1
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
2
|
Kato N, Ishijima A, Inaba T, Nomura F, Takeda S, Takiguchi K. Effects of lipid composition and solution conditions on the mechanical properties of membrane vesicles. MEMBRANES 2015; 5:22-47. [PMID: 25611306 PMCID: PMC4384090 DOI: 10.3390/membranes5010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The mechanical properties of cell-sized giant unilamellar liposomes were studied by manipulating polystyrene beads encapsulated within the liposomes using double-beam laser tweezers. Mechanical forces were applied to the liposomes from within by moving the beads away from each other, which caused the liposomes to elongate. Subsequently, a tubular membrane projection was generated in the tip at either end of the liposome, or the bead moved out from the laser trap. The force required for liposome transformation reached maximum strength just before formation of the projection or the moving out of the bead. By employing this manipulation system, we investigated the effects of membrane lipid compositions and environment solutions on the mechanical properties. With increasing content of acidic phospholipids, such as phosphatidylglycerol or phosphatidic acid, a larger strength of force was required for the liposome transformation. Liposomes prepared with a synthetic dimyristoylphosphatidylcholine, which has uniform hydrocarbon chains, were transformed easily compared with liposomes prepared using natural phosphatidylcholine. Surprisingly, bovine serum albumin or fetuin (soluble proteins that do not bind to membranes) decreased liposomal membrane rigidity, whereas the same concentration of sucrose showed no particular effect. These results show that the mechanical properties of liposomes depend on their lipid composition and environment.
Collapse
Affiliation(s)
- Nobuhiko Kato
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Akihiko Ishijima
- Institute of Multidisciplinary, Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Takehiko Inaba
- Lipid Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Fumimasa Nomura
- Department of Biomedical Information, Division of Biosystems, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Shuichi Takeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kingo Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
3
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:14205-18. [PMID: 25339807 PMCID: PMC4202349 DOI: 10.3748/wjg.v20.i39.14205] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/13/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is today considered the most common form of chronic liver disease, affecting a high proportion of the population worldwide. NAFLD encompasses a large spectrum of liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. Obesity, hyperglycemia, type 2 diabetes and hypertriglyceridemia are the most important risk factors. The pathogenesis of NAFLD and its progression to fibrosis and chronic liver disease is still unknown. Accumulating evidence indicates that mitochondrial dysfunction plays a key role in the physiopathology of NAFLD, although the mechanisms underlying this dysfunction are still unclear. Oxidative stress is considered an important factor in producing lethal hepatocyte injury associated with NAFLD. Mitochondrial respiratory chain is the main subcellular source of reactive oxygen species (ROS), which may damage mitochondrial proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, plays an important role in several reactions and processes involved in mitochondrial bioenergetics as well as in mitochondrial dependent steps of apoptosis. This phospholipid is particularly susceptible to ROS attack. Cardiolipin peroxidation has been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including NAFLD. In this review, we focus on the potential roles played by oxidative stress and cardiolipin alterations in mitochondrial dysfunction associated with NAFLD.
Collapse
|
4
|
Ghislat G, Knecht E. Ca²⁺-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 2014; 14:97-110. [PMID: 23305313 PMCID: PMC3664516 DOI: 10.2174/13892037112139990033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis are two evolutionarily conserved catabolic processes that comprise vesicle trafficking events for the clearance of the sequestered intracellular and extracellular cargo. Both start differently but end in the same compartment, the lysosome. Mounting evidences from the last years have established the involvement of proteins sensitive to intracellular Ca2+ in the control of the early autophagic steps and in the traffic of autophagic, endocytic and lysosomal vesicles. However, this knowledge is based on dispersed outcomes that do not set up a consensus model of the Ca2+-dependent control of autophagy and endocytosis. Here, we will provide a critical synopsis of insights from the last decade on the involvement of Ca2+-sensor proteins in the activation of autophagy and in fusion events of endocytic vesicles, autophagosomes and lysosomes.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, Valencia 46012, Spain and CIBERER, Valencia, Spain
| | | |
Collapse
|
5
|
Vladimirov YA, Proskurnina EV, Alekseev AV. Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex. BIOCHEMISTRY (MOSCOW) 2013; 78:1086-97. [DOI: 10.1134/s0006297913100027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Kinnunen PKJ, Kaarniranta K, Mahalka AK. Protein-oxidized phospholipid interactions in cellular signaling for cell death: from biophysics to clinical correlations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2446-55. [PMID: 22542574 DOI: 10.1016/j.bbamem.2012.04.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/02/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
Oxidative stress is associated with several major ailments. However, it is only recently that the developments in our molecular level understanding of the consequences of oxidative stress in modifying the chemical structures of biomolecules, lipids in particular, are beginning to open new emerging insights into the significance of oxidative stress in providing mechanistic insights into the etiologies of these diseases. In this brief review we will first discuss the role of lipid oxidation in controlling the membrane binding of cytochrome c, a key protein in the control of apoptosis. We then present an overview of the impact of oxidized phospholipids on the biophysical properties of lipid bilayers and continue to discuss, how these altered properties can account for the observed enhancement of formation of intermediate state oligomers by cytotoxic amyloid forming peptides associated with pathological conditions as well as host defense peptides of innate immunity. In the third part, we will discuss how the targeting of oxidized phospholipids by i) pathology associated peptides and ii) host defense peptides can readily explain the observed clinical correlations associating Alzheimer's and Parkinson's diseases with increased risk for type 2 diabetes and age-related macular degeneration, and the apparent protective effect of Alzheimer's and Parkinson's diseases from some cancers, as well as the inverse, apparent protection by cancer from Alzheimer's and Parkinson's diseases. This article is part of a Special Issue entitled: Oxidized phospholipids-Their properties and interactions with proteins.
Collapse
Affiliation(s)
- Paavo K J Kinnunen
- Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland.
| | | | | |
Collapse
|
7
|
|
8
|
Trusova VM, Gorbenko GP. Electrostatically-controlled protein adsorption onto lipid bilayer: modeling adsorbate aggregation behavior. Biophys Chem 2007; 133:90-103. [PMID: 18201814 DOI: 10.1016/j.bpc.2007.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
Using adsorption models based on scaled particle (SPT) and double layer theories the electrostatically-controlled protein adsorption onto membrane surface has been simulated for non-associating and self-associating ligands. The binding isotherms of monomeric and oligomeric protein species have been calculated over a range of variable parameters including lipid and protein concentrations, protein and membrane charges, pH and ionic strength. Adsorption behavior of monomers appeared to be the most sensitive to the changes in the protein aggregation state. The hallmarks of the protein oligomerization are identified. The practical guides for optimal design of binding experiments focused on obtaining proofs of protein self-association are suggested.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine.
| | | |
Collapse
|
9
|
Tsoneva I, Nikolova B, Georgieva M, Guenova M, Tomov T, Rols MP, Berger MR. Induction of apoptosis by electrotransfer of positively charged proteins as Cytochrome C and Histone H1 into cells. Biochim Biophys Acta Gen Subj 2005; 1721:55-64. [PMID: 15652179 DOI: 10.1016/j.bbagen.2004.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/21/2004] [Accepted: 10/07/2004] [Indexed: 11/28/2022]
Abstract
Cytochrome C (Cyt. C) is a mitochondrial protein inducing apoptosis when it is accumulated in the cytosol by a currently unknown mechanism, but regulated by the bcl-2 family of proteins. The linker Histone H1 is another basic protein with highly conservative structure, composition, and equal molecular weight, not changed during the evolution. An attempt was made to understand better the apoptotic processes by electroloading of leukemic cells, such as K562, HL-60, and SKW3, and human lymphocytes with positively charged proteins, such as Cyt. C, Histone H1, and methylated BSA albumin (mBSA). The triggering apoptotic processes followed by MTT test, FACS analysis, and DNA fragmentation after the electrotransfer of these proteins into the cells were observed. Histone H1 and mBSA induce the release of Cyt. C from rat liver mitochondria. Cytochrome C release was higher when mitochondria were in "high-energy" state. It is supposed that release of Cyt. C from mitochondria is due to the mechanical rupture of the outer mitochondrial membrane, rich in negatively charged groups, predominately due to cardiolipin. The reason for the morphological rupture of the outer mitochondial membrane could be the rigidification and segregation of the membrane and the destroyed membrane asymmetries of both monolayers in the presence of positively charged proteins at higher linear charges such as Histone H1. We suggested that Histone H1, at a given moment of activated signaling for apoptosis, could be not transported to the nucleus and could lead to the release of Cyt. C from the mitochondria in the cytoplasm. It is temping to speculate that Histone H1 has other physiological extranuclear functions involved in apoptosis.
Collapse
Affiliation(s)
- I Tsoneva
- Institute of Biophysics, Bulg. Acad. Sci., Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
10
|
Gorbenko GP, Domanov YA. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study. Biophys Chem 2003; 103:239-49. [PMID: 12727286 DOI: 10.1016/s0301-4622(02)00319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).
Collapse
Affiliation(s)
- Galina P Gorbenko
- V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine.
| | | |
Collapse
|
11
|
Abstract
The data on lipid-nucleic interactions and their role in vitro and in vivo are presented. The results of study of DNA-lipid complexes in absence and in presence of divalent metal cations (triple complexes) are discussed. The triple complexes represent the generation of cellular structures such as pore complexes of eucaryotes and "Bayer's junctions" of procaryotes. The participation of triple complexes in the formation of structure of bacterial and eucaryotic nucleoid and nuclear matrix is analysed. A model of formation of triple complexes and cellular structures and their role in DNA-lipid interactions are discussed.
Collapse
Affiliation(s)
- V V Kuvichkin
- Laboratory of Reception Mechanisms Biophysics, Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Moscow Region, Pushkino, Russia.
| |
Collapse
|
12
|
|
13
|
Borioli GA, Fanani ML, Caputto BL, Maggio B. c-Fos is a surface pressure-dependent diverter of phospholipase activity. Biochem Biophys Res Commun 2002; 295:964-9. [PMID: 12127989 DOI: 10.1016/s0006-291x(02)00798-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
c-Fos, a transcription factor, associates to endoplasmic reticulum and modulates phospholipid biosynthesis. Its surface thermodynamic properties allow it to differentially interact with phospholipid monolayers with a selective dependence on the lipid polar head group and the lateral surface pressure. We explored the c-Fos ability to modulate phospholipid degradation by phospholipases (ppPLA2, Bacillus cereus PLC, and sphingomyelinase) using the monolayer technique. Experiments conducted under constant packing conditions show that c-Fos modulates phospholipase activity in a finely tuned way, depending on the membrane intermolecular packing. Surface lateral pressures above 12-16 mN/m induce c-Fos to activate phospholipase A2 and sphingomyelinase, and abolish phospholipase C activity. The effects of c-Fos on other steps of the catalytic process, lag-time and extent, are synergic with those on activity. We show for the first time that c-Fos participates in modulating phospholipid degradation and that it can affect the formation of lipid second messenger products by PLA2, PLC, and sphingomyelinase.
Collapse
Affiliation(s)
- Graciela A Borioli
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, Córdoba, Argentina.
| | | | | | | |
Collapse
|
14
|
Abstract
Pyrene is one of the most frequently used lipid-linked fluorophores. Its most characteristic features are a long excited state lifetime and (local) concentration-dependent formation of excimers. Pyrene is also hydrophobic and thus does not significantly distort the conformation of the labeled lipid molecule. These characteristics make pyrene lipids well-suited for studies on a variety of biophysical phenomena like lateral diffusion, inter- or transbilayer movement of lipids and lateral organization of membranes. Pyrene lipids have also been widely employed to determine protein binding to membranes, lipid conformation and the activity of lipolytic enzymes. In cell biology, pyrene lipids are promising tools for studies on lipid trafficking and metabolism, as well as for microscopic mapping of membrane properties. The main disadvantage of pyrene lipids is the relatively large size of the fluorophore. Another disadvantage is that they require UV-excitation, which is not feasible with all microscopes.
Collapse
Affiliation(s)
- Pentti Somerharju
- Institute of Biomedicine, Biomedicum, Room C205b, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
15
|
Krylov AV, Kotova EA, Yaroslavov AA, Antonenko YN. Stabilization of O-pyromellitylgramicidin channels in bilayer lipid membranes through electrostatic interaction with polylysines of different chain lengths. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:373-84. [PMID: 11118547 DOI: 10.1016/s0005-2736(00)00320-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functioning of membrane proteins, in particular ionic channels, can be modulated by alteration of their arrangement in membranes. We addressed this issue by studying the effect of different chain length polylysines on the kinetics of ionic channels formed in a bilayer lipid membrane (BLM) by O-pyromellitylgramicidin carrying three negative charges at the C-terminus. The method of sensitized photoinactivation was applied to the analysis of the channel association-dissociation kinetics (characterized by the exponential factor of the curve describing the time course of the flash-induced decrease in the transmembrane current, tau). Addition of polylysine to the bathing solutions of BLM led to the deceleration of the photoinactivation kinetics, i.e. to the increase in tau. It was shown here that for a series of polylysines differing in their chain lengths, the value of tau grew as their concentration increased above a threshold level until at a certain concentration of each polylysine tau reached maximum. At higher polylysine concentrations tau began to decrease and finally became close to the control level observed in the absence of polylysine. With lengthening of the polylysine chain the maximum value of tau increased, the concentration dependence became steeper, and the threshold concentration decreased. The increase in the ionic strength of the medium shifted the concentration dependence of tau to higher polylysine concentrations and decreased the maximum value of tau. It was concluded that the increase in tau was caused by the formation of domains of O-pyromellitylgramicidin molecules induced by binding of polylysines. This can be related to functional aspects of polycation-induced sequestering of negatively charged transmembrane peptides in neutral membranes.
Collapse
Affiliation(s)
- A V Krylov
- A.N Belozersky Institute of Physio-Chemical Biology, Moscow State University, Russia
| | | | | | | |
Collapse
|
16
|
Buckland AG, Wilton DC. Anionic phospholipids, interfacial binding and the regulation of cell functions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:199-216. [PMID: 10634937 DOI: 10.1016/s1388-1981(99)00188-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK
| | | |
Collapse
|
17
|
Gorbenko GP. Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:1-13. [PMID: 10446285 DOI: 10.1016/s0005-2736(99)00082-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Resonance energy transfer between a series of lipid-bound fluorescent probes as donors and the heme group of cytochrome c as acceptor has been used to obtain structural information on the protein complexes with model membranes, composed of phosphatidylcholine and cardiolipin. Analysis of experimental data in terms of the model of energy transfer in two-dimensional systems provides further evidence for preferential cytochrome c orientation with respect to the lipid bilayer and penetration of the protein into the membrane interior.
Collapse
Affiliation(s)
- G P Gorbenko
- Department of Physics and Technology, Kharkov State University, Svoboda Sq. 4, Kharkov 310077, Ukraine
| |
Collapse
|
18
|
Gorbenko GP. Resonance energy transfer study of hemoglobin and cytochrome c complexes with lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:12-24. [PMID: 9804870 DOI: 10.1016/s0005-2728(98)00140-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complexes of hemoglobin and cytochrome c with liposomes composed of phosphatidylcholine and its mixtures with cardiolipin and cholesterol have been studied by monitoring resonance energy transfer between fluorescent probe 3-methoxybenzanthrone as donor and heme groups of the proteins as acceptors. By analyzing experimental data within the framework of the model of energy transfer in two-dimensional systems, the limits of the range of possible heme positions with respect to lipid bilayer have been assessed. The distance of heme group of hemoglobin from the membrane center was found to increase in the presence of cardiolipin or cholesterol. The results obtained for cytochrome c complexes with cardiolipin-containing model membranes suggest the existence of preferential protein orientation relative to the lipid bilayer, and provide evidence for the protein penetration in the membrane interior.
Collapse
Affiliation(s)
- G P Gorbenko
- Department of Physics and Technology, Kharkov State University, Tobolskaya Str. 52-52, 310077 Kharkov, Ukraine
| |
Collapse
|
19
|
Lehtonen JY, Kinnunen PK. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease. Biophys J 1997; 72:1247-57. [PMID: 9138570 PMCID: PMC1184507 DOI: 10.1016/s0006-3495(97)78771-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The well-characterized integral membrane protein lactose (lac) permease from Escherichia coli was reconstituted together with trace amounts (molar fraction X = 0.005 of the total phospholipid) of different pyrene-labeled phospholipid analogs into 1-palmitoyl-2-oleoyl-sn-glycero-3-sn-glycero-3-phospho-rac'-glycerol (POPG) liposomes. Effects of lac permease on bilayer lipid dynamics were investigated by measuring the excimer-to-monomer fluorescence intensity ratio IE/IM. Compared to control vesicles, the presence of lac permease (at a protein:phospholipid stoichiometry P/L of 1:4.000) increased the rate of excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) by approximately fivefold. Decreasing P/L from approximately 1:4.000 to 1:7.600 decreased the IE/IM for PPDPC from 0.16 to 0.05, respectively. An increase in bilayer fluidity due to permease is unlikely, thus implying that the augmented IE/IM should arise from partial lateral segregation of PPDPC in the vesicles. This notion is supported by the further 38% increase in IE/IM observed for the pyrene-labeled Cys-148 lac permease reconstituted into POPG vesicles at P/L 1:4000. The importance of the length of the lipid-protein boundary is implicated by the reduction in IE/IM resulting from the aggregation of the lac permease in vesicles by a monoclonal antibody. Interestingly, excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (PPHPC) was enhanced only fourfold in the presence of lac permease. Results obtained with the corresponding pyrenyl phosphatidylglycerols and -methanols were qualitatively similar to those above, thus indicating that lipid headgroup-protein interactions are not involved. Inclusion of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamino-N-(5-fluoresce inthio- carbamoyl) (DPPF, X = 0.005) into reconstituted lactose permease vesicles containing PPDPC caused a nearly 90% decrease in excimer fluorescence, whereas in control vesicles lacking the reconstituted protein only 40% quenching was evident. The addition of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac'-glycerol (DPPG) decreased IE/IM for PPDPC, revealing the driving force for the lateral segregation of this probe to become attenuated. More specifically for protein-free bilayers at XDPPG = 0.10 the rate of lateral diffusion of PPDPC in POPG is diminished, as evidenced by the 24% decrement in IE/IM, under these conditions the increase in IE/IM due to lac permease was strongly reduced, by approximately 84%. The present data are interpreted in terms of the hydrophobic mismatch theory, which predicts that integral membrane proteins will draw lipids of similar hydrophobic thickness into their vicinity. In brief, the approximate lengths of most of the predicted 12 hydrophobic, membrane-spanning alpha-helical segments of lactose permease range between 28.5 and 37.5 A and thus exceed the hydrophobic thickness of POPG of approximately 25.8 A. Therefore, to reduce the free energy of the assembly, longer lipids such as PPDPC and DPPF are accumulated in the immediate vicinity of lactose permease in fluid, liquid crystalline POPG bilayers.
Collapse
Affiliation(s)
- J Y Lehtonen
- Department of Medical Chemistry, University of Helsinki, Finland
| | | |
Collapse
|