Subsequently, the role of the SARP regulator was confirmed by gene inactivation using CRISPR-Cas9 and complementation studies. Furthermore, antioxidant, antimicrobial, and cytotoxicity assays were performed for the isolated compounds, and it was found that NOC-IBR2 exhibited superior activities to NOC-IBR1. In addition, a flexible methyltransferase substrate, ThnM3, was found to be involved in terminal methylation of NOC-IBR1, which was confirmed by in vitro enzyme assays. Thus, this study supports the importance of genome mining and genome editing approaches for exploring new specialized metabolites in a rare actinomycete called Nocardia.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Niranjan Parajuli
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
3
|
Feng KN, Zhang Y, Zhang M, Yang YL, Liu JK, Pan L, Zeng Y. A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone. Nat Commun 2023; 14:3436. [PMID: 37301868 PMCID: PMC10257657 DOI: 10.1038/s41467-023-39108-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Oxepinone rings represent one of structurally unusual motifs of natural products and the biosynthesis of oxepinones is not fully understood. 1,5-Seco-vibralactone (3) features an oxepinone motif and is a stable metabolite isolated from mycelial cultures of the mushroom Boreostereum vibrans. Cyclization of 3 forms vibralactone (1) whose β-lactone-fused bicyclic core originates from 4-hydroxybenzoate, yet it remains elusive how 4-hydroxybenzoate is converted to 3 especially for the oxepinone ring construction in the biosynthesis of 1. In this work, using activity-guided fractionation together with proteomic analyses, we identify an NADPH/FAD-dependent monooxygenase VibO as the key enzyme performing a crucial ring-expansive oxygenation on the phenol ring to generate the oxepin-2-one structure of 3. The crystal structure of VibO reveals that it forms a dimeric phenol hydroxylase-like architecture featured with a unique substrate-binding pocket adjacent to the bound FAD. Computational modeling and solution studies provide insight into the likely VibO active site geometry, and suggest possible involvement of a flavin-C4a-OO(H) intermediate.
Collapse
Affiliation(s)
- Ke-Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Kong L, Deng Z, You D. Chemistry and biosynthesis of bacterial polycyclic xanthone natural products. Nat Prod Rep 2022; 39:2057-2095. [PMID: 36083257 DOI: 10.1039/d2np00046f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Covering: up to the end of 2021Bacterial polycyclic xanthone natural products (BPXNPs) are a growing family of natural xanthones featuring a pentangular architecture with various modifications to the tricyclic xanthone chromophore. Their structural diversities and various activities have fueled biosynthetic and chemical synthetic studies. Moreover, their more potent activities than the clinically used drugs make them potential candidates for the treatment of diseases. Future unraveling of structure activity relationships (SARs) will provide new options for the (bio)-synthesis of drug analogues with higher activities. This review summarizes the isolation, structural elucidation and biological activities and more importantly, the recent strategies for the microbial biosynthesis and chemical synthesis of BPXNPs. Regarding their biosynthesis, we discuss the recent progress in enzymes that synthesize tricyclic xanthone, the protein candidates for structural moieties (methylene dioxygen bridge and nitrogen heterocycle), tailoring enzymes for methylation and halogenation. The chemical synthesis part summarizes the recent methodology for the division synthesis and coupling construction of achiral molecular skeletons. Ultimately, perspectives on the biosynthetic study of BPXNPs are discussed.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium. Angew Chem Int Ed Engl 2022; 61:e202204545. [PMID: 35403785 PMCID: PMC9324945 DOI: 10.1002/anie.202204545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.
Collapse
Affiliation(s)
- Julia Krumbholz
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
| | - Martin Baunach
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Jonna E. Teikari
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Magdalena M. Rose
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Severin Sasso
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| |
Collapse
|
6
|
Isagulieva AK, Tevyashova AN, Shtil AA. Aureolic Acid-Derived Antibiotics: Prospects for a Biologically Active Class. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Entschlüsselung chemischer Mediatoren zur Regulierung des spezialisierten Stoffwechsels in einem symbiotischen Cyanobakterium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julia Krumbholz
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Keishi Ishida
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
| | - Martin Baunach
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Jonna E. Teikari
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Magdalena M. Rose
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Severin Sasso
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Christian Hertweck
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
- Institut für Mikrobiologie Fakultät für Biowissenschaften Friedrich-Schiller-Universität Jena 07743 Jena Deutschland
| | - Elke Dittmann
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| |
Collapse
|
8
|
Nie QY, Ji ZY, Hu Y, Tang GL. Characterization of Highly Reductive Modification of Tetracycline D-Ring Reveals Enzymatic Conversion of Enone to Alkane. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yu Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, People’s Republic of China
| |
Collapse
|
9
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
10
|
Oh S, Libardo MDJ, Azeeza S, Pauly GT, Roma JSO, Sajid A, Tateishi Y, Duncombe C, Goodwin M, Ioerger TR, Wyatt PG, Ray PC, Gray DW, Boshoff HIM, Barry CE. Structure-Activity Relationships of Pyrazolo[1,5- a]pyrimidin-7(4 H)-ones as Antitubercular Agents. ACS Infect Dis 2021; 7:479-492. [PMID: 33405882 PMCID: PMC7887755 DOI: 10.1021/acsinfecdis.0c00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Pyrazolo[1,5-a]pyrimidin-7(4H)-one was identified through high-throughput whole-cell
screening
as a potential antituberculosis lead. The core of this scaffold has
been identified several times previously and has been associated with
various modes of action against Mycobacterium tuberculosis (Mtb). We explored this scaffold through the synthesis
of a focused library of analogues and identified key features of the
pharmacophore while achieving substantial improvements in antitubercular
activity. Our best hits had low cytotoxicity and showed promising
activity against Mtb within macrophages. The mechanism
of action of these compounds was not related to cell-wall biosynthesis,
isoprene biosynthesis, or iron uptake as has been found for other
compounds sharing this core structure. Resistance to these compounds
was conferred by mutation of a flavin adenine dinucleotide (FAD)-dependent
hydroxylase (Rv1751) that promoted compound catabolism by hydroxylation
from molecular oxygen. Our results highlight the risks of chemical
clustering without establishing mechanistic similarity of chemically
related growth inhibitors.
Collapse
Affiliation(s)
- Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - M. Daben J. Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shaik Azeeza
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary T. Pauly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jose Santinni O. Roma
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andaleeb Sajid
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yoshitaka Tateishi
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Caroline Duncombe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michael Goodwin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Paul G. Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Peter C. Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David W. Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7935, South Africa
| |
Collapse
|
11
|
Kong L, Wang Q, Yang W, Shen J, Li Y, Zheng X, Wang L, Chu Y, Deng Z, Chooi YH, You D. Three Recently Diverging Duplicated Methyltransferases Exhibit Substrate-Dependent Regioselectivity Essential for Xantholipin Biosynthesis. ACS Chem Biol 2020; 15:2107-2115. [PMID: 32649177 DOI: 10.1021/acschembio.0c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polycyclic xanthones are characterized by highly oxygenated, angular hexacyclic frameworks and exhibit diverse biological activities. Although many of them have been isolated and chemically synthesized, the detailed biosynthetic machinery awaits discovery. Recently, xanthone construction in the xantholipin (1) pathway was shown to involve cryptic demethoxylation. This suggested a rationale for the existence of three O-methyltransferase (OMT) genes in the gene cluster, although there are only two O-methyl groups in the structure of 1. Here, in vivo and in vitro analysis have been used to show that the three paralogous OMTs, XanM1-M3, introduce individual methyl groups at specific points in the biosynthetic pathway. Each OMT can to some extent take over the role of the other OMTs, although they exhibit highly substrate-dependent regiospecificity. In addition, phylogenetic analysis suggests their evolution from a common ancestor. Four putative ancestral proteins were constructed, and one of them performed all the functions of XanM1-M3, while the others possessed more limited catalytic functions. The results suggest that a promiscuous common ancestor may have been able to catalyze all three reactions prior to gene duplication and functional divergence. The characterization of XanM1-M3 expands the enzyme inventory for polycyclic xanthone biosynthesis and suggests novel directed evolution approaches to diversifying natural product pathways.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weinan Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jufang Shen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoqing Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Wang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
12
|
Wheeler R, Yu X, Hou C, Mitra P, Chen JM, Herkules F, Ivanov DN, Tsodikov OV, Rohr J. Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis. Angew Chem Int Ed Engl 2020; 59:826-832. [PMID: 31702856 PMCID: PMC6940538 DOI: 10.1002/anie.201910241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/14/2019] [Indexed: 12/23/2022]
Abstract
MtmOIV and MtmW catalyze the final two reactions in the mithramycin (MTM) biosynthetic pathway, the Baeyer-Villiger opening of the fourth ring of premithramycin B (PMB), creating the C3 pentyl side chain, strictly followed by reduction of the distal keto group on the new side chain. Unexpectedly this results in a C2 stereoisomer of mithramycin, iso-mithramycin (iso-MTM). Iso-MTM undergoes a non-enzymatic isomerization to MTM catalyzed by Mg2+ ions. Crystal structures of MtmW and its complexes with co-substrate NADPH and PEG, suggest a catalytic mechanism of MtmW. The structures also show that a tetrameric assembly of this enzyme strikingly resembles the ring-shaped β subunit of a vertebrate ion channel. We show that MtmW and MtmOIV form a complex in the presence of PMB and NADPH, presumably to hand over the unstable MtmOIV product to MtmW, yielding iso-MTM, as a potential self-resistance mechanism against MTM toxicity.
Collapse
Affiliation(s)
- Ryan Wheeler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Xia Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Prithiba Mitra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Frank Herkules
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Dmitri N Ivanov
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
13
|
Wheeler R, Yu X, Hou C, Mitra P, Chen J, Herkules F, Ivanov DN, Tsodikov OV, Rohr J. Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ryan Wheeler
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Xia Yu
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
- Xiangya School of Pharmaceutical SciencesCentral South University Changsha Hunan 410013 P. R. China
| | - Caixia Hou
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Prithiba Mitra
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Jhong‐Min Chen
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Frank Herkules
- Department of BiochemistryUniversity of Texas Health Science Center San Antonio TX 78229 USA
| | - Dmitri N. Ivanov
- Department of BiochemistryUniversity of Texas Health Science Center San Antonio TX 78229 USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Jürgen Rohr
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| |
Collapse
|
14
|
Liu LL, Liu HF, Gao HH, Yang ZZ, Feng XL, Gao JM, Zhao JB. Genome-based analysis of the type II PKS biosynthesis pathway of xanthones in Streptomyces caelestis and their antifungal activity. RSC Adv 2019; 9:37376-37383. [PMID: 35542260 PMCID: PMC9075769 DOI: 10.1039/c9ra07345k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The ethyl acetate extract from the liquid fermentation of S. caelestis Aw99c exhibited high and broad antifungal activities against plant pathogenic fungi. Bioassay guide fractionation led to the discovery of two xanthones, citreamicin ε and θ. The draft genome sequence of S. caelestis Aw99c was analyzed by a similarity-based approach to elucidate the pathway for the citreamicins. A 48 kb citreamicin (cit) gene cluster with 51 open reading frames encoding type II polyketide synthases and unique polyketide tailoring enzymes was proposed based on the genome analysis and the chemical structure derivation. In vitro antifungal assay showed that citreamicin ε exhibited significant growth inhibition against the plant pathogenic fungi with MIC values ranging from 1.56 to 12.5 μM. The cellular structural change of M. grisea treated with citreamicin ε was detected by SEM and the result showed that citreamicin ε caused disruptive surface of the mycelia. The ethyl acetate extract from the liquid fermentation of S. caelestis Aw99c exhibited high and broad antifungal activities against plant pathogenic fungi.![]()
Collapse
Affiliation(s)
- Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Hong-Fei Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Hua-Hua Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Zheng-Zhong Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Xiao-Lan Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| | - Jian-Bang Zhao
- College of Information Engineering, Northwest A&F University Yangling 712100 Shaanxi People's Republic of China
| |
Collapse
|
15
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
16
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Hou C, Rohr J, Parkin S, Tsodikov OV. How mithramycin stereochemistry dictates its structure and DNA binding function. MEDCHEMCOMM 2019; 10:735-741. [PMID: 31191864 DOI: 10.1039/c9md00100j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
An aureolic acid natural product mithramycin (MTM) has been known for its potent antineoplastic properties. MTM inhibits cell growth by binding in the minor groove of double-stranded DNA as a dimer, in which the two molecules of MTM are coordinated to each other through a divalent metal ion. A crystal structure of an MTM analogue, MTM SA-Phe, in the active metal ion-coordinated dimeric form demonstrates how the stereochemical features of MTM define the helicity of the dimeric scaffold for its binding to a right-handed DNA double helix. We also show crystallographically and biochemically that MTM, but not MTM SA-Phe, can be inactivated by boric acid through formation of a large macrocyclic species, in which two molecules of MTM are crosslinked to each other through 3-side chain-boron-sugar intermolecular bonds. We discuss these structural and biochemical properties in the context of MTM biosynthesis and the design of MTM analogues as anticancer therapeutics.
Collapse
Affiliation(s)
- Caixia Hou
- University of Kentucky , Department of Pharmaceutical Sciences , College of Pharmacy , Lexington , KY 40536-0596 , USA . ;
| | - Jürgen Rohr
- University of Kentucky , Department of Pharmaceutical Sciences , College of Pharmacy , Lexington , KY 40536-0596 , USA . ;
| | - Sean Parkin
- University of Kentucky , Department of Chemistry , Lexington , KY 40506-0055 , USA .
| | - Oleg V Tsodikov
- University of Kentucky , Department of Pharmaceutical Sciences , College of Pharmacy , Lexington , KY 40536-0596 , USA . ;
| |
Collapse
|
18
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
19
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
20
|
Abstract
This review highlights the protein–protein interactions between type II post-PKS tailoring enzymes with an emphasis on gilvocarcin and mithramycin.
Collapse
Affiliation(s)
- Redding Gober
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Kentucky
- Lexington
- USA
| | - Ryan Wheeler
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Kentucky
- Lexington
- USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
21
|
Chen Q, Huang Y, Duan Y, Li Z, Cui Z, Liu W. Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4: The key enzyme involved in p-nitrophenol degradation. Biochem Biophys Res Commun 2018; 504:715-720. [PMID: 30217456 DOI: 10.1016/j.bbrc.2018.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
p-Nitrophenol 4-monooxygenase PnpA, the key enzyme in the hydroquinone pathway of p-nitrophenol (PNP) degradation, catalyzes the monooxygenase reaction of PNP to p-benzoquinone in the presence of FAD and NADH. Here, we determined the first crystal structure of PnpA from Pseudomonas putida DLL-E4 in its apo and FAD-complex forms to a resolution of 2.04 Å and 2.48 Å, respectively. The PnpA structure shares a common fold with hydroxybenzoate hydroxylases, despite a low amino sequence identity of 14-18%, confirming it to be a member of the Class A flavoprotein monooxygenases. However, substrate docking studies of PnpA indicated that the residues stabilizing the substrate in an orientation suitable for catalysis are not observed in other homologous hydroxybenzoate hydroxylases, suggesting PnpA employs a unique catalytic mechanism. This work expands our understanding on the reaction mode for this enzyme class.
Collapse
Affiliation(s)
- Qiongzhen Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yajuan Duan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
22
|
Zheng Q, Gong Y, Guo Y, Zhao Z, Wu Z, Zhou Z, Chen D, Pan L, Liu W. Structural Insights into a Flavin-Dependent [4 + 2] Cyclase that Catalyzes trans-Decalin Formation in Pyrroindomycin Biosynthesis. Cell Chem Biol 2018; 25:718-727.e3. [DOI: 10.1016/j.chembiol.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
23
|
Abstract
Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.
Collapse
|
24
|
Koteva K, Cox G, Kelso JK, Surette MD, Zubyk HL, Ejim L, Stogios P, Savchenko A, Sørensen D, Wright GD. Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action. Cell Chem Biol 2018; 25:403-412.e5. [PMID: 29398560 DOI: 10.1016/j.chembiol.2018.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/07/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase that inactivates a broad range of rifamycin antibiotics. Our findings describe a mechanism of rifamycin inactivation initiated by monooxygenation of the 2-position of the naphthyl group, which subsequently results in ring opening and linearization of the antibiotic. The result is an antibiotic that no longer adopts the basket-like structure essential for binding to the RNA exit tunnel of the target RpoB, thereby providing the molecular logic of resistance. This unique mechanism of enzymatic inactivation underpins the broad spectrum of rifamycin resistance mediated by Rox enzymes and presents a new antibiotic resistance mechanism not yet seen in microbial antibiotic detoxification.
Collapse
Affiliation(s)
- Kalinka Koteva
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Georgina Cox
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jayne K Kelso
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Haley L Zubyk
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Linda Ejim
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1L6, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dan Sørensen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
25
|
Kong L, Zhang W, Chooi YH, Wang L, Cao B, Deng Z, Chu Y, You D. A Multifunctional Monooxygenase XanO4 Catalyzes Xanthone Formation in Xantholipin Biosynthesis via a Cryptic Demethoxylation. Cell Chem Biol 2017; 23:508-16. [PMID: 27105283 DOI: 10.1016/j.chembiol.2016.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
Abstract
Xantholipin and several related polycyclic xanthone antibiotics feature a unique xanthone ring nucleus within a highly oxygenated, angular, fused hexacyclic system. In this study, we demonstrated that a flavin-dependent monooxygenase (FMO) XanO4 catalyzes the oxidative transformation of an anthraquinone to a xanthone system during the biosynthesis of xantholipin. In vitro isotopic labeling experiments showed that the reaction involves sequential insertion of two oxygen atoms, accompanied by an unexpected cryptic demethoxylation reaction. Moreover, characterizations of homologous FMOs of XanO4 suggested the generality of the XanO4-like-mediated reaction for the assembly of a xanthone ring in the biosynthesis of polycyclic xanthone antibiotics. These findings not only expand the repertoire of FMO activities but also reveal a novel mechanism for xanthone ring formation.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weike Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yit Heng Chooi
- School of Chemistry and Biochemistry, University of Western Australia, Perth, WA 6009, Australia
| | - Lu Wang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Li K, Fielding EN, Condurso HL, Bruner SD. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:573-580. [DOI: 10.1107/s2059798317007045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022]
Abstract
The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.
Collapse
|
27
|
Chen K, Wu S, Zhu L, Zhang C, Xiang W, Deng Z, Ikeda H, Cane DE, Zhu D. Substitution of a Single Amino Acid Reverses the Regiospecificity of the Baeyer-Villiger Monooxygenase PntE in the Biosynthesis of the Antibiotic Pentalenolactone. Biochemistry 2016; 55:6696-6704. [PMID: 27933799 DOI: 10.1021/acs.biochem.6b01040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the biosynthesis of pentalenolactone (1), PenE and PntE, orthologous proteins from Streptomyces exfoliatus and S. arenae, respectively, catalyze the flavin-dependent Baeyer-Villiger oxidation of 1-deoxy-11-oxopentalenic acid (4) to the lactone pentalenolactone D (5), in which the less-substituted methylene carbon has migrated. By contrast, the paralogous PtlE enzyme from S. avermitilis catalyzes the oxidation of 4 to neopentalenolactone D (6), in which the more substituted methane substitution has undergone migration. We report the design and analysis of 13 single and multiple mutants of PntE mutants to identify the key amino acids that contribute to the regiospecificity of these two classes of Baeyer-Villiger monooxygenases. The L185S mutation in PntE reversed the observed regiospecificity of PntE such that all recombinant PntE mutants harboring this L185S mutation acquired the characteristic regiospecificity of PtlE, catalyzing the conversion of 4 to 6 as the major product. The recombinant PntE mutant harboring R484L exhibited reduced regiospecificity, generating a mixture of lactones containing more than 17% of 6. These in vitro results were corroborated by analysis of the complementation of the S. avermitilis ΔptlED double deletion mutant with pntE mutants, such that pntE mutants harboring L185S produced 6 as the major product, whereas complemention of the ΔptlED deletion mutant with pntE mutants carrying the R484L mutation gave 6 as more than 33% of the total lactone product mixture.
Collapse
Affiliation(s)
- Ke Chen
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Shiwen Wu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Lu Zhu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Chengde Zhang
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University , Harbin, Heilongjiang Province 150030, China
| | - Zixin Deng
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University , 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - David E Cane
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| | - Dongqing Zhu
- The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China
| |
Collapse
|
28
|
Katsuyama Y, Sone K, Satou R, Izumikawa M, Takagi M, Fujie M, Satoh N, Shin-ya K, Ohnishi Y. Involvement of the Baeyer-Villiger Monooxygenase IfnQ in the Biosynthesis of Isofuranonaphthoquinone Scaffold of JBIR-76 and -77. Chembiochem 2016; 17:1021-8. [DOI: 10.1002/cbic.201600095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Kaoru Sone
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryutaro Satou
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Motoki Takagi
- Japan Biological Informatics Consortium (JBIC); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
29
|
Jackson DR, Yu X, Wang G, Patel AB, Calveras J, Barajas JF, Sasaki E, Metsä-Ketelä M, Liu HW, Rohr J, Tsai SC. Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chem Biol 2016; 11:1137-47. [PMID: 26813028 DOI: 10.1021/acschembio.5b00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cores of aromatic polyketides are essential for their biological activities. Most type II polyketide synthases (PKSs) biosynthesize these core structures involving the minimal PKS, a PKS-associated ketoreductase (KR) and aromatases/cyclases (ARO/CYCs). Oxygenases (OXYs) are rarely involved. BE-7585A is an anticancer polyketide with an angucyclic core. (13)C isotope labeling experiments suggest that its angucyclic core may arise from an oxidative rearrangement of a linear anthracyclinone. Here, we present the crystal structure and functional analysis of BexE, the oxygenase proposed to catalyze this key oxidative rearrangement step that generates the angucyclinone framework. Biochemical assays using various linear anthracyclinone model compounds combined with docking simulations narrowed down the substrate of BexE to be an immediate precursor of aklaviketone, possibly 12-deoxy-aklaviketone. The structural analysis, docking simulations, and biochemical assays provide insights into the role of BexE in BE-7585A biosynthesis and lay the groundwork for engineering such framework-modifying enzymes in type II PKSs.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Xia Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Guojung Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jordi Calveras
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jesus F. Barajas
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Eita Sasaki
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Hung-wen Liu
- Division
of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jürgen Rohr
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Department of Chemistry, and
Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
30
|
Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R, Jaspars M, Yu Y, Deng H. Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angew Chem Int Ed Engl 2015. [PMID: 26206556 DOI: 10.1002/anie.201502902] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a group of natural products with important biological activities. The discovery and characterization of the multifunctional FAD-dependent enzyme LgnC is now described. The enzyme is shown to convert indolizidine intermediates into pyrrolizidines through an unusual ring expansion/contraction mechanism, and catalyze the biosynthesis of new bacterial PAs, the so-called legonmycins. By genome-driven analysis, heterologous expression, and gene inactivation, the legonmycins were also shown to originate from non-ribosomal peptide synthetases (NRPSs). The biosynthetic origin of bacterial PAs has thus been disclosed for the first time.
Collapse
Affiliation(s)
- Sheng Huang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071 (P.R. China)
| | - Jioji Tabudravu
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | | | - Jeanne Travert
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | - Doe Peace
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | - Ming Him Tong
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra (Ghana)
| | - Sharon M Kelly
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ (UK)
| | | | - Rainer Ebel
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | - Marcel Jaspars
- Department of Chemistry, University of Aberdeen, Aberdeen (UK)
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071 (P.R. China).
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen (UK).
| |
Collapse
|
31
|
Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R, Jaspars M, Yu Y, Deng H. Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Yachnin BJ, McEvoy MB, MacCuish RJD, Morley KL, Lau PCK, Berghuis AM. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis. ACS Chem Biol 2014; 9:2843-51. [PMID: 25265531 DOI: 10.1021/cb500442e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Baeyer-Villiger monooxygenases (BVMOs) are microbial enzymes that catalyze the synthetically useful Baeyer-Villiger oxidation reaction. The available BVMO crystal structures all lack a substrate or product bound in a position that would determine the substrate specificity and stereospecificity of the enzyme. Here, we report two crystal structures of cyclohexanone monooxygenase (CHMO) with its product, ε-caprolactone, bound: the CHMO(Tight) and CHMO(Loose) structures. The CHMO(Tight) structure represents the enzyme state in which substrate acceptance and stereospecificity is determined, providing a foundation for engineering BVMOs with altered substrate spectra and/or stereospecificity. The CHMO(Loose) structure is the first structure where the product is solvent accessible. This structure represents the enzyme state upon binding and release of the substrate and product. In addition, the role of the invariant Arg329 in chaperoning the substrate/product during the catalytic cycle is highlighted. Overall, these data provide a structural framework for the engineering of BVMOs with altered substrate spectra and/or stereospecificity.
Collapse
Affiliation(s)
| | | | | | - Krista L. Morley
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | - Peter C. K. Lau
- Departments of Microbiology & Immunology and Chemistry, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4
- FQRNT Center for Green Chemistry and Catalysis, Montreal, Quebec, Canada
| | | |
Collapse
|
33
|
Sun Y. A carbonate architect emerges. Nat Chem Biol 2014; 10:486-7. [DOI: 10.1038/nchembio.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Armacost K, Musila J, Gathiaka S, Ellis HR, Acevedo O. Exploring the Catalytic Mechanism of Alkanesulfonate Monooxygenase Using Molecular Dynamics. Biochemistry 2014; 53:3308-17. [DOI: 10.1021/bi5002085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kira Armacost
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jonathan Musila
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Symon Gathiaka
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
35
|
Beneventi E, Niero M, Motterle R, Fraaije M, Bergantino E. Discovery of Baeyer–Villiger monooxygenases from photosynthetic eukaryotes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Bosserman MA, Downey T, Noinaj N, Buchanan SK, Rohr J. Molecular insight into substrate recognition and catalysis of Baeyer-Villiger monooxygenase MtmOIV, the key frame-modifying enzyme in the biosynthesis of anticancer agent mithramycin. ACS Chem Biol 2013; 8:2466-77. [PMID: 23992662 DOI: 10.1021/cb400399b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.
Collapse
Affiliation(s)
- Mary A. Bosserman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Theresa Downey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Nicholas Noinaj
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
37
|
Jensen CN, Ali ST, Allen MJ, Grogan G. Mutations of an NAD(P)H-dependent flavoprotein monooxygenase that influence cofactor promiscuity and enantioselectivity. FEBS Open Bio 2013; 3:473-8. [PMID: 24251114 PMCID: PMC3829993 DOI: 10.1016/j.fob.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022] Open
Abstract
The flavoprotein monooxygenase (FPMO) from Stenotrophomonas maltophilia (SMFMO, Uniprot: B2FLR2) catalyses the asymmetric oxidation of thioethers and is unusual amongst FPMOs in its ability to use the non-phosphorylated cofactor NADH, as well as NADPH, for the reduction of the FAD coenzyme. In order to explore the basis for cofactor promiscuity, structure-guided mutation of two residues in the cofactor binding site, Gln193 and His194, in SMFMO were performed in an attempt to imitate the cofactor binding site of the NADPH-dependent FMO from Methylophaga aminisulfidivorans sp. SK1 (mFMO), in which structurally homologous residues Arg234 and Thr235 bind the NADPH 2′-ribose phosphate. Mutation of His194 to threonine proved most significant, with a switch in specificity from NADH to NADPH [(kcat/Km NADH)/kcat/Km NADPH) from 1.5:1 to 1:3.5, mostly as a result of a reduced Km for NADPH of approximately sevenfold in the His194Thr mutant. The structure of the Gln193Arg/His194Thr mutant revealed no substantial changes in the backbone of the enzyme or orientation of side chains resulting from mutation. Mutation of Phe52, in the vicinity of FAD, and which in mFMO is an asparagine thought to be responsible for flavin hydroperoxide stabilisation, is, in SMFMO, a determinant of enantioselectivity in sulfoxidation. Mutation of Phe52 to valine resulted in a mutant that transformed para-tolyl methyl sulfide into the (S)-sulfoxide with 32% e.e., compared to 25% (R)- for the wild type. These results shed further light both on the cofactor specificity of FPMOs, and their determinants of enantioselectivity, with a view to informing engineering studies of FPMOs in the future. SMFMO was mutated to investigate cofactor specificity and enantioselectivity. The Gln193Arg/His194Thr mutant displayed a preference for NADPH, rather than NADH. The structure of the Gln193Arg/His194Thr mutant was determined. Active site mutants were assessed for enantioselectivity in sulfoxidation reactions. The Phe52Val mutant displayed inverted enantioselectivity.
Collapse
Affiliation(s)
- Chantel N Jensen
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | |
Collapse
|
38
|
Tang MC, He HY, Zhang F, Tang GL. Baeyer–Villiger Oxidation of Acyl Carrier Protein-Tethered Thioester to Acyl Carrier Protein-Linked Thiocarbonate Catalyzed by a Monooxygenase Domain in FR901464 Biosynthesis. ACS Catal 2013. [DOI: 10.1021/cs300819e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man-Cheng Tang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Hai-Yan He
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Feng Zhang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Gong-Li Tang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| |
Collapse
|
39
|
Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci U S A 2013; 110:2336-41. [PMID: 23341601 DOI: 10.1073/pnas.1218524110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria develop resistance to many classes of antibiotics vertically, by engendering mutations in genes encoding transcriptional and translational apparatus. These severe adaptations affect global transcription, translation, and the correspondingly affected metabolism. Here, we characterize metabolome scale changes in transcriptional and translational mutants in a genomically characterized Nocardiopsis, a soil-derived actinomycete, in stationary phase. Analysis of ultra-performance liquid chromatography-ion mobility-mass spectrometry metabolomic features from a cohort of streptomycin- and rifampicin-resistant mutants grown in the absence of antibiotics exhibits clear metabolomic speciation, and loadings analysis catalogs a marked change in metabolic phenotype. Consistent with derepression, up to 311 features are observed in antibiotic-resistant mutants that are not detected in their progenitors. Mutants demonstrate changes in primary metabolism, such as modulation of fatty acid composition and the increased production of the osmoprotectant ectoine, in addition to the presence of abundant emergent potential secondary metabolites. Isolation of three of these metabolites followed by structure elucidation demonstrates them to be an unusual polyketide family with a previously uncharacterized xanthene framework resulting from sequential oxidative carbon skeletal rearrangements. Designated as "mutaxanthenes," this family can be correlated to a type II polyketide gene cluster in the producing organism. Taken together, these data suggest that biosynthetic pathway derepression is a general consequence of some antibiotic resistance mutations.
Collapse
|
40
|
Abstract
Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
41
|
Tibrewal N, Pahari P, Wang G, Kharel MK, Morris C, Downey T, Hou Y, Bugni TS, Rohr J. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis. J Am Chem Soc 2012; 134:18181-4. [PMID: 23102024 DOI: 10.1021/ja3081154] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]naphthopyranone backbone typical of the gilvocarcin-type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxyoxepinone intermediate, leading to important conclusions regarding the cleavage mechanism.
Collapse
Affiliation(s)
- Nidhi Tibrewal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Minerdi D, Zgrablic I, Sadeghi SJ, Gilardi G. Identification of a novel Baeyer-Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tuberculosis prodrug activator EtaA. Microb Biotechnol 2012; 5:700-16. [PMID: 22862894 PMCID: PMC3815892 DOI: 10.1111/j.1751-7915.2012.00356.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/22/2012] [Indexed: 11/29/2022] Open
Abstract
This work demonstrates that Acinetobacter radioresistens strain S13 during the growth on medium supplemented with long‐chain alkanes as the sole energy source expresses almA gene coding for a Baeyer‐Villiger monooxygenase (BVMO) involved in alkanes subterminal oxidation. Phylogenetic analysis placed the sequence of this novel BVMO in the same clade of the prodrug activator ethionamide monooxygenase (EtaA) and it bears only a distant relation to the other known class I BVMO proteins. In silico analysis of the 3D model of the S13 BVMO generated by homology modelling also supports the similarities with EtaA by binding ethionamide to the active site. In vitro experiments carried out with the purified enzyme confirm that this novel BVMO is indeed capable of typical Baeyer‐Villiger reactions as well as oxidation of the prodrug ethionamide.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | |
Collapse
|
43
|
Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. ACTA ACUST UNITED AC 2012; 19:422-32. [PMID: 22444597 DOI: 10.1016/j.chembiol.2012.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022]
Abstract
Xantholipin from Streptomyces flavogriseus is a curved hexacyclic aromatic polyketide antitumor antibiotic. The entire 52 kb xantholipin (xan) biosynthetic gene cluster was sequenced, and bioinformatic analysis revealed open reading frames encoding type II polyketide synthases, regulators, and polyketide tailoring enzymes. Individual in-frame mutagenesis of five tailoring enzymes lead to the production of nine xantholipin analogs, revealing that the xanthone scaffold formation was catalyzed by the FAD binding monooxygenase XanO4, the δ-lactam formation by the asparagine synthetase homolog XanA, the methylenedioxy bridge generation by the P450 monooxygenase XanO2 and the hydroxylation of the carbon backbone by the FAD binding monooxygenase XanO5. These findings may also apply to other polycyclic xanthone antibiotics, and they form the basis for genetic engineering of the xantholipin and similar biosynthetic gene clusters for the generation of compounds with improved antitumor activities.
Collapse
Affiliation(s)
- Weike Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT. Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org Biomol Chem 2012; 10:6249-65. [PMID: 22733152 DOI: 10.1039/c2ob25704a] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are useful enzymes for organic synthesis as they enable the direct and highly regio- and stereoselective oxidation of ketones to esters or lactones simply with molecular oxygen. This contribution covers novel concepts such as searching in protein sequence databases using distinct motifs to discover new Baeyer-Villiger monooxygenases as well as high-throughput assays to facilitate protein engineering in order to improve BVMOs with respect to substrate range, enantioselectivity, thermostability and other properties. Recent examples for the application of BVMOs in synthetic organic synthesis illustrate the broad potential of these biocatalysts. Furthermore, methods to facilitate the more efficient use of BVMOs in organic synthesis by applying e.g. improved cofactor regeneration, substrate feed and in situ product removal or immobilization are covered in this perspective.
Collapse
Affiliation(s)
- Kathleen Balke
- Institute of Biochemistry, Dept of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
45
|
Franceschini S, van Beek HL, Pennetta A, Martinoli C, Fraaije MW, Mattevi A. Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase. J Biol Chem 2012; 287:22626-34. [PMID: 22605340 DOI: 10.1074/jbc.m112.372177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid monooxygenase (STMO) from Rhodococcus rhodochrous catalyzes the Baeyer-Villiger conversion of progesterone into progesterone acetate using FAD as prosthetic group and NADPH as reducing cofactor. The enzyme shares high sequence similarity with well characterized Baeyer-Villiger monooxygenases, including phenylacetone monooxygenase and cyclohexanone monooxygenase. The comparative biochemical and structural analysis of STMO can be particularly insightful with regard to the understanding of the substrate-specificity properties of Baeyer-Villiger monooxygenases that are emerging as promising tools in biocatalytic applications and as targets for prodrug activation. The crystal structures of STMO in the native, NADP(+)-bound, and two mutant forms reveal structural details on this microbial steroid-degrading enzyme. The binding of the nicotinamide ring of NADP(+) is shifted with respect to the flavin compared with that observed in other monooxygenases of the same class. This finding fully supports the idea that NADP(H) adopts various positions during the catalytic cycle to perform its multiple functions in catalysis. The active site closely resembles that of phenylacetone monooxygenase. This observation led us to discover that STMO is capable of acting also on phenylacetone, which implies an impressive level of substrate promiscuity. The investigation of six mutants that target residues on the surface of the substrate-binding site reveals that enzymatic conversions of both progesterone and phenylacetone are largely insensitive to relatively drastic amino acid changes, with some mutants even displaying enhanced activity on progesterone. These features possibly reflect the fact that these enzymes are continuously evolving to acquire new activities, depending on the emerging availabilities of new compounds in the living environment.
Collapse
Affiliation(s)
- Stefano Franceschini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Chen S, Hossain MS, Foss FW. Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Org Lett 2012; 14:2806-9. [DOI: 10.1021/ol3010326] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuai Chen
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Mohammad S. Hossain
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Frank W. Foss
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| |
Collapse
|
47
|
Yachnin BJ, Sprules T, McEvoy MB, Lau PCK, Berghuis AM. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation. J Am Chem Soc 2012; 134:7788-95. [PMID: 22506764 PMCID: PMC3349289 DOI: 10.1021/ja211876p] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The Baeyer–Villiger monooxygenases (BVMOs) are
a family of bacterial flavoproteins that catalyze the synthetically
useful Baeyer–Villiger oxidation reaction. This involves the
conversion of ketones into esters or cyclic ketones into lactones
by introducing an oxygen atom adjacent to the carbonyl group. The
BVMOs offer exquisite regio- and enantiospecificity while acting on
a wide range of substrates. They use only NADPH and oxygen as cosubstrates,
and produce only NADP+ and water as byproducts, making
them environmentally attractive for industrial purposes. Here, we
report the first crystal structure of a BVMO, cyclohexanone monooxygenase
(CHMO) from Rhodococcus sp. HI-31 in complex with
its substrate, cyclohexanone, as well as NADP+ and FAD,
to 2.4 Å resolution. This structure shows a drastic rotation
of the NADP+ cofactor in comparison to previously reported
NADP+-bound structures, as the nicotinamide moiety is no
longer positioned above the flavin ring. Instead, the substrate, cyclohexanone,
is found at this location, in an appropriate position for the formation
of the Criegee intermediate. The rotation of NADP+ permits
the substrate to gain access to the reactive flavin peroxyanion intermediate
while preventing it from diffusing out of the active site. The structure
thus reveals the conformation of the enzyme during the key catalytic
step. CHMO is proposed to undergo a series of conformational changes
to gradually move the substrate from the solvent, via binding in a
solvent excluded pocket that dictates the enzyme’s chemospecificity,
to a location above the flavin–peroxide adduct where catalysis
occurs.
Collapse
Affiliation(s)
- Brahm J Yachnin
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Bellini Pavilion, Room 466, Montreal, QC, Canada H3G 0B1
| | | | | | | | | |
Collapse
|
48
|
Leisch H, Shi R, Grosse S, Morley K, Bergeron H, Cygler M, Iwaki H, Hasegawa Y, Lau PCK. Cloning, Baeyer-Villiger biooxidations, and structures of the camphor pathway 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase of Pseudomonas putida ATCC 17453. Appl Environ Microbiol 2012; 78:2200-12. [PMID: 22267661 PMCID: PMC3302634 DOI: 10.1128/aem.07694-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022] Open
Abstract
A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140-152, 1983). Here we cloned and overexpressed the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP(+) at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP(+). A comparison of several crystal forms of OTEMO bound to FAD and NADP(+) revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (k(cat)/K(m)) favors 2-n-hexyl cyclopentanone (4.3 × 10(5) M(-1) s(-1)) as a substrate, although its affinity (K(m) = 32 μM) was lower than that of the CoA-activated substrate (K(m) = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members.
Collapse
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Rong Shi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Stephan Grosse
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Hélène Bergeron
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Miroslaw Cygler
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology and ORDIST, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology and ORDIST, Kansai University, Suita, Osaka, Japan
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- Departments of Chemistry and Microbiology & Immunology, McGill University, Montreal, Quebec, Canada, and FRQNT Centre in Green Chemistry and Catalysis, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Noinaj N, Bosserman MA, Schickli MA, Piszczek G, Kharel MK, Pahari P, Buchanan SK, Rohr J. The crystal structure and mechanism of an unusual oxidoreductase, GilR, involved in gilvocarcin V biosynthesis. J Biol Chem 2011; 286:23533-43. [PMID: 21561854 PMCID: PMC3123116 DOI: 10.1074/jbc.m111.247833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/29/2011] [Indexed: 01/04/2023] Open
Abstract
GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | - Mary A. Bosserman
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596 and
| | - M. Alexandra Schickli
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596 and
| | | | - Madan K. Kharel
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596 and
| | - Pallab Pahari
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596 and
| | | | - Jürgen Rohr
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596 and
| |
Collapse
|
50
|
Structure and Mutation Analysis of Archaeal Geranylgeranyl Reductase. J Mol Biol 2011; 409:543-57. [DOI: 10.1016/j.jmb.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/26/2011] [Accepted: 04/01/2011] [Indexed: 11/19/2022]
|