1
|
Moutoussamy E, Khan HM, Roberts MF, Gershenson A, Chipot C, Reuter N. Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C. J Chem Inf Model 2022; 62:6602-6613. [PMID: 35343689 PMCID: PMC9795555 DOI: 10.1021/acs.jcim.1c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-μs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.
Collapse
Affiliation(s)
- Emmanuel
E. Moutoussamy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Hanif M. Khan
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Mary F. Roberts
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Christophe Chipot
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n 7019, Université
de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France,Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Nathalie Reuter
- Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway,Department
of Chemistry, University of Bergen, N-5020 Bergen, Norway,
| |
Collapse
|
2
|
Roberts MF, Gershenson A, Reuter N. Phosphatidylcholine Cation—Tyrosine π Complexes: Motifs for Membrane Binding by a Bacterial Phospholipase C. Molecules 2022; 27:molecules27196184. [PMID: 36234717 PMCID: PMC9572076 DOI: 10.3390/molecules27196184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 10/27/2022] Open
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation—Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation—Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an ‘open’ active site conformation.
Collapse
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence: ; Tel.: +1-617-460-5194
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics and Chemistry, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
3
|
Roberts MF, Cai J, V Natarajan S, Khan HM, Reuter N, Gershenson A, Redfield AG. Phospholipids in Motion: High-Resolution 31P NMR Field Cycling Studies. J Phys Chem B 2021; 125:8827-8838. [PMID: 34320805 DOI: 10.1021/acs.jpcb.1c02105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diverse phospholipid motions are key to membrane function but can be quite difficult to untangle and quantify. High-resolution field cycling 31P NMR spin-lattice relaxometry, where the sample is excited at high field, shuttled in the magnet bore for low-field relaxation, then shuttled back to high field for readout of the residual magnetization, provides data on phospholipid dynamics and structure. This information is encoded in the field dependence of the 31P spin-lattice relaxation rate (R1). In the field range from 11.74 down to 0.003 T, three dipolar nuclear magnetic relaxation dispersions (NMRDs) and one due to 31P chemical shift anisotropy contribute to R1 of phospholipids. Extraction of correlation times and maximum relaxation amplitudes for these NMRDs provides (1) lateral diffusion constants for different phospholipids in the same bilayer, (2) estimates of how additives alter the motion of the phospholipid about its long axis, and (3) an average 31P-1H angle with respect to the bilayer normal, which reveals that polar headgroup motion is not restricted on a microsecond timescale. Relative motions within a phospholipid are also provided by comparing 31P NMRD profiles for specifically deuterated molecules as well as 13C and 1H field dependence profiles to that of 31P. Although this work has dealt exclusively with phospholipids in small unilamellar vesicles, these same NMRDs can be measured for phospholipids in micelles and nanodisks, making this technique useful for monitoring lipid behavior in a variety of structures and assessing how additives alter specific lipid motions.
Collapse
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingfei Cai
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sivanandam V Natarajan
- Department of Biochemistry and the Rosenstiel Basic Medical Sciences Research Institute, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Hanif M Khan
- Department of Molecular Biology and Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology and Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alfred G Redfield
- Department of Biochemistry and the Rosenstiel Basic Medical Sciences Research Institute, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
4
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Khan HM, He T, Fuglebakk E, Grauffel C, Yang B, Roberts MF, Gershenson A, Reuter N. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophys J 2016; 110:1367-78. [PMID: 27028646 PMCID: PMC4816757 DOI: 10.1016/j.bpj.2016.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Boqian Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Baylon JL, Vermaas JV, Muller MP, Arcario MJ, Pogorelov TV, Tajkhorshid E. Atomic-level description of protein-lipid interactions using an accelerated membrane model. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1573-83. [PMID: 26940626 PMCID: PMC4877275 DOI: 10.1016/j.bbamem.2016.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/03/2023]
Abstract
Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Josh V Vermaas
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Melanie P Muller
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Mark J Arcario
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology; School of Chemical Sciences; Department of Chemistry; National Center for Supercomputing Applications.
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
7
|
Huang Q, Gershenson A, Roberts MF. Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:697-705. [PMID: 26976751 DOI: 10.1016/j.bbapap.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Qiongying Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States.
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
8
|
He T, Gershenson A, Eyles SJ, Lee YJ, Liu WR, Wang J, Gao J, Roberts MF. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion. J Biol Chem 2015; 290:19334-42. [PMID: 26092728 DOI: 10.1074/jbc.m115.668343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins.
Collapse
Affiliation(s)
- Tao He
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Yan-Jiun Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, and
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jianmin Gao
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Mary F Roberts
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467,
| |
Collapse
|
9
|
Yang B, Pu M, Khan HM, Friedman L, Reuter N, Roberts MF, Gershenson A. Quantifying transient interactions between Bacillus phosphatidylinositol-specific phospholipase-C and phosphatidylcholine-rich vesicles. J Am Chem Soc 2014; 137:14-7. [PMID: 25517221 PMCID: PMC4304437 DOI: 10.1021/ja508631n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Bacillus thuringiensis secretes the virulence
factor phosphatidylinositol-specific phospholipase C (BtPI-PLC), which specifically binds to phosphatidylcholine
(PC) and cleaves GPI-anchored proteins off eukaryotic plasma membranes.
To elucidate how BtPI-PLC searches for GPI-anchored
proteins on the membrane surface, we measured residence times of single
fluorescently labeled proteins on PC-rich small unilamellar vesicles
(SUVs). BtPI-PLC interactions with the SUV surface
are transient with a lifetime of 379 ± 49 ms. These data also
suggest that BtPI-PLC does not directly sense curvature,
but rather prefers to bind to the numerous lipid packing defects in
SUVs. Despite this preference for defects, all-atom molecular dynamics
simulations of BtPI-PLC interacting with PC-rich
bilayers show that the protein is shallowly anchored with the deepest
insertions ∼18 Å above the bilayer center. Membrane partitioning
is mediated, on average, by 41 hydrophobic, 8 hydrogen-bonding, and
2 cation−π (between PC choline headgroups and Tyr residues)
transient interactions with phospholipids. These results lead to a
quantitative model for BtPI-PLC interactions with
cell membranes where protein binding is mediated by lipid packing
defects, possibly near GPI-anchored proteins, and the protein diffuses
on the membrane for ∼100–380 ms, during which time it
may cleave ∼10 GPI-anchored proteins before dissociating. This
combination of short two-dimensional scoots followed by three-dimensional
hops may be an efficient search strategy on two-dimensional surfaces
with obstacles.
Collapse
Affiliation(s)
- Boqian Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Grauffel C, Yang B, He T, Roberts MF, Gershenson A, Reuter N. Cation-π interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C. J Am Chem Soc 2013; 135:5740-50. [PMID: 23506313 PMCID: PMC3797534 DOI: 10.1021/ja312656v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amphitropic proteins, such as the virulence factor phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis , often depend on lipid-specific recognition of target membranes. However, the recognition mechanisms for zwitterionic lipids, such as phosphatidylcholine, which is enriched in the outer leaflet of eukaryotic cells, are not well understood. A 500 ns long molecular dynamics simulation of PI-PLC at the surface of a lipid bilayer revealed a strikingly high number of interactions between tyrosines at the interfacial binding site and lipid choline groups with structures characteristic of cation-π interactions. Membrane affinities of PI-PLC tyrosine variants mostly tracked the simulation results, falling into two classes: (i) those with minor losses in affinity, Kd(mutant)/Kd(wild-type) ≤ 5 and (ii) those where the apparent Kd was 50-200 times higher than wild-type. Estimating ΔΔG for these Tyr/PC interactions from the apparent Kd values reveals that the free energy associated with class I is ~1 kcal/mol, comparable to the value predicted by the Wimley-White hydrophobicity scale. In contrast, removal of class II tyrosines has a higher energy cost: ~2.5 kcal/mol toward pure PC vesicles. These higher energies correlate well with the occupancy of the cation-π adducts throughout the MD simulation. Together, these results strongly indicate that PI-PLC interacts with PC headgroups via cation-π interactions with tyrosine residues and suggest that cation-π interactions at the interface may be a mechanism for specific lipid recognition by amphitropic and membrane proteins.
Collapse
Affiliation(s)
- Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| | - Boqian Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| |
Collapse
|
11
|
Cheng J, Goldstein R, Gershenson A, Stec B, Roberts MF. The cation-π box is a specific phosphatidylcholine membrane targeting motif. J Biol Chem 2013; 288:14863-73. [PMID: 23576432 DOI: 10.1074/jbc.m113.466532] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral membrane proteins can be targeted to specific organelles or the plasma membrane by differential recognition of phospholipid headgroups. Although molecular determinants of specificity for several headgroups, including phosphatidylserine and phosphoinositides are well defined, specific recognition of the headgroup of the zwitterionic phosphatidylcholine (PC) is less well understood. In cytosolic proteins the cation-π box provides a suitable receptor for choline recognition and binding through the trimethylammonium moiety. In PC, this moiety might provide a sufficient handle to bind to peripheral proteins via a cation-π cage, where the π systems of two or more aromatic residues are within 4-5 Å of the quaternary amine. We prove this hypothesis by engineering the cation-π box into secreted phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, which lacks specific PC recognition. The N254Y/H258Y variant selectively binds PC-enriched vesicles, and x-ray crystallography reveals N254Y/H258Y binds choline and dibutyroylphosphatidylcholine within the cation-π motif. Such simple PC recognition motifs could be engineered into a wide variety of secondary structures providing a generally applicable method for specific recognition of PC.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
12
|
Cheng J, Karri S, Grauffel C, Wang F, Reuter N, Roberts MF, Wintrode PL, Gershenson A. Does changing the predicted dynamics of a phospholipase C alter activity and membrane binding? Biophys J 2013; 104:185-95. [PMID: 23332071 DOI: 10.1016/j.bpj.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/02/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022] Open
Abstract
The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro(245) and Pro(254), are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro(245) disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro(245) variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro(254) appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng J, Goldstein R, Stec B, Gershenson A, Roberts MF. Competition between anion binding and dimerization modulates Staphylococcus aureus phosphatidylinositol-specific phospholipase C enzymatic activity. J Biol Chem 2012; 287:40317-27. [PMID: 23038258 DOI: 10.1074/jbc.m112.395277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Bacterial phosphatidylinositol-specific phospholipase C targets PI and glycosylphosphatidylinositol-linked proteins of eukaryotic cells. RESULTS Functional relevance of a homodimeric S. aureus PI-PLC crystal structure is supported by enzyme kinetics and mutagenesis. Nonsubstrate phosphatidylcholine increases activity by facilitating enzyme dimerization. CONCLUSION Activating transient dimerization is antagonized by anions binding to a discrete site. SIGNIFICANCE Interplay of protein oligomerization and anion binding controls enzyme activity. Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
14
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
15
|
Awasthi M, Batra J, Kateriya S. Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability. PLoS One 2012; 7:e39258. [PMID: 22737232 PMCID: PMC3380823 DOI: 10.1371/journal.pone.0039258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC) specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC) can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s) in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE This study helps in establishing the role of CrPLC (or similar proteins) in the quaternary structure of the molecule its affinities during lipid interactions.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Jyoti Batra
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
Goldstein R, Cheng J, Stec B, Roberts MF. Structure of the S. aureus PI-specific phospholipase C reveals modulation of active site access by a titratable π-cation latched loop. Biochemistry 2012; 51:2579-87. [PMID: 22390775 DOI: 10.1021/bi300057q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PI-PLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αβ-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme.
Collapse
Affiliation(s)
- Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | | | | |
Collapse
|
17
|
Melo AM, Prieto M, Coutinho A. The effect of variable liposome brightness on quantifying lipid–protein interactions using fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2559-68. [DOI: 10.1016/j.bbamem.2011.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 11/17/2022]
|
18
|
Philip F, Kadamur G, Silos RG, Woodson J, Ross EM. Synergistic activation of phospholipase C-beta3 by Galpha(q) and Gbetagamma describes a simple two-state coincidence detector. Curr Biol 2010; 20:1327-35. [PMID: 20579885 PMCID: PMC2918712 DOI: 10.1016/j.cub.2010.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Receptors that couple to G(i) and G(q) often interact synergistically in cells to elicit cytosolic Ca(2+) transients that are several-fold higher than the sum of those driven by each receptor alone. Such synergism is commonly assumed to be complex, requiring regulatory interaction between components, multiple pathways, or multiple states of the target protein. RESULTS We show that cellular G(i)-G(q) synergism derives from direct supra-additive stimulation of phospholipase C-beta3 (PLC-beta3) by G protein subunits Gbetagamma and Galpha(q), the relevant components of the G(i) and G(q) signaling pathways. No additional pathway or proteins are required. Synergism is quantitatively explained by the classical and simple two-state (inactive<-->active) allosteric mechanism. We show generally that synergistic activation of a two-state enzyme reflects enhanced conversion to the active state when both ligands are bound, not merely the enhancement of ligand affinity predicted by positive cooperativity. The two-state mechanism also explains why synergism is unique to PLC-beta3 among the four PLC-beta isoforms and, in general, why one enzyme may respond synergistically to two activators while another does not. Expression of synergism demands that an enzyme display low basal activity in the absence of ligand and becomes significant only when basal activity is = 0.1% of maximal. CONCLUSIONS Synergism can be explained by a simple and general mechanism, and such a mechanism sets parameters for its occurrence. Any two-state enzyme is predicted to respond synergistically to multiple activating ligands if, but only if, its basal activity is strongly suppressed.
Collapse
Affiliation(s)
- Finly Philip
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Ganesh Kadamur
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Rosa González Silos
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Universidad de Valladolid, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, 47011Valladolid, Spain
| | - Jimmy Woodson
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Elliott M. Ross
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| |
Collapse
|
19
|
Pu M, Orr A, Redfield AG, Roberts MF. Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR. J Biol Chem 2010; 285:26916-26922. [PMID: 20576615 DOI: 10.1074/jbc.m110.123083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the profound physiological consequences associated with peripheral membrane protein localization, only a rudimentary understanding of the interactions of proteins with membrane surfaces exists because these questions are inaccessible by commonly used structural techniques. Here, we combine high resolution field-cycling (31)P NMR relaxation methods with spin-labeled proteins to delineate specific interactions of a bacterial phospholipase C with phospholipid vesicles. Unexpectedly, discrete binding sites for both a substrate analogue and a different phospholipid (phosphatidylcholine) known to activate the enzyme are observed. The lifetimes for the occupation of these sites (when the protein is anchored transiently to the membrane) are >1-2 micros (but <1 ms), which represents the first estimate of an off-rate for a lipid dissociating from a specific site on the protein and returning to the bilayer. Furthermore, analyses of the spin-label induced NMR relaxation corroborates the presence of a discrete tyrosine-rich phosphatidylcholine binding site whose location is consistent with that suggested by modeling studies. The methodology illustrated here may be extended to a wide range of peripheral membrane proteins.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Andrew Orr
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Alfred G Redfield
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 024547
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465.
| |
Collapse
|
20
|
Elbaum-Garfinkle S, Ramlall T, Rhoades E. The role of the lipid bilayer in tau aggregation. Biophys J 2010; 98:2722-30. [PMID: 20513417 PMCID: PMC2877329 DOI: 10.1016/j.bpj.2010.03.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 11/22/2022] Open
Abstract
Tau is a microtubule associated protein whose aggregation is implicated in a number of neurodegenerative diseases. We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the beta-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.
Collapse
Key Words
- al488, alexa fluor 488
- cac, critical aggregation concentration
- fcs, fluorescence correlation spectroscopy
- luvs, large unilamellar vesicles
- nft, neurofibrillary tangle
- pc, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- phfs, paired helical filaments
- ps, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine
- tht, thioflavin t
- rhod-pe, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-(lissamine rhodamine b sulfonyl)
Collapse
Affiliation(s)
- Shana Elbaum-Garfinkle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Trudy Ramlall
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Department of Physics, Yale University, New Haven, Connecticut
| |
Collapse
|