1
|
Roberts MF, Gershenson A, Reuter N. Phosphatidylcholine Cation—Tyrosine π Complexes: Motifs for Membrane Binding by a Bacterial Phospholipase C. Molecules 2022; 27:molecules27196184. [PMID: 36234717 PMCID: PMC9572076 DOI: 10.3390/molecules27196184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 10/27/2022] Open
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation—Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation—Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an ‘open’ active site conformation.
Collapse
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence: ; Tel.: +1-617-460-5194
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics and Chemistry, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
2
|
Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J Cell Biol 2020; 219:133809. [PMID: 32211894 PMCID: PMC7054996 DOI: 10.1083/jcb.201906130] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol (PI) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of the relationship between PI availability and the turnover of subcellular PPIn pools. To address these shortcomings, we established a molecular toolbox for investigations of PI distribution within intact cells by exploiting the properties of a bacterial enzyme, PI-specific PLC (PI-PLC). Using these tools, we find a minor presence of PI in membranes of the ER, as well as a general enrichment within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membrane, but only detect very low steady-state levels of PI within the plasma membrane (PM) and endosomes. Kinetic studies also demonstrate the requirement for sustained PI supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Daniel J Toth
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Wang L, Iwasaki Y, Andra KK, Pandey K, Menon AK, Bütikofer P. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J Biol Chem 2018; 293:18318-18327. [PMID: 30287690 PMCID: PMC6254352 DOI: 10.1074/jbc.ra118.004213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Members of the G protein-coupled receptor and TMEM16 (transmembrane protein 16) protein families are phospholipid scramblases that facilitate rapid, bidirectional movement of phospholipids across a membrane bilayer in an ATP-independent manner. On reconstitution into large unilamellar vesicles, these proteins scramble more than 10,000 lipids/protein/s as measured with co-reconstituted fluorescent nitrobenzoxadiazole (NBD)-labeled phospholipids. Although NBD-labeled phospholipids are ubiquitously used as reporters of scramblase activity, it remains unclear whether the NBD modification influences the quantitative outcomes of the scramblase assay. We now report a refined biochemical approach for measuring the activity of scramblase proteins with radiolabeled natural phosphatidylinositol ([3H]PI) and exploiting the hydrolytic activity of bacterial PI-specific phospholipase C (PI-PLC) to detect the transbilayer movement of PI. PI-PLC rapidly hydrolyzed 50% of [3H]PI in large symmetric, unilamellar liposomes, corresponding to the lipid pool in the outer leaflet. On reconstitution of a crude preparation of yeast endoplasmic reticulum scramblase, purified bovine opsin, or purified Nectria haematococca TMEM16, the extent of [3H]PI hydrolysis increased, indicating that [3H]PI from the inner leaflet had been scrambled to the outer leaflet. Using transphosphatidylation, we synthesized acyl-NBD-PI and used it to compare our PI-PLC-based assay with conventional fluorescence-based methods. Our results revealed quantitative differences between the two assays that we attribute to the specific features of the assays themselves rather than to the nature of the phospholipid. In summary, we have developed an assay that measures scrambling of a chemically unmodified phospholipid by a reconstituted scramblase.
Collapse
Affiliation(s)
- Lei Wang
- From the Institute of Biochemistry and Molecular Medicine and; Graduate School for Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yugo Iwasaki
- the Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan, and
| | - Kiran K Andra
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Kalpana Pandey
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Anant K Menon
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065.
| | - Peter Bütikofer
- From the Institute of Biochemistry and Molecular Medicine and.
| |
Collapse
|
4
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Ahyayauch H, Sot J, Collado MI, Huarte N, Requejo-Isidro J, Alonso A, Goñi FM. End-product diacylglycerol enhances the activity of PI-PLC through changes in membrane domain structure. Biophys J 2016; 108:1672-1682. [PMID: 25863059 DOI: 10.1016/j.bpj.2015.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
Diacylglycerol (DAG)-induced activation of phosphatidylinositol-phospholipase C (PI-PLC) was studied with vesicles containing PI, either pure or in mixtures with dimyristoyl phosphatidylcholine, distearoyl phosphatidylcholine, sphingomyelin, or galactosylceramide, used as substrates. At 22°C, DAG at 33 mol % increased PI-PLC activity in all of the mixtures, but not in pure PI bilayers. DAG also caused an overall decrease in diphenylhexatriene fluorescence polarization (decreased molecular order) in all samples, and increased overall enzyme binding. Confocal fluorescence microscopy of giant unilamellar vesicles of all of the compositions under study, with or without DAG, and quantitative evaluation of the phase behavior using Laurdan generalized polarization, and of enzyme binding to the various domains, indicated that DAG activates PI-PLC whenever it can generate fluid domains to which the enzyme can bind with high affinity. In the specific case of PI/dimyristoyl phosphatidylcholine bilayers at 22°C, DAG induced/increased enzyme binding and activation, but no microscopic domain separation was observed. The presence of DAG-generated nanodomains, or of DAG-induced lipid packing defects, is proposed instead for this system. In PI/galactosylceramide mixtures, DAG may exert its activation role through the generation of small vesicles, which PI-PLC is known to degrade at higher rates. In general, our results indicate that global measurements obtained using fluorescent probes in vesicle suspensions in a cuvette are not sufficient to elucidate DAG effects that take place at the domain level. The above data reinforce the idea that DAG functions as an important physical agent in regulating membrane and cell properties.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain; Institut Supérieur des Professions Infirmières et des Techniques de Santé, Rabat, Morocco
| | - Jesús Sot
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain
| | - M Isabel Collado
- SGiker, Servicios Generales de Investigación UPV/EHU, Bizkaia, Spain
| | - Nerea Huarte
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - José Requejo-Isidro
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Bilbao, Spain; Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
6
|
Celandroni F, Salvetti S, Senesi S, Ghelardi E. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol Lett 2014; 361:95-103. [PMID: 25283838 DOI: 10.1111/1574-6968.12615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/20/2023] Open
Abstract
Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.
Collapse
Affiliation(s)
- Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
7
|
Rusinova R, Hobart EA, Koeppe RE, Andersen OS. Phosphoinositides alter lipid bilayer properties. ACTA ACUST UNITED AC 2013; 141:673-90. [PMID: 23712549 PMCID: PMC3664701 DOI: 10.1085/jgp.201310960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
8
|
Cheng J, Karri S, Grauffel C, Wang F, Reuter N, Roberts MF, Wintrode PL, Gershenson A. Does changing the predicted dynamics of a phospholipase C alter activity and membrane binding? Biophys J 2013; 104:185-95. [PMID: 23332071 DOI: 10.1016/j.bpj.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/02/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022] Open
Abstract
The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro(245) and Pro(254), are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro(245) disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro(245) variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro(254) appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
10
|
Weinstein H, Scarlata S. The correlation between multidomain enzymes and multiple activation mechanisms--the case of phospholipase Cβ and its membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2940-7. [PMID: 21906583 DOI: 10.1016/j.bbamem.2011.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Phospholipase Cβ2 (PLCβ2) is a large, multidomain enzyme that catalyzes the hydrolysis of the signaling lipid phosphoinositol 4,5 bisphosphate (PIP2) to promote mitogenic and proliferative changes in the cell. PLCβ2 is activated by Gα and Gβγ subunits of heterotrimeric G proteins, as well as small G proteins and specific peptides. Activation depends on the nature of the membrane surface. Recent crystal structures suggest one model of activation involving the movement of a small autoinhibitory loop upon membrane binding of the enzyme. Additionally, solution studies indicate multiple levels of activation that involve changes in the membrane orientation as well as interdomain movement. Here, we review the wealth of biochemical studies of PLCβ2-G protein activation and propose a comprehensive model that accounts for both the crystallographic and solution results.
Collapse
Affiliation(s)
- Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
11
|
Pu M, Orr A, Redfield AG, Roberts MF. Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR. J Biol Chem 2010; 285:26916-26922. [PMID: 20576615 DOI: 10.1074/jbc.m110.123083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the profound physiological consequences associated with peripheral membrane protein localization, only a rudimentary understanding of the interactions of proteins with membrane surfaces exists because these questions are inaccessible by commonly used structural techniques. Here, we combine high resolution field-cycling (31)P NMR relaxation methods with spin-labeled proteins to delineate specific interactions of a bacterial phospholipase C with phospholipid vesicles. Unexpectedly, discrete binding sites for both a substrate analogue and a different phospholipid (phosphatidylcholine) known to activate the enzyme are observed. The lifetimes for the occupation of these sites (when the protein is anchored transiently to the membrane) are >1-2 micros (but <1 ms), which represents the first estimate of an off-rate for a lipid dissociating from a specific site on the protein and returning to the bilayer. Furthermore, analyses of the spin-label induced NMR relaxation corroborates the presence of a discrete tyrosine-rich phosphatidylcholine binding site whose location is consistent with that suggested by modeling studies. The methodology illustrated here may be extended to a wide range of peripheral membrane proteins.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Andrew Orr
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Alfred G Redfield
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 024547
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465.
| |
Collapse
|
12
|
Pu M, Feng J, Redfield AG, Roberts MF. Enzymology with a spin-labeled phospholipase C: soluble substrate binding by 31P NMR from 0.005 to 11.7 T. Biochemistry 2009; 48:8282-4. [PMID: 19663462 PMCID: PMC2794430 DOI: 10.1021/bi901190j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
31P NMR relaxation studies from 0.005 to 11.7 T are used to monitor water-soluble inositol 1,2-(cyclic) phosphate (cIP) binding to phosphatidylinositol-specific phospholipase C spin-labeled at H82C, a position near the active site of the enzyme, and to determine how activating phosphatidylcholine (PC) molecules affect this interaction. We show that, in the absence of an interface, cIP binding to the protein is not rate-limiting, and that lower activation by PC vesicles as opposed to micelles is likely due to hindered product release. The methodology is general and could be used for determining distances in other weakly binding small molecule ligand-protein interactions.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Jianwen Feng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Alfred G. Redfield
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
13
|
Pu M, Roberts MF, Gershenson A. Fluorescence correlation spectroscopy of phosphatidylinositol-specific phospholipase C monitors the interplay of substrate and activator lipid binding. Biochemistry 2009; 48:6835-45. [PMID: 19548649 PMCID: PMC2753481 DOI: 10.1021/bi900633p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes simultaneously interact with the substrate, PI, and with nonsubstrate lipids such as phosphatidylcholine (PC). For Bacillus thuringiensis PI-PLC these interactions are synergistic with maximal catalytic activity observed at low to moderate mole fractions of PC (X(PC)) and maximal binding occurring at low mole fractions of anionic lipids. It has been proposed that residues in alpha-helix B help to modulate membrane binding and that dimerization on the membrane surface both increases affinity for PC and activates PI-PLC, yielding the observed PI/PC synergy. Vesicle binding and activity measurements using a variety of PI-PLC mutants support many aspects of this model and reveal that while single mutations can disrupt anionic lipid binding and the anionic lipid/PC synergy, the residues important for PC binding are less localized. Interestingly, at high X(PC) mutations can both decrease membrane affinity and increase activity, supporting a model where reductions in wild-type activity at X(PC) > 0.6 result from both dilution of the substrate and tight membrane binding of PI-PLC, limiting enzyme hopping or scooting to the next substrate molecule. These results provide a direct analysis of vesicle binding and catalytic activity and shed light on how occupation of the activator site enhances enzymatic activity.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Boston, MA 02467
| | | | - Anne Gershenson
- Department of Chemistry, Brandeis University, Waltham, MA 02454
| |
Collapse
|
14
|
Chen W, Goldfine H, Ananthanarayanan B, Cho W, Roberts MF. Listeria monocytogenes phosphatidylinositol-specific phospholipase C: Kinetic activation and homing in on different interfaces. Biochemistry 2009; 48:3578-92. [PMID: 19281241 PMCID: PMC2831545 DOI: 10.1021/bi802312d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Listeria monocytogenes forms aggregates with anionic lipids leading to low activity. The specific activity of the enzyme can be enhanced by dilution of the protein or by addition of both zwitterionic and neutral amphiphiles (e.g., diheptanoylphosphatidylcholine or Triton X-100) or 0.1-0.2 M inorganic salts. Activation by amphiphiles occurs with both micellar (phosphatidylinositol dispersed in detergents) and monomeric [dibutroylphosphatidylinositol (diC(4)PI)] phosphotransferase substrates and inositol 1,2-(cyclic)-phosphate (cIP), the phosphodiesterase substrate. The presence of zwitterionic and neutral amphiphiles (to which the protein binds weakly) dilutes the surface concentration of the interfacial anionic substrate and thereby reduces the level of enzyme-phospholipid particle aggregation. Zwitterionic amphiphiles also can bind directly to the protein and enhance catalysis since they enhance both diC(4)PI and cIP hydrolysis. In contrast to activation by amphiphiles, the rate enhancement by salt occurs for only the phosphotransferase step of the reaction. Added salt has a synergistic effect with zwitterionic phospholipids, leading to high specific activities for PI cleavage with only moderate dilution of the anionic substrate in the interface. This kinetic activation correlates with weakening of strong PI-PLC hydrophobic interactions with the interface as monitored by a decrease in the maximum monolayer surface pressure for insertion of the protein. Several point mutations of surface hydrophobic residues (W49A, L51A, L235A, and F237W) can dramatically alter the unusual kinetics of this secreted enzyme. The high affinity of PI-PLC for anionic phospholipids along with a strong hydrophobic interaction, which gives rise to the unusual kinetic behavior, is considered in terms of how it might contribute to the role of this phospholipase in L. monocytogenes infectivity.
Collapse
Affiliation(s)
- Wei Chen
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
| | - Howard Goldfine
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607
| | - Mary F. Roberts
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
15
|
Shi X, Shao C, Zhang X, Zambonelli C, Redfield AG, Head JF, Seaton BA, Roberts MF. Modulation of Bacillus thuringiensis phosphatidylinositol-specific phospholipase C activity by mutations in the putative dimerization interface. J Biol Chem 2009; 284:15607-18. [PMID: 19369255 DOI: 10.1074/jbc.m901601200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pu M, Fang X, Redfield AG, Gershenson A, Roberts MF. Correlation of vesicle binding and phospholipid dynamics with phospholipase C activity: insights into phosphatidylcholine activation and surface dilution inhibition. J Biol Chem 2009; 284:16099-16107. [PMID: 19336401 DOI: 10.1074/jbc.m809600200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic activity of the peripheral membrane protein, phosphatidylinositol-specific phospholipase C (PI-PLC), is increased by nonsubstrate phospholipids with the extent of enhancement tuned by the membrane lipid composition. For Bacillus thuringiensis PI-PLC, a small amount of phosphatidylcholine (PC) activates the enzyme toward its substrate PI; above 0.5 mol fraction PC (XPC), enzyme activity decreases substantially. To provide a molecular basis for this PC-dependent behavior, we used fluorescence correlation spectroscopy to explore enzyme binding to multicomponent lipid vesicles composed of PC and anionic phospholipids (that bind to the active site as substrate analogues) and high resolution field cycling 31P NMR methods to estimate internal correlation times (tauc) of phospholipid headgroup motions. PI-PLC binds poorly to pure anionic phospholipid vesicles, but 0.1 XPC significantly enhances binding, increases PI-PLC activity, and slows nanosecond rotational/wobbling motions of both phospholipid headgroups, as indicated by increased tauc. PI-PLC activity and phospholipid tauc are constant between 0.1 and 0.5 XPC. Above this PC content, PI-PLC has little additional effect on the substrate analogue but further slows the PC tauc, a motional change that correlates with the onset of reduced enzyme activity. For PC-rich bilayers, these changes, together with the reduced order parameter and enhanced lateral diffusion of the substrate analogue in the presence of PI-PLC, imply that at high XPC, kinetic inhibition of PI-PLC results from intravesicle sequestration of the enzyme from the bulk of the substrate. Both methodologies provide a detailed view of protein-lipid interactions and can be readily adapted for other peripheral membrane proteins.
Collapse
Affiliation(s)
- Mingming Pu
- From Boston College, Chestnut Hill, Massachusetts 02467
| | - Xiaomin Fang
- Brandeis University, Waltham, Massachusetts 02454
| | | | | | - Mary F Roberts
- From Boston College, Chestnut Hill, Massachusetts 02467.
| |
Collapse
|
17
|
Wang YK, Chen W, Blair D, Pu M, Xu Y, Miller SJ, Redfield AG, Chiles TC, Roberts MF. Insights into the structural specificity of the cytotoxicity of 3-deoxyphosphatidylinositols. J Am Chem Soc 2008; 130:7746-55. [PMID: 18498165 PMCID: PMC2893882 DOI: 10.1021/ja710348r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-3-deoxyphosphatidylinositol (D-3-deoxy-PI) derivatives have cytotoxic activity against various human cancer cell lines. These phosphatidylinositols have a potentially wide array of targets in the phosphatidylinositol-3-kinase (PI3K)/Akt signaling network. To explore the specificity of these types of molecules, we have synthesized D-3-deoxydioctanoylphosphatidylinositol (D-3-deoxy-diC8PI), D-3,5-dideoxy-diC8PI, and D-3-deoxy-diC8PI-5-phosphate and their enantiomers, characterized their aggregate formation by novel high-resolution field cycling (31)P NMR, and examined their susceptibility to phospholipase C (PLC), their effects on the catalytic activities of PI3K and PTEN against diC8PI and diC8PI-3-phosphate substrates, respectively, and their ability to induce the death of U937 human leukemic monocyte lymphoma cells. Of these molecules, only D-3-deoxy-diC8PI was able to promote cell death; it did so with a median inhibitory concentration of 40 microM, which is much less than the critical micelle concentration of 0.4 mM. Under these conditions, little inhibition of PI3K or PTEN was observed in assays of recombinant enzymes, although the complete series of deoxy-PI compounds did provide insights into ligand binding by PTEN. D-3-deoxy-diC8PI was a poor substrate and not an inhibitor of the PLC enzymes. The in vivo results are consistent with the current thought that the PI analogue acts on Akt1, since the transcription initiation factor eIF4e, which is a downstream signaling target of the PI3K/Akt pathway, exhibited reduced phosphorylation on Ser209. Phosphorylation of Akt1 on Ser473 but not Thr308 was reduced. Since the potent cytotoxicity for U937 cells was completely lost when L-3-deoxy-diC8PI was used as well as when the hydroxyl group at the inositol C5 in D-3-deoxy-diC8PI was modified (by either replacing this group with a hydrogen or phosphorylating it), both the chirality of the phosphatidylinositol moiety and the hydroxyl group at C5 are major determinants of the binding of 3-deoxy-PI to its target in cells.
Collapse
Affiliation(s)
- Yanling K Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo S, Zhang X, Seaton BA, Roberts MF. Role of helix B residues in interfacial activation of a bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 2008; 47:4201-10. [PMID: 18345643 PMCID: PMC2906773 DOI: 10.1021/bi702269u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), an interfacial enzyme associated with prokaryotic infectivity, is activated by binding to zwitterionic surfaces, particularly phosphatidycholine (PC). Two tryptophan residues (Trp47 in the two-turn helix B and Trp242 in a disordered loop) at the rim of the barrel structure are critical for this interaction. The helix B region (Ile43 to Gly48) in wild-type PI-PLC orients the side chains of Ile43 and Trp47 so that they pack together and form a hydrophobic protrusion from the protein surface that likely facilitates initial membrane binding. In previous studies we reported that in the crystal structure of the dimeric W47A/W242A mutant, which is unable to bind to PC, the helix B region has been reorganized by the mutation into an extended loop. Here we report the construction and characterization (catalytic activity, fluorescence, and NMR studies) of a series of PI-PLC mutants targeting helix B residues and surrounding regions to explore what is needed to stabilize the "membrane-active" conformation of the helix B region. Results strongly suggest that, while hydrophobic groups and presumably an intact helix B are critical for the initial binding of PI-PLC to membranes, disruption of helix B to allow enzyme dimerization is what leads to the activated PI-PLC conformation.
Collapse
Affiliation(s)
- Su Guo
- Merkert Chemistry Center, Boston College, Chestnut Hill MA 02467
| | - Xin Zhang
- Merkert Chemistry Center, Boston College, Chestnut Hill MA 02467
| | | | - Mary F. Roberts
- Merkert Chemistry Center, Boston College, Chestnut Hill MA 02467
| |
Collapse
|
19
|
Shao C, Shi X, Wehbi H, Zambonelli C, Head JF, Seaton BA, Roberts MF. Dimer structure of an interfacially impaired phosphatidylinositol-specific phospholipase C. J Biol Chem 2007; 282:9228-35. [PMID: 17213187 DOI: 10.1074/jbc.m610918200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the W47A/W242A mutant of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis has been solved to 1.8A resolution. The W47A/W242A mutant is an interfacially challenged enzyme, and it has been proposed that one or both tryptophan side chains serve as membrane interfacial anchors (Feng, J., Wehbi, H., and Roberts, M. F. (2002) J. Biol. Chem. 277, 19867-19875). The crystal structure supports this hypothesis. Relative to the crystal structure of the closely related (97% identity) wild-type PI-PLC from Bacillus cereus, significant conformational differences occur at the membrane-binding interfacial region rather than the active site. The Trp --> Ala mutations not only remove the membrane-partitioning aromatic side chains but also perturb the conformations of the so-called helix B and rim loop regions, both of which are implicated in interfacial binding. The crystal structure also reveals a homodimer, the first such observation for a bacterial PI-PLC, with pseudo-2-fold symmetry. The symmetric dimer interface is stabilized by hydrophobic and hydrogen-bonding interactions, contributed primarily by a central swath of aromatic residues arranged in a quasiherringbone pattern. Evidence that interfacially active wild-type PI-PLC enzymes may dimerize in the presence of phosphatidylcholine vesicles is provided by fluorescence quenching of PI-PLC mutants with pyrene-labeled cysteine residues. The combined data suggest that wild-type PI-PLC can form similar homodimers, anchored to the interface by the tryptophan and neighboring membrane-partitioning residues.
Collapse
Affiliation(s)
- Chenghua Shao
- Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
21
|
Li H, Huang J, Jiang X, Seefeld M, McQueney M, Macarron R. The effect of triton concentration on the activity of undecaprenyl pyrophosphate synthase inhibitors. ACTA ACUST UNITED AC 2004; 8:712-5. [PMID: 14711397 DOI: 10.1177/1087057103258185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of 8 molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C55-undecaprenyl pyrophosphate, which is required for bacterial cell wall synthesis. UPPS is found in both gram-positive and gram-negative bacteria, and based on the differences between bacterial variants of UPPS and their human counterpart, dolicopyrophosphate synthase, it was identified as an attractive antibacterial target. An assay, which monitors the release of Pi by coupling the UPPS catalyzed reaction with inorganic pyrophosphatase, was employed to conduct an HTS campaign using an inhouse collection of compounds. A direct assay measuring the incorporation of 14C-IPP (isopentenyl pyrophosphate) was used as a secondary assay to evaluate the high-throughput screening (HTS) hits. From the HTS campaign, a few classes of UPPS inhibitors were identified. During the process of hit evaluation by the direct assay, the authors observed that Triton, an essential factor for the enzyme activity and accurate formation of the natural product, dramatically altered the inhibitory activity of a particular class of compounds. Above its critical micellar concentration (CMC), Triton abolished the inhibitory activity of these compounds. Further research will be required to establish the biophysical phenomenon that causes this effect. Meanwhile, it can be speculated that Triton (and other detergents) above CMC may hinder the identification in screening compounds of certain classes of hits.
Collapse
Affiliation(s)
- Hu Li
- Department of Molecular Screening, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Wehbi H, Roberts MF. Cross-linking phosphatidylinositol-specific phospholipase C traps two activating phosphatidylcholine molecules on the enzyme. J Biol Chem 2004; 279:20490-500. [PMID: 14996830 DOI: 10.1074/jbc.m401016200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), a bacterial model for the catalytic domain of mammalian PI-PLC enzymes, was cross-linked by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride to probe for the aggregation and/or conformational changes of PI-PLC when bound to activating phosphatidylcholine (PC) interfaces. Dimers and higher order multimers (up to 31% of the total protein when cross-linked at pH 7) were observed when the enzyme was cross-linked in the presence of PC vesicles. Aggregates were also detected with PI-PLC bound to diheptanoyl-PC (diC(7)PC) micelles, although the fraction of cross-linked multimers (19% at pH 7) was lower than when the enzyme was cross-linked in the presence of vesicles. PI-PLC cross-linked in the presence of a diC(7)PC interface exhibited an enhanced specific activity for PI cleavage. The extent of this cross-linking-enhanced activation was reduced in PI-PLC mutants lacking either tryptophan in the rim (W47A and W242A) of this (betaalpha)(8)-barrel protein. The higher activity of the native protein cross-linked in the presence of diC(7)PC correlated with an increased affinity of the protein for two diC(7)PC molecules as detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In contrast to wild type protein, W47A and W242A had only a single diC(7)PC tightly associated when cross-linked in the presence of that activator molecule. These results indicate that (i) each rim tryptophan residue is involved in binding a PC molecule at interfaces, (ii) the affinity of the enzyme for an activating PC molecule is enhanced when the protein is bound to a surface, and (iii) this conformation of the enzyme with at least two PC bound that is stabilized by chemical cross-linking interacts more effectively with activating interfaces, leading to higher observed specific activities for the phosphotransferase reaction.
Collapse
Affiliation(s)
- Xin Zhang
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
23
|
Feng J, Bradley WD, Roberts MF. Optimizing the interfacial binding and activity of a bacterial phosphatidylinositol-specific phospholipase C. J Biol Chem 2003; 278:24651-7. [PMID: 12714598 DOI: 10.1074/jbc.m301207200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis can be activated by nonsubstrate interfaces such as phosphatidylcholine micelles or bilayers. This activation corresponds with partial insertion into the interface of two tryptophans, Trp-47 in helix B and Trp-242 in a loop, in the rim of the alphabeta-barrel. Both W47A and W242A have much weaker binding to interfaces and considerably lower kinetic interfacial activation. Tryptophan rescue mutagenesis, reinsertion of a tryptophan at a different place in helix B in the W47A mutant or in the loop (residues 232-244) of the W242A mutant, has been used to determine the importance and orientation of a tryptophan in these two structural features. Phosphotransferase and phosphodiesterase assays, and binding to phosphatidylcholine vesicles were used to assess both orientation and position of tryptophans needed for interfacial activity. Of the helix B double mutants, only one mutant, I43W/W47A, has tryptophan in the same orientation as Trp-47. I43W/W47A shows recovery of phosphatidylinositol-specific phospholipase C (PC) activation of d-myo-inositol 1,2-cyclic phosphate hydrolysis. However, the specific activity toward phosphatidylinositol is still lower than wild type enzyme and high activity with phosphatidylinositol solubilized in 30% isopropyl alcohol (a hallmark of the native enzyme) is lost. Reinserting a tryptophan at several positions in the loop composed of residues 232-244 partially recovers PC activation and affinity of the enzyme for lipid interfaces as well as activation by isopropyl alcohol. G238W/W242A shows an enhanced activation and affinity for PC interfaces above that of wild type. These results provide constraints on how this bacterial phosphatidylinositol-specific phospholipase C binds to activating PC interfaces.
Collapse
Affiliation(s)
- Jianwen Feng
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
24
|
Wehbi H, Feng J, Roberts MF. Water-miscible organic cosolvents enhance phosphatidylinositol-specific phospholipase C phosphotransferase as well as phosphodiesterase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1613:15-27. [PMID: 12832083 DOI: 10.1016/s0005-2736(03)00134-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis catalyzes the hydrolysis of phosphatidylinositol (PI) in a Ca(2+)-independent two-step mechanism: (i) an intramolecular phosphotransferase reaction to form inositol 1,2-(cyclic)-phosphate (cIP), followed by (ii) a cyclic phosphodiesterase activity that converts cIP to inositol 1-phosphate (I-1-P). Moderate amounts of water-miscible organic solvents have previously been shown to dramatically enhance the cyclic phosphodiesterase activity, that is, hydrolysis of cIP. Cosolvents [isopropanol (iPrOH), dimethylsufoxide (DMSO), and dimethylformamide (DMF)] also enhance the phosphotransferase activity of PI-PLC toward PI initially presented in vesicles, monomers, or micelles. Although these water-miscible organic cosolvents caused large changes in PI particle size and distribution (monitored with pyrene-labeled PI fluorescence, 31P NMR spectroscopy, gel filtration, and electron microscopy) that differed with the activating solvent, the change in PI substrate structure in different cosolvents was not correlated with the enhanced catalytic efficiency of PI-PLC toward its substrates. PI-PLC stability was decreased in water/organic cosolvent mixtures (e.g., the T(m) for PI-PLC thermal denaturation decreased linearly with added iPrOH). However, the addition of myo-inositol, a water-soluble inhibitor of PI-PLC, helped stabilize the protein. At 30% iPrOH and 4 degrees C (well below the T(m) for PI-PLC in the presence of iPrOH), cosolvent-induced changes in protein secondary structure were minimal. iPrOH and diheptanoylphosphatidylcholine, each of which activates PI-PLC for cIP hydrolysis, exhibited a synergistic effect for cIP hydrolysis that was not observed with PI as substrate. This behavior is consistent with a mechanism for cosolvent activation that involves changes in active site polarity along with small conformational changes involving the barrel rim tryptophan side chains that have little effect on protein secondary structure.
Collapse
Affiliation(s)
- Hania Wehbi
- Department of Chemistry, E.F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02167, USA
| | | | | |
Collapse
|
25
|
Birrell GB, Zaikova TO, Rukavishnikov AV, Keana JFW, Griffith OH. Allosteric interactions within subsites of a monomeric enzyme: kinetics of fluorogenic substrates of PI-specific phospholipase C. Biophys J 2003; 84:3264-75. [PMID: 12719256 PMCID: PMC1302887 DOI: 10.1016/s0006-3495(03)70051-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two novel water-soluble fluorescein myo-inositol phosphate (FLIP) substrates, butyl-FLIP and methyl-FLIP, were used to examine the kinetics and subsite interactions of Bacillus cereus phosphatidylinositol-specific phospholipase C. Butyl-FLIP exhibited sigmoidal kinetics when initial rates are plotted versus substrate concentration. The data fit a Hill coefficient of 1.2-1.5, suggesting an allosteric interaction between two sites. Two substrate molecules bind to this enzyme, one at the active site and one at a subsite, causing an increase in activity. The kinetic behavior is mathematically similar to that of well-known cooperative multimeric enzymes even though this phosphatidylinositol-specific phospholipase C is a small, monomeric enzyme. The less hydrophobic substrate, methyl-FLIP, binds only to the active site and not the activator site, and thus exhibits standard hyperbolic kinetics. An analytical expression is presented that accounts for the kinetics of both substrates in the absence and presence of a nonsubstrate short-chain phospholipid, dihexanoylphosphatidylcholine. The fluorogenic substrates detect activation at much lower concentrations of dihexanoylphosphatidylcholine than previously reported.
Collapse
Affiliation(s)
- G Bruce Birrell
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | |
Collapse
|
26
|
Sharom FJ, Lehto MT. Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 2003; 80:535-49. [PMID: 12440695 DOI: 10.1139/o02-146] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.
Collapse
Affiliation(s)
- Frances J Sharom
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Canada.
| | | |
Collapse
|
27
|
Ryan M, Zaikova TO, Keana JFW, Goldfine H, Griffith OH. Listeria monocytogenes phosphatidylinositol-specific phospholipase C: activation and allostery. Biophys Chem 2002; 101-102:347-58. [PMID: 12488013 DOI: 10.1016/s0301-4622(02)00158-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The animal and human pathogen Listeria monocytogenes secretes several virulence factors, including a phosphatidylinositol-specific phospholipase C (PI-PLC). Sufficient quantities of L. monocytogenes PI-PLC for biophysical studies were obtained by overexpression of the enzyme in Escherichia coli. The purified PI-PLC was examined in enzyme kinetics experiments using a new fluorogenic substrate, methyl-FLIP. Methyl-FLIP is a water-soluble monomeric substrate cleaved in a manner similar to the natural aggregate substrate, phosphatidylinositol (PI). Michaelis-Menten kinetics were observed with K(M) = 61 +/- 7 microM and V(max) = 120 +/- 5 micromol min(-1) mg(-1), corresponding to k(cat) = 66+/-3 s(-1). The catalysis is activated by the addition of a short-chain phospholipid, dihexanoyl phosphatidylcholine (diC(6)PC). The kinetics were fitted to a two-site model in which the substrate binds to the active site and diC(6)PC binds to a second site, with an interaction between the two sites. The result is a decrease in K(M) and an increase in V(max), producing an overall four to five-fold increase in catalytic efficiency (k(cat)/K(M)). The interaction is not a regulatory mechanism, as is the case for multimeric enzymes; rather, it suggests interfacial cooperativity between the active site and a lipid-binding subsite, presumably adjacent to the active site.
Collapse
Affiliation(s)
- Margret Ryan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | | | | | | | | |
Collapse
|
28
|
Feng J, Wehbi H, Roberts MF. Role of tryptophan residues in interfacial binding of phosphatidylinositol-specific phospholipase C. J Biol Chem 2002; 277:19867-75. [PMID: 11912206 DOI: 10.1074/jbc.m200938200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis exhibits several types of interfacial activation. In the crystal structure of the closely related Bacillus cereus PI-PLC, the rim of the active site is flanked by a short helix B and a loop that show an unusual clustering of hydrophobic amino acids. Two of the seven tryptophans in PI-PLC are among the exposed residues. To test the importance of these residues in substrate and activator binding, we prepared several mutants of Trp-47 (in helix B) and Trp-242 (in the loop). Two other tryptophans, Trp-178 and Trp-280, which are not near the rim, were mutated as controls. Kinetic (both phosphotransferase and cyclic phosphodiesterase activities), fluorescence, and vesicle binding analyses showed that both Trp-47 and Trp-242 residues are important for the enzyme to bind to interfaces, both activating zwitterionic and substrate anionic surfaces. Partitioning of the enzyme to vesicles is decreased more than 10-fold for either W47A or W242A, and removal of both tryptophans (W47A/W242A) yields enzyme with virtually no affinity for phospholipid surfaces. Replacement of either tryptophan with phenylalanine or isoleucine has moderate effects on enzyme affinity for surfaces but yields a fully active enzyme. These results are used to describe how the enzyme is activated by interfaces.
Collapse
Affiliation(s)
- Jianwen Feng
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA
| | | | | |
Collapse
|
29
|
Hedberg KK, Cogan EB, Birrell GB, Griffith OH. Sensitive fluorescent quantitation of myo-inositol 1,2-cyclic phosphate and myo-inositol 1-phosphate by high-performance thin-layer chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 757:317-24. [PMID: 11417877 DOI: 10.1016/s0378-4347(01)00169-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A non-radioactive micro-assay for the cyclic phosphodiesterase reaction catalyzed by Bacillus cereus phosphatidylinositol-specific phospholipase C is described. The assay involves high-performance thin-layer chromatography on silica gel to resolve the substrate (myo-inositol 1,2-cyclic phosphate) and the product (myo-inositol 1-phosphate), followed by detection with a lead tetraacetate-fluorescein stain. The quantitation of these inositol phosphates in sample spots relative to a series of standards is accomplished by analysis of the fluorescent plate image with a commercial phosphoimager and associated software. The experimental considerations for reliable quantitation of inositol monophosphates in the range of 0.1 to 50 nmol are presented.
Collapse
Affiliation(s)
- K K Hedberg
- Department of Chemistry, University of Oregon, Eugene 97403, USA
| | | | | | | |
Collapse
|
30
|
Griffith OH, Ryan M. Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1441:237-54. [PMID: 10570252 DOI: 10.1016/s1388-1981(99)00153-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) is a small, water-soluble enzyme that cleaves the natural membrane lipids PI, lyso-PI, and glycosyl-PI. The crystal structure, NMR and enzymatic mechanism of bacterial PI-PLCs are reviewed. These enzymes consist of a single domain folded as a (betaalpha)(8)-barrel (TIM barrel), are calcium-independent, and interact weakly with membranes. Sequence similarity among PI-PLCs from different bacterial species is extensive, and includes the residues involved in catalysis. Bacterial PI-PLCs are structurally similar to the catalytic domain of mammalian PI-PLCs. Comparative studies of both prokaryotic and eukaryotic isozymes have proved useful for the identification of distinct regions of the proteins that are structurally and functionally important.
Collapse
Affiliation(s)
- O H Griffith
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
31
|
Zhou C, Horstman D, Carpenter G, Roberts MF. Action of phosphatidylinositol-specific phospholipase Cgamma1 on soluble and micellar substrates. Separating effects on catalysis from modulation of the surface. J Biol Chem 1999; 274:2786-93. [PMID: 9915811 DOI: 10.1074/jbc.274.5.2786] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of PI-PLCgamma1 toward a water-soluble substrate (inositol 1,2-cyclic phosphate, cIP) and phosphatidylinositol (PI) in detergent mixed micelles were monitored by 31P NMR spectroscopy. That cIP is also a substrate (Km = approximately 15 mM) implies a two-step mechanism (intramolecular phosphotransferase reaction to form cIP followed by cyclic phosphodiesterase activity to form inositol-1-phosphate (I-1-P)). PI is cleaved by PI-PLCgamma1 to form cIP and I-1-P with the enzyme specific activity and ratio of products (cIP/I-1-P) regulated by assay temperature, pH, Ca2+, and other amphiphilic additives. Cleavage of both cIP and PI by the enzyme is optimal at pH 5. The effect of Ca2+ on PI-PLCgamma1 activity is unique compared with other isozymes enzymes: Ca2+ is necessary for the activity and low Ca2+ activates the enzyme; however, high Ca2+ inhibits PI-PLCgamma1 hydrolysis of phosphoinositides (but not cIP) with the extent of inhibition dependent on pH, substrate identity (cIP or PI), substrate presentation (e.g. detergent matrix), and substrate surface concentration. This inhibition of PI-PLCgamma1 by high Ca2+ is proposed to derive from the divalent metal ion-inducing clustering of the PI and reducing its accessibility to the enzyme. Amphiphilic additives such as phosphatidic acid, fatty acid, and sodium dodecylsulfate enhance PI cleavage in micelles at pH 7.5 but not at pH 5.0; they have no effect on cIP hydrolysis at either pH value. These different kinetic patterns are used to propose a model for regulation of the enzyme. A key hypothesis is that there is a pH-dependent conformational change in the enzyme that controls accessibility of the active site to both water-soluble cIP and interfacially organized PI. The low activity enzyme at pH 7.5 can be activated by PA (or phosphorylation by tyrosine kinase). However, this activation requires lipophilic substrate (PI) present because cIP hydrolysis is not enhanced in the presence of PA.
Collapse
Affiliation(s)
- C Zhou
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|
32
|
Chen L, Spiliotis ET, Roberts MF. Biosynthesis of Di-myo-inositol-1,1'-phosphate, a novel osmolyte in hyperthermophilic archaea. J Bacteriol 1998; 180:3785-92. [PMID: 9683472 PMCID: PMC107359 DOI: 10.1128/jb.180.15.3785-3792.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Biosynthesis of di-myo-inositol-1,1'-phosphate (DIP) is proposed to occur with myo-inositol and myo-inositol 1-phosphate (I-1-P) used as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol then generates DIP. The sole known biosynthetic pathway of inositol in all organisms is the conversion of D-glucose-6-phosphate to myo-inositol. This conversion requires two key enzymes: L-I-1-P synthase and I-1-P phosphatase. Enzymatic assays using 31P nuclear magnetic resonance spectroscopy as well as a colorimetric assay for inorganic phosphate have confirmed the occurrence of L-I-1-P synthase and a moderately specific I-1-P phosphatase. The enzymatic reaction that couples CDP-I with myo-inositol to generate DIP has also been detected in Methanococcus igneus. 13C labeling studies with [2,3-13C]pyruvate and [3-13C]pyruvate were used to examine this pathway in M. igneus. Label distribution in DIP was consistent with inositol units formed from glucose-6-phosphate, but the label in the glucose moiety was scrambled via transketolase and transaldolase activities of the pentose phosphate pathway.
Collapse
Affiliation(s)
- L Chen
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA
| | | | | |
Collapse
|
33
|
Hendrickson HS. Continuous spectrophotometric assay of mammalian phosphoinositide-specific phospholipase Cdelta1 with a thiophosphate substrate analog. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:16-22. [PMID: 9593806 DOI: 10.1016/s0005-2760(98)00025-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1,2-Dimyristoyloxypropane-3-thiophospho(1D-1-myo-inositol) (D-thio-DMPI) was used as a substrate for the continuous assay of phosphoinositide-specific phospholipase C (PI-PLC). Its activity with a Delta(1-132) deletion mutant of mammalian PI-PLCdelta1 is about one-fourth that with PI under similar conditions. Optimal conditions for the assay include 0.2 mM substrate, 0.2 mM Ca2+, and a mole ratio of hexadecylphosphocholine detergent to substrate of 2.0. A minimum of about 60 ng of pure enzyme can be detected. The apparent bulk Km for PI-PLC with D-thio-DMPI under these conditions is about 6 microM. Enzyme activity as a function of surface concentration of substrate shows no sign of saturation up to the maximum mole fraction.
Collapse
Affiliation(s)
- H S Hendrickson
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, WA 98195-1700, USA.
| |
Collapse
|
34
|
Geng D, Chura J, Roberts MF. Activation of phospholipase D by phosphatidic acid. Enhanced vesicle binding, phosphatidic acid-Ca2+ interaction, or an allosteric effect? J Biol Chem 1998; 273:12195-202. [PMID: 9575167 DOI: 10.1074/jbc.273.20.12195] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of bacterial phospholipase D (PLD), a Ca2+-dependent enzyme, toward phosphatidylcholine bilayers was enhanced 7-fold by incorporation of 10 mol % phosphatidic acid (PA) in the vesicle bilayer. Addition of other negatively charged lipids such as phosphatidylinositol, phosphatidylmethanol, and oleic acid either inhibited or had no effect on enzyme activity. Only negatively charged lipids with a free phosphate group, phosphatidylinositol 4-phosphate and lyso-PA, had the same effect as PA on enzyme activity. Changes in vesicle curvature and fusion were not the reason for PA activation; rather, a metal ion-induced lateral segregation of PA in the vesicle bilayer correlated with PLD activation. Significant PA activation was also observed with monomer phosphatidylcholine substrate upon the addition of PA vesicles. The PA activation was caused by Ca2+.PA interacting with PLD at an allosteric site other than active site.
Collapse
Affiliation(s)
- D Geng
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA
| | | | | |
Collapse
|
35
|
Heinz DW, Essen LO, Williams RL. Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J Mol Biol 1998; 275:635-50. [PMID: 9466937 DOI: 10.1006/jmbi.1997.1490] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are ubiquitous enzymes that catalyse the hydrolysis of phosphoinositides to inositol phosphates and diacylglycerol (DAG). Whereas the eukaryotic PI-PLCs play a central role in most signal transduction cascades by producing two second messengers, inositol-1,4,5-trisphosphate and DAG, prokaryotic PI-PLCs are of interest because they act as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs consist of a single domain of 30 to 35 kDa, while the much larger eukaryotic enzymes (85 to 150 kDa) are organized in several distinct domains. The catalytic domain of eukaryotic PI-PLCs is assembled from two highly conserved polypeptide stretches, called regions X and Y, that are separated by a divergent linker sequence. There is only marginal sequence similarity between the catalytic domain of eukaryotic and prokaryotic PI-PLCs. Recently the crystal structures of a bacterial and a eukaryotic PI-PLC have been determined, both in complexes with substrate analogues thus enabling a comparison of these enzymes in structural and mechanistic terms. Eukaryotic and prokaryotic PI-PLCs contain a distorted (beta alpha)8-barrel as a structural motif with a surprisingly large structural similarity for the first half of the (beta alpha)8-barrel and a much weaker similarity for the second half. The higher degree of structure conservation in the first half of the barrel correlates with the presence of all catalytic residues, in particular two catalytic histidine residues, in this portion of the enzyme. The second half contributes mainly to the features of the substrate binding pocket that result in the distinct substrate preferences exhibited by the prokaryotic and eukaryotic enzymes. A striking difference between the enzymes is the utilization of a catalytic calcium ion that electrostatically stabilizes the transition state in eukaryotic enzymes, whereas this role is filled by an analogously positioned arginine in bacterial PI-PLCs. The catalytic domains of all PI-PLCs may share not only a common fold but also a similar catalytic mechanism utilizing general base/acid catalysis. The conservation of the topology and parts of the active site suggests a divergent evolution from a common ancestral protein.
Collapse
Affiliation(s)
- D W Heinz
- Institut für Organische Chemie und Biochemie, Universität Freiburg, Germany
| | | | | |
Collapse
|
36
|
Zhou C, Roberts MF. Diacylglycerol partitioning and mixing in detergent micelles: relevance to enzyme kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:273-86. [PMID: 9366244 DOI: 10.1016/s0005-2760(97)00066-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For many of the enzymes that utilize or produce diacylglycerols, detergent mixed micelles are often used in assay systems to solubilize the lipophilic substrates or products. The assumption is often made that the diacylglycerol (DAG) is solubilized and well mixed throughout the population of micelles during the time course of the assay. In the present work the partitioning and exchange dynamics of diacylglycerols (from dihexanoyl-DAG to didecanoyl-DAG) in a variety of detergent micelles have been studied by NMR and fluorescence methods. In all detergents, the longer the DAG chain lengths, the more detergent is required for solubilization. However, efficiency of solubilization varies tremendously with Triton X-100 the most efficient (i.e. the least detergent is required), and deoxycholate the least efficient in solubilizing DAG. The mixing and exchange dynamics of pyrene-labeled DAG molecules in these micelles (measured by stopped-flow fluorescence) were fastest for Triton X-100 and slowest with charged bile salt micelles. Of the detergent systems characterized, Triton X-100 appears to be the optimal detergent for use in assays of enzymes that interact with DAG (beta-octylglucoside and diheptanoylphosphatidylcholine have good exchange dynamics, but higher amounts of these detergents are needed to solubilize DAG). Bile salt micelles provide the least solubilization and the slowest exchange kinetics (so slow that this could be a significant problem in some enzyme assays). This information on DAG behavior in micelles is discussed with respect to assays of an enzyme that generates DAG as product (phospholipase C) and one that uses DAG as substrate (DAG kinase). Although slow exchange of DAG occurs in some micelle systems, this does not appear to be a rate-limiting step in the kinetics for either of these enzymes.
Collapse
Affiliation(s)
- C Zhou
- Mekert Chemistry Center, Boston College, Chestnut Hill, MA 02167, USA
| | | |
Collapse
|
37
|
Hendrickson HS, Giles AN, Vos SE. Activity of phosphatidylinositol-specific phospholipase C from Bacillus cereus with thiophosphate analogs of dimyristoylphosphatidylinositol. Chem Phys Lipids 1997; 89:45-53. [PMID: 9353901 DOI: 10.1016/s0009-3084(97)00059-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) was studied with sonicated dispersions of a thiophosphate analog of phosphatidylinositol, 1, 2-dimyristoyloxypropane-3-thiophospho(1D-1-myo-inositol) (D-thio-DMPI). Kinetic parameters were derived from the rate as a function of bulk lipid concentration at constant saturating surface concentration of substrate (case I), and as a function of surface concentration of substrate at a constant saturating bulk concentration of lipid (case II). The substrate, D-thio-DMPI, was diluted with L-thio-DMPI or dimyristoyl phosphatidylmethanol (DMPM). In the presence of L-thio-DMPI, values for Vmax = 133 mumol min-1 mg-1, Ks' (the apparent dissociation constant for the enzyme-interface complex) = 0.097 mM, and Km* (the apparent interfacial Michaelis constant) = 0.22 mol fraction were obtained. DMPM caused enzyme inhibition in case I but no inhibition in case II. L-Thio-DMPI is an ideal neutral diluent with which to study the kinetics of PI-PLC.
Collapse
Affiliation(s)
- H S Hendrickson
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|