1
|
Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. PLoS One 2017; 12:e0186974. [PMID: 29073207 PMCID: PMC5658119 DOI: 10.1371/journal.pone.0186974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.
Collapse
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koya Morohoshi
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
- * E-mail:
| |
Collapse
|
2
|
Ichikawa Y, Morohashi N, Tomita N, Mitchell AP, Kurumizaka H, Shimizu M. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem Biophys Res Commun 2016; 476:57-62. [PMID: 27208777 DOI: 10.1016/j.bbrc.2016.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobuyuki Morohashi
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Nobuyuki Tomita
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mitsuhiro Shimizu
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan.
| |
Collapse
|
3
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
4
|
Ichikawa Y, Morohashi N, Nishimura Y, Kurumizaka H, Shimizu M. Telomeric repeats act as nucleosome-disfavouring sequences in vivo. Nucleic Acids Res 2013; 42:1541-52. [PMID: 24174540 PMCID: PMC3919577 DOI: 10.1093/nar/gkt1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan, Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan and Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
5
|
Udagawa K, Kimura H, Tanabe H, Ohyama T. Nuclear localization of reporter genes activated by curved DNA. J Biosci Bioeng 2011; 113:431-7. [PMID: 22197431 DOI: 10.1016/j.jbiosc.2011.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Curved DNA structures with a left-handed superhelical conformation can activate eukaryotic transcription. Mechanistically, these structures favor binding to histone cores and can function as a docking site for sliding nucleosomes. Thus, promoters with this kind of curved DNA can adopt a more open structure, facilitating transcription initiation. However, whether the curved DNA segment can affect localization of a reporter gene is an open question. Localization of a gene in the nucleus often plays an important role in its expression and this phenomenon may also have a curved DNA-dependent mechanism. We examined this issue in transient and stable assay systems using a 180-bp synthetic curved DNA with a left-handed superhelical conformation. The results clearly showed that curved DNA of this kind does not have a property to deliver reporter constructs to nuclear positions that are preferable for transcription. We also identify the spatial location to which electroporation delivers a reporter plasmid in the nucleus.
Collapse
Affiliation(s)
- Koji Udagawa
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
6
|
Fukunaga S, Kanda G, Tanase J, Harashima H, Ohyama T, Kamiya H. A designed curved DNA sequence remarkably enhances transgene expression from plasmid DNA in mouse liver. Gene Ther 2011; 19:828-35. [DOI: 10.1038/gt.2011.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Ogawa R, Kitagawa N, Ashida H, Saito R, Tomita M. Computational prediction of nucleosome positioning by calculating the relative fragment frequency index of nucleosomal sequences. FEBS Lett 2010; 584:1498-502. [PMID: 20206172 DOI: 10.1016/j.febslet.2010.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 11/16/2022]
Abstract
We developed an accurate method to predict nucleosome positioning from genome sequences by refining the previously developed method of Peckham et al. (2007). Here, we used the relative fragment frequency index we developed and a support vector machine to screen for nucleosomal and linker DNA sequences. Our twofold cross-validation revealed that the accuracy of our method based on the area under the receiver operating characteristic curve was 81%, whereas that of Peckham's method was 75% when both of two nucleosomal sequence data obtained from independent experiments were used for validation. We suggest that our method is more effective in predicting nucleosome positioning.
Collapse
Affiliation(s)
- Ryu Ogawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | | | | |
Collapse
|