1
|
Brewer JJ, Inlow K, Mooney RA, Bosch B, Olinares PDB, Marcelino LP, Chait BT, Landick R, Gelles J, Campbell EA, Darst SA. RapA opens the RNA polymerase clamp to disrupt post-termination complexes and prevent cytotoxic R-loop formation. Nat Struct Mol Biol 2025; 32:639-649. [PMID: 39779919 PMCID: PMC11996608 DOI: 10.1038/s41594-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC. We found that core RNAP in the PTC can unwind DNA and initiate RNA synthesis but is prone to producing R-loops. Nucleotide binding to RapA triggers a conformational change that opens the RNAP clamp, allowing DNA in the RNAP cleft to reanneal and dissociate. We show that RapA helps to control cytotoxic R-loop formation in vivo, likely by disrupting PTCs. We suggest that analogous ATPases acting on PTCs to suppress transcriptional noise and R-loop formation may be widespread. These results hold importance for the bacterial transcription cycle and highlight a role for RapA in maintaining genome stability.
Collapse
Affiliation(s)
- Joshua J Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara Bosch
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Leandro Pimentel Marcelino
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Inlow K, Tenenbaum D, Friedman LJ, Kondev J, Gelles J. Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA. Proc Natl Acad Sci U S A 2023; 120:e2303849120. [PMID: 37406096 PMCID: PMC10334767 DOI: 10.1073/pnas.2303849120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in the cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryotic Swi2/Snf2 chromatin remodeling complex, may facilitate such reprogramming, but the mechanisms by which it does so are unclear. We used multiwavelength single-molecule fluorescence microscopy in vitro to examine RapA function in the Escherichia coli transcription cycle. In our experiments, RapA at <5 nM concentration did not appear to alter transcription initiation, elongation, or intrinsic termination. Instead, we directly observed a single RapA molecule bind specifically to the kinetically stable post termination complex (PTC)-consisting of core RNA polymerase (RNAP)-bound sequence nonspecifically to double-stranded DNA-and efficiently remove RNAP from DNA within seconds in an ATP-hydrolysis-dependent reaction. Kinetic analysis elucidates the process through which RapA locates the PTC and the key mechanistic intermediates that bind and hydrolyze ATP. This study defines how RapA participates in the transcription cycle between termination and initiation and suggests that RapA helps set the balance between global RNAP recycling and local transcription reinitiation in proteobacterial genomes.
Collapse
Affiliation(s)
- Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| |
Collapse
|
3
|
Inlow K, Tenenbaum D, Friedman LJ, Kondev J, Gelles J. Recycling of Bacterial RNA Polymerase by the Swi2/Snf2 ATPase RapA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533849. [PMID: 36993374 PMCID: PMC10055430 DOI: 10.1101/2023.03.22.533849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryote Swi2/Snf2 chromatin remodeling complex, may facilitate such reprogramming, but the mechanisms by which it does so is unclear. We used multi-wavelength single-molecule fluorescence microscopy in vitro to examine RapA function in the E. coli transcription cycle. In our experiments, RapA at < 5 nM concentration did not appear to alter transcription initiation, elongation, or intrinsic termination. Instead, we directly observed a single RapA molecule bind specifically to the kinetically stable post-termination complex (PTC) -- consisting of core RNA polymerase (RNAP) bound to dsDNA -- and efficiently remove RNAP from DNA within seconds in an ATP-hydrolysis-dependent reaction. Kinetic analysis elucidates the process through which RapA locates the PTC and the key mechanistic intermediates that bind and hydrolyze ATP. This study defines how RapA participates in the transcription cycle between termination and initiation and suggests that RapA helps set the balance between global RNAP recycling and local transcription re-initiation in proteobacterial genomes. SIGNIFICANCE RNA synthesis is an essential conduit of genetic information in all organisms. After transcribing an RNA, the bacterial RNA polymerase (RNAP) must be reused to make subsequent RNAs, but the steps that enable RNAP reuse are unclear. We directly observed the dynamics of individual molecules of fluorescently labeled RNAP and the enzyme RapA as they colocalized with DNA during and after RNA synthesis. Our studies show that RapA uses ATP hydrolysis to remove RNAP from DNA after the RNA is released from RNAP and reveal essential features of the mechanism by which this removal occurs. These studies fill in key missing pieces in our current understanding of the events that occur after RNA is released and that enable RNAP reuse.
Collapse
Affiliation(s)
- Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Debora Tenenbaum
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
4
|
Qayyum MZ, Molodtsov V, Renda A, Murakami KS. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J Biol Chem 2021; 297:101404. [PMID: 34774797 PMCID: PMC8666675 DOI: 10.1016/j.jbc.2021.101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA–RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Renda
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Troung SF, Sukhodolets MV. The bacterial protein Hfq: Stable modifications and growth phase-dependent changes in SPAM profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122958. [PMID: 34628185 DOI: 10.1016/j.jchromb.2021.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
In bacteria transcription is coupled to translation, and while it is broadly accepted that transcription-translation complexes (TTCs) are formed in growing bacterial cells, the exact spatial organization of these macromolecular assemblies is not known with certainty. Recent studies indicated the formation of orderly cytosolic superstructures in growing E. coli cells. The bacterial nucleic acid (NA)-binding protein Hfq has been shown to function at the interface of RNA synthesis-degradation machinery; multiple, independent studies link Hfq to orderly cytosolic assemblies. In this work, using fast cell lysis/2D-PAGE and in vitro reconstitution analyses we studied the Hfq modifications and small protein-associated molecules (SPAM). We demonstrate that native Hfq carries stable modifications and simulate 2D patterns of native Hfq-SPAM complexes in reconstitution experiments with purified Hfq and synthetic NA probes. We also demonstrate that genetically engineered Hfq lacking the conserved arginine residues positioned near the rim of the disc formed by the subunits' N-terminal domains binds DNA with a reduced affinity in comparison with wild-type Hfq. These results are consistent with the proposed Hfq-mediated DNA remodeling and point to the involvement of this patch of conserved arginines in interactions with DNA.
Collapse
Affiliation(s)
- Stanley F Troung
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States.
| |
Collapse
|
6
|
Moreno-Del Alamo M, Torres R, Manfredi C, Ruiz-Masó JA, Del Solar G, Alonso JC. Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation. Front Mol Biosci 2020; 7:140. [PMID: 32793628 PMCID: PMC7385302 DOI: 10.3389/fmolb.2020.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Collapse
Affiliation(s)
- María Moreno-Del Alamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - José A Ruiz-Masó
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Gloria Del Solar
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Growth phase-specific changes in the composition of E. coli transcription complexes. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:155-165. [PMID: 30785097 DOI: 10.1016/j.jchromb.2019.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/22/2023]
Abstract
In E. coli, a single oligomeric enzyme transcribes the genomic DNA, while multiple auxiliary proteins and regulatory RNA interact with the core RNA polymerase (RP) during different stages of the transcription cycle to influence its function. In this work, using fast protein isolation techniques combined with mass spectrometry (MS) and immuno-analyses, we studied growth phase-specific changes in the composition of E. coli transcription complexes. We show that RP isolated from actively growing cells is represented by prevalent double copy assemblies and single copy RP-RNA and RP-RNA-RapA complexes. We demonstrate that RpoD/σ70 obtained in fast purification protocols carries tightly associated RNA and show evidence pointing to a role of sigma-associated RNA in the formation of native RP-(RNA)-RpoD/σ70 (holoenzyme) complexes. We report that enzymes linked functionally to the metabolism of lipopolysaccharides co-purify with RP-RNA complexes and describe two classes of RP-associated molecules (phospholipids and putative phospholipid-rNT species). We hypothesize that these modifications could enable anchoring of RP-RNA and RNA in cell membranes. We also report that proteins loosely associated with ribosomes and degradosomes (S1, Hfq) co-purify with RP-RNA complexes isolated from actively growing cells - a result consistent with their proposed roles as adaptor-proteins. In contrast, GroEL, SecB, and SecA co-purified with RP obtained from cells harvested in early stationary phase. Our results demonstrate that fast, affinity chromatography-based isolation of large multi-protein assemblies in combination with MS can be used as a tool for analysis of their composition and the profiling of small protein-associated molecules (SPAM).
Collapse
|
8
|
Blomme J, Van Aken O, Van Leene J, Jégu T, De Rycke R, De Bruyne M, Vercruysse J, Nolf J, Van Daele T, De Milde L, Vermeersch M, des Francs-Small CC, De Jaeger G, Benhamed M, Millar AH, Inzé D, Gonzalez N. The Mitochondrial DNA-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. THE PLANT CELL 2017; 29:1137-1156. [PMID: 28420746 PMCID: PMC5466028 DOI: 10.1105/tpc.16.00899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 05/08/2023]
Abstract
In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Department of Biology, Lund University, 226 52 Lund, Sweden
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Molecular Biology Department, Simches Research Center, Boston, Massachusetts 02114
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel De Bruyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jasmien Vercruysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Twiggy Van Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- INRA, UMR 1332, Biologie du Fruit et Pathologie, CS20032 Villenave d'Ornon, France
| |
Collapse
|
9
|
Obregon KA, Hoch CT, Sukhodolets MV. Sm-like protein Hfq: Composition of the native complex, modifications, and interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:950-66. [PMID: 25896386 DOI: 10.1016/j.bbapap.2015.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/25/2014] [Accepted: 03/02/2015] [Indexed: 01/15/2023]
Abstract
The bacterial Sm-like protein Hfq has been linked functionally to reactions that involve RNA; however, its explicit role and primary cellular localization remain elusive. We carried out a detailed biochemical characterization of native Escherichia coli Hfq obtained through methods that preserve its posttranslational modifications. ESI-MS analyses indicate modifications in 2-3 subunits/hexamer with a molecular mass matching that of an oxidized C:18 lipid. We show that the majority of cellular Hfq cannot be extracted without detergents and that purified Hfq can be retained on hydrophobic matrices. Analyses of purified Hfq and the native Hfq complexes observed in whole-cell E. coli extracts indicate the existence of dodecameric assemblies likely stabilized by interlocking C-terminal polypeptides originating from separate Hfq hexamers and/or accessory nucleic acid. We demonstrate that cellular Hfq is redistributed between transcription complexes and an insoluble fraction that includes protein complexes harboring polynucleotide phosphorylase (PNP). This distribution pattern is consistent with a function at the interface of the apparatuses responsible for synthesis and degradation of RNA. Taken together with the results of prior studies, these results suggest that Hfq could function as an anchor/coupling factor responsible for de-solubilization of RNA and its tethering to the degradosome complex.
Collapse
Affiliation(s)
- Karla A Obregon
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Connor T Hoch
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
10
|
Abstract
RNA polymerase (RNAP) loses activity during transcription as it stalls at various inactive states due to erratic translocation. Reactivation of these stalled RNAPs is essential for efficient RNA synthesis. Here we report a 4.7-Å resolution crystal structure of the Escherichia coli RNAP core enzyme in complex with ATPase RapA that is involved in reactivating stalled RNAPs. The structure reveals that RapA binds at the RNA exit channel of the RNAP and makes the channel unable to accommodate the formation of an RNA hairpin. The orientation of RapA on the RNAP core complex suggests that RapA uses its ATPase activity to propel backward translocation of RNAP along the DNA template in an elongation complex. This structure provides insights into the reactivation of stalled RNA polymerases and helps support ATP-driven backward translocation as a general mechanism for transcriptional regulation.
Collapse
|
11
|
Wiedermannová J, Sudzinová P, Kovaľ T, Rabatinová A, Šanderova H, Ramaniuk O, Rittich Š, Dohnálek J, Fu Z, Halada P, Lewis P, Krásny L. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res 2014; 42:5151-63. [PMID: 24520113 PMCID: PMC4005671 DOI: 10.1093/nar/gku113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) is an essential multisubunit protein complex required for gene expression. Here, we characterize YvgS (HelD) from Bacillus subtilis, a novel binding partner of RNAP. We show that HelD interacts with RNAP-core between the secondary channel of RNAP and the alpha subunits. Importantly, we demonstrate that HelD stimulates transcription in an ATP-dependent manner by enhancing transcriptional cycling and elongation. We demonstrate that the stimulatory effect of HelD can be amplified by a small subunit of RNAP, delta. In vivo, HelD is not essential but it is required for timely adaptations of the cell to changing environment. In summary, this study establishes HelD as a valid component of the bacterial transcription machinery.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic, Department of Structure Analysis of Biomacromolecules, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 16206, Czech Republic, Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia and Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stec-Dziedzic E, Lyżeń R, Skärfstad E, Shingler V, Szalewska-Pałasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23207688 DOI: 10.1016/j.bbagrm.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.
Collapse
Affiliation(s)
- Ewa Stec-Dziedzic
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
13
|
Abstract
Chromatin remodelling is the ATP-dependent change in nucleosome organisation driven by Snf2 family ATPases. The biochemistry of this process depends on the behaviours of ATP-dependent motor proteins and their dynamic nucleosome substrates, which brings significant technical and conceptual challenges. Steady progress has been made in characterising the polypeptides of which these enzymes are comprised. Divergence in the sequences of different subfamilies of Snf2-related proteins suggests that the motors are adapted for different functions. Recently, structural insights have suggested that the Snf2 ATPase acts as a context-sensitive DNA translocase. This may have arisen as a means to enable efficient access to DNA in the high density of the eukaryotic nucleus. How the enzymes engage nucleosomes and how the network of noncovalent interactions within the nucleosome respond to the force applied remains unclear, and it remains prudent to recognise the potential for both DNA distortions and dynamics within the underlying histone octamer structure.
Collapse
Affiliation(s)
- Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
14
|
Ceballos SJ, Heyer WD. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:509-23. [PMID: 21704205 PMCID: PMC3171615 DOI: 10.1016/j.bbagrm.2011.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/25/2022]
Abstract
Homologous recombination is a central pathway to maintain genomic stability and is involved in the repair of DNA damage and replication fork support, as well as accurate chromosome segregation during meiosis. Rad54 is a dsDNA-dependent ATPase of the Snf2/Swi2 family of SF2 helicases, although Rad54 lacks classical helicase activity and cannot carry out the strand displacement reactions typical for DNA helicases. Rad54 is a potent and processive motor protein that translocates on dsDNA, potentially executing several functions in recombinational DNA repair. Rad54 acts in concert with Rad51, the central protein of recombination that performs the key reactions of homology search and DNA strand invasion. Here, we will review the role of the Rad54 protein in homologous recombination with an emphasis on mechanistic studies with the yeast and human enzymes. We will discuss how these results relate to in vivo functions of Rad54 during homologous recombination in somatic cells and during meiosis. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Shannon J. Ceballos
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California, Davis, Davis, CA 95616-8665
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665
| |
Collapse
|
15
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kansara SG, Sukhodolets MV. Oligomerization of the E. coli core RNA polymerase: formation of (α2ββ'ω)2-DNA complexes and regulation of the oligomerization by auxiliary subunits. PLoS One 2011; 6:e18990. [PMID: 21533049 PMCID: PMC3080401 DOI: 10.1371/journal.pone.0018990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
In this work, using multiple, dissimilar physico-chemical techniques, we demonstrate that the Escherichia coli RNA polymerase core enzyme obtained through a classic purification procedure forms stable (α2ββ'ω)2 complexes in the presence or absence of short DNA probes. Multiple control experiments indicate that this self-association is unlikely to be mediated by RNA polymerase-associated non-protein molecules. We show that the formation of (α2ββ'ω)2 complexes is subject to regulation by known RNA polymerase interactors, such as the auxiliary SWI/SNF subunit of RNA polymerase RapA, as well as NusA and σ70. We also demonstrate that the separation of the core RNA polymerase and RNA polymerase holoenzyme species during Mono Q chromatography is likely due to oligomerization of the core enzyme. We have analyzed the oligomeric state of the polymerase in the presence or absence of DNA, an aspect that was missing from previous studies. Importantly, our work demonstrates that RNA polymerase oligomerization is compatible with DNA binding. Through in vitro transcription and in vivo experiments (utilizing a RapAR599/Q602 mutant lacking transcription-stimulatory function), we demonstrate that the formation of tandem (α2ββ'ω)2–DNA complexes is likely functionally significant and beneficial for the transcriptional activity of the polymerase. Taken together, our findings suggest a novel structural aspect of the E. coli elongation complex. We hypothesize that transcription by tandem RNA polymerase complexes initiated at hypothetical bidirectional “origins of transcription” may explain recurring switches of the direction of transcription in bacterial genomes.
Collapse
Affiliation(s)
- Seema G. Kansara
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas, United States of America
| | - Maxim V. Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jin DJ, Zhou YN, Shaw G, Ji X. Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:470-5. [PMID: 21419241 DOI: 10.1016/j.bbagrm.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
One of the hallmarks of the Swi2/Snf2 family members is their ability to modify the interaction between DNA-binding protein and DNA in controlling gene expression. The studies of Swi2/Snf2 have been mostly focused on their roles in chromatin and/or nucleosome remodeling in eukaryotes. A bacterial Swi2/Snf2 protein named RapA from Escherichia coli is a unique addition to these studies. RapA is an RNA polymerase (RNAP)-associated protein and an ATPase. It binds nucleic acids including RNA and DNA. The ATPase activity of RapA is stimulated by its interaction with RNAP, but not with nucleic acids. RapA and the major sigma factor σ70 compete for binding to core RNAP. After one transcription cycle in vitro, RNAP is immobilized in an undefined posttranscription/posttermination complex (PTC), thus becoming unavailable for reuse. RapA stimulates RNAP recycling by ATPase-dependent remodeling of PTC, leading to the release of sequestered RNAP, which then becomes available for reuse in another cycle of transcription. Recently, the crystal structure of RapA that is also the first full-length structure for the entire Swi2/Snf2 family was determined. The structure provides a framework for future studies of the mechanism of RNAP recycling in transcription. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ding Jun Jin
- Center for Cancer Research, Natioal Cancer Institute, National Institute of Health, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
18
|
Richmond M, Pasupula RR, Kansara SG, Autery JP, Monk BM, Sukhodolets MV. RapA, Escherichia coli RNA polymerase SWI/SNF subunit-dependent polyadenylation of RNA. Biochemistry 2011; 50:2298-312. [PMID: 21299217 DOI: 10.1021/bi101017x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we describe RapA-dependent polyadenylation of model RNA substrates and endogenous, RNA polymerase-associated nucleic acid fragments. We demonstrate that the Escherichia coli RNA polymerase obtained through the classic purification procedure carries endogenous RNA oligonucleotides, which, in the presence of ATP, are polyriboadenylated in a RapA-dependent manner by an accessory poly(rA) polymerase. RNA polymerase isolated from poly(A) polymerase- (PAP-) and polynucleotide phosphorylase- (PNP-) deficient E. coli strain lacks accessory (rA)(n)-synthetic activity. Experiments with reconstituted RNA polymerase-PAP and RNA polymerase-PNP mixtures suggest that RapA enables the polyadenylation by PAP of RNA polymerase-associated RNA. Mutations disrupting RapA's ATP-hydrolytic function disrupt RapA-dependent polyadenylation, and the rapA(-)E. coli strain displays a measurable reduction in RNA polyadenylation. RapA-dependent polyadenylation can also be modulated by mutations in the section of RapA's SWI/SNF domain linked to interaction with single-stranded nucleic acid. We have developed enzymatic assays in which model, synthetic RNAs are polyriboadenylated in a RapA-dependent manner. Taken together, our results are consistent with RapA acting as an RNA polymerase-associated, ATP-dependent RNA translocase. Our work further links RapA to RNA remodeling and provides new mechanistic insights into the functional interaction between RNA polymerase and RapA.
Collapse
Affiliation(s)
- Michael Richmond
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| | | | | | | | | | | |
Collapse
|