1
|
Silva EBF, Barbosa IJF, Barreto HM, Siqueira-Júnior JP. Modulation of the UVB-induced lethality by furocoumarins in Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:260-3. [PMID: 24362322 DOI: 10.1016/j.jphotobiol.2013.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022]
Abstract
Furocumarins (FCs) are photoactive compounds capable of binding to DNA, and once excited by UVA light (∼365nm), they form photoadducts which can lead to mutagenicity and lethality. However, the biological effects of FCs combined with UVB light (312nm) is still little investigated. In the present study, the lethal effect of UVB light alone and combined with different concentrations of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and 3-carbethoxypsoralen (3-CPs) was evaluated in a strain of Staphylococcus aureus. 8-MOP-UVB and TMP-UVB were more effective in inducing lethality compared to UVB alone, indicating that these FCs act as photosensitizing agents for UVB. The increase in concentration of 8-MOP resulted in a greater mortality. On the contrary, a decrease in mortality was found with an increase in TMP concentration. 3-CPs protected bacteria against damage induced by UVB, which can be attributed to the inhibition of cyclobutyl pyrimidine dimer formation. The different modulatory effects on lethality induced by UVB shown by the FCs tested could be related to differences in the specificity of each compound for particular nucleotide sequences, as well as other chemical characteristics of each molecule could influence the number and types of adducts formed, contributing to the photosensitizing or photoprotective effects observed.
Collapse
Affiliation(s)
- Emanuelle B F Silva
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Ideltônio J F Barbosa
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Humberto M Barreto
- Departamento de Ciências da Natureza, Universidade Federal do Piauí, Floriano, Brazil
| | - José P Siqueira-Júnior
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
2
|
Hanawa F, Okamoto M, Towers GHN. Antimicrobial DNA-binding Photosensitizers from the Common Rush, Juncus effusus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760051adbpft2.0.co2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Hovest MG, Brüggenolte N, Hosseini KS, Krieg T, Herrmann G. Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres. Mol Biol Cell 2006; 17:1758-67. [PMID: 16436511 PMCID: PMC1415309 DOI: 10.1091/mbc.e05-08-0701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (PUVA) induces senescence. In the present study, we demonstrate that senescence after PUVA depends on DNA interstrand cross-link (ICL) formation that activates ATR kinase. ATR is necessary for the manifestation and maintenance of the senescent phenotype, because depletion of ATR expression before PUVA prevents induction of senescence, and reduction of ATR expression in PUVA-senesced fibroblasts releases cells from growth arrest. We find an ATR-dependent phosphorylation of the histone H2AX (gamma-H2AX). After PUVA, ATR and gamma-H2AX colocalize in multiple nuclear foci. After several days, only few predominantly telomere-localized foci persist and telomeric DNA can be coimmunoprecipitated with ATR from PUVA-senesced fibroblasts. We thus identify ATR as a novel mediator of telomere-dependent senescence in response to ICL induced by photoactivated psoralens.
Collapse
|
4
|
Sridharan D, Brown M, Lambert WC, McMahon LW, Lambert MW. Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J Cell Sci 2003; 116:823-35. [PMID: 12571280 DOI: 10.1242/jcs.00294] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The events responsible for repair of DNA interstrand cross-links in mammalian cells, the proteins involved and their interactions with each other are poorly understood. The present study demonstrates that the structural protein nonerythroid alpha spectrin (alphaSpIISigma*), present in normal human cell nuclei, plays an important role in repair of DNA interstrand cross-links. These results show that alphaSpIISigma* relocalizes to nuclear foci after damage of normal human cells with the DNA interstrand cross-linking agent 8-methoxypsoralen plus ultraviolet A (UVA) light and that FANCA and the known DNA repair protein XPF localize to the same nuclear foci. That alphaSpIISigma* is essential for this re-localization is demonstrated by the finding that in cells from patients with Fanconi anemia complementation group A (FA-A), which have decreased ability to repair DNA interstrand cross-links and decreased levels of alphaSpIISigma*, there is a significant reduction in formation of damage-induced XPF as well as alphaSpIISigma* nuclear foci, even though levels of XPF are normal in these cells. In corrected FA-A cells, in which levels of alphaSpIISigma* are restored to normal, numbers of damage-induced nuclear foci are also returned to normal. Co-immunoprecipitation studies show that alphaSpIISigma*, FANCA and XPF co-immunoprecipitate with each other from normal human nuclear proteins. These results demonstrate that alphaSpIISigma*, FANCA and XPF interact with each other in the nucleus and indicate that there is a close functional relationship between these proteins. These studies suggest that an important role for alphaSpIISigma* in the nucleus is to act as a scaffold, aiding in recruitment and alignment of repair proteins at sites of damage.
Collapse
Affiliation(s)
- Deepa Sridharan
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School and the Graduate School of Biomedical Sciences, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
5
|
Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 2002; 99:5848-53. [PMID: 11972036 PMCID: PMC122865 DOI: 10.1073/pnas.082193799] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Park Road 1-C, Smithville, TX 78957, USA.
| | | | | | | | | |
Collapse
|
6
|
Kroumpouzos G, Travers R, Allan A. Generalized hyperpigmentation with daunorubicin chemotherapy. J Am Acad Dermatol 2002; 46:S1-3. [PMID: 11807454 DOI: 10.1067/mjd.2002.104509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daunorubicin has been reported to cause hyperpigmentation of sun-exposed skin and/or transverse nail pigmentation (3 cases). We report a case of an African American man who had an atypical pattern of generalized hyperpigmentation develop that involved many sun-protected skin areas 2 weeks after daunorubicin treatment. Histopathology of hyperpigmented skin showed increased melanin granules in all epidermal layers. The mechanisms by which daunorubicin may increase skin pigmentation are discussed.
Collapse
Affiliation(s)
- George Kroumpouzos
- Department of Dermatology, Boston Medical Center, Boston University School of Medicine, MA, USA.
| | | | | |
Collapse
|
7
|
Noll DM, Noronha AM, Miller PS. Synthesis and characterization of DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link. J Am Chem Soc 2001; 123:3405-11. [PMID: 11472110 DOI: 10.1021/ja003340t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Short DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C(4) overhang at their 5'-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5'-end with O(4)-triazoyl-2'-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5'-dimethoxytrityl-3'-O-tert-butyldimethylsilyl-N(4)-(2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5'-hydroxyl groups of the cross-link using protected nucleoside 3'-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3'-direction from the resulting 3'-hydroxyl of the cross-link using protected nucleoside 5'-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A(260) profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.
Collapse
Affiliation(s)
- D M Noll
- Department of Biochemistry and Molecular Biology, School of Hygiene and Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
8
|
Intody Z, Perkins BD, Wilson JH, Wensel TG. Blocking transcription of the human rhodopsin gene by triplex-mediated DNA photocrosslinking. Nucleic Acids Res 2000; 28:4283-90. [PMID: 11058128 PMCID: PMC113126 DOI: 10.1093/nar/28.21.4283] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To explore the ability of triplex-forming oligodeoxyribonucleotides (TFOs) to inhibit genes responsible for dominant genetic disorders, we used two TFOs to block expression of the human rhodopsin gene, which encodes a G protein-coupled receptor involved in the blinding disorder autosomal dominant retinitis pigmentosa. Psoralen-modified TFOs and UVA irradiation were used to form photoadducts at two target sites in a plasmid expressing a rhodopsin-EGFP fusion, which was then transfected into HT1080 cells. Each TFO reduced rhodopsin-GFP expression by 70-80%, whereas treatment with both reduced expression by 90%. Expression levels of control genes on either the same plasmid or one co-transfected were not affected by the treatment. Mutations at one TFO target eliminated its effect on transcription, without diminishing inhibition by the other TFO. Northern blots indicated that TFO-directed psoralen photoadducts blocked progression of RNA polymerase, resulting in truncated transcripts. Inhibition of gene expression was not relieved over a 72 h period, suggesting that TFO-induced psoralen lesions are not repaired on this time scale. Irradiation of cells after transfection with plasmid and psoralen-TFOs produced photoadducts inside the cells and also inhibited expression of rhodopsin-EGFP. We conclude that directing DNA damage with psoralen-TFOs is an efficient and specific means for blocking transcription from the human rhodopsin gene.
Collapse
Affiliation(s)
- Z Intody
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
Kumaresan KR, Lambert MW. Fanconi anemia, complementation group A, cells are defective in ability to produce incisions at sites of psoralen interstrand cross-links. Carcinogenesis 2000; 21:741-51. [PMID: 10753211 DOI: 10.1093/carcin/21.4.741] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hypersensitivity of Fanconi anemia, complementation group A, (FA-A) cells to agents which produce DNA interstrand cross-links correlates with a defect in their ability to repair this type of damage. In order to more clearly elucidate this repair defect, chromatin-associated protein extracts from FA-A cells were examined for ability to endonucleolytically produce incisions in DNA at sites of interstrand cross-links. A defined 140 bp DNA substrate was constructed with a single site-specific monoadduct or interstrand cross-link produced by 4,5',8-trimethylpsoralen (TMP) plus long wavelength (UVA) light. Our results show that FA-A cells are defective in ability to produce dual incisions in DNA at sites of interstrand cross-links. Specifically, there is defective incision on the 3'- and 5'-sides of both the furan and pyrone sides of the cross-link. This defect is corrected in FA-A cells transduced with a retroviral vector expressing FANCA cDNA. At the site of a TMP monoadduct, FA-A cells can introduce incisions on both the 3'- and 5'-sides of the furan side monoadduct, but are defective in ability to produce these incisions on the pyrone side monoadduct. These studies also indicate that XPF is involved in production of the 5' incision by the normal extracts on these substrates. These results correlate with our previous work, which showed that FA-A cells are mainly defective in ability to repair psoralen interstrand cross-links with a lesser defect in ability to repair psoralen monoadducts. This defect in endonucleolytic incision at sites of TMP interstrand cross-links could be related to reduced levels of non-erythroid alpha spectrin (alphaSpIISigma*) in the extracts from FA-A cells. alphaSpIISigma* could act as a scaffold to align proteins involved in cross-link repair and enhance their interactions; a deficiency in alphaSpIISigma* could thus lead to reduced efficiency of repair and the decreased levels of incisions we observe at sites of interstrand cross-links in FA-A cells.
Collapse
Affiliation(s)
- K R Kumaresan
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
10
|
Lambert MW, Lambert WC. DNA repair and chromatin structure in genetic diseases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:257-310. [PMID: 10506834 DOI: 10.1016/s0079-6603(08)60725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interaction of DNA repair proteins with damaged DNA in eukaryotic cells is influenced by the packaging of DNA into chromatin. The basic repeating unit of chromatin, the nucleosome, plays an important role in regulating accessibility of repair proteins to sites of damage in DNA. There are a number of different pathways fundamental to the DNA repair process. Elucidation of the proteins involved in these pathways and the mechanisms they utilize for interacting with damaged nucleosomal and nonnucleosomal DNA has been aided by studies of genetic diseases where there are defects in the DNA repair process. Two of these diseases are xeroderma pigmentosum (XP) and Fanconi anemia (FA). Cells from patients with these disorders are similar in that they have defects in the initial steps of the repair process. However, there are a number of important differences in the nature of these defects. One of these is in the ability of repair proteins from XP and FA cells to interact with damaged nucleosomal DNA. In XP complementation group A (XPA) cells, for example, endonucleases present in a chromatin-associated protein complex involved in the initial steps in the repair process are defective in their ability to incise damaged nucleosomal DNA, but, like the normal complexes, can incise damaged naked DNA. In contrast, in FA complementation group A (FA-A) cells, these complexes are equally deficient in their ability to incise damaged naked and similarly damaged nucleosomal DNA. This ability to interact with damaged nucleosomal DNA correlates with the mechanism of action these endonucleases use for locating sites of damage. Whereas the FA-A and normal endonucleases act by a processive mechanism of action, the XPA endonucleases locate sites of damage distributively. Thus the mechanism of action utilized by a DNA repair enzyme may be of critical importance in its ability to interact with damaged nucleosomal DNA.
Collapse
Affiliation(s)
- M W Lambert
- Department of Pathology, UMDNJ-New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
11
|
Salles B, Rodrigo G, Li RY, Calsou P. DNA damage excision repair in microplate wells with chemiluminescence detection: development and perspectives. Biochimie 1999; 81:53-8. [PMID: 10214910 DOI: 10.1016/s0300-9084(99)80038-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.
Collapse
Affiliation(s)
- B Salles
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, Toulouse, France
| | | | | | | |
Collapse
|
12
|
Frit P, Calsou P, Chen DJ, Salles B. Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. J Mol Biol 1998; 284:963-73. [PMID: 9837719 DOI: 10.1006/jmbi.1998.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, Toulouse, 31077, France
| | | | | | | |
Collapse
|
13
|
Bessho T, Mu D, Sancar A. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol Cell Biol 1997; 17:6822-30. [PMID: 9372913 PMCID: PMC232538 DOI: 10.1128/mcb.17.12.6822] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.
Collapse
Affiliation(s)
- T Bessho
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
14
|
Abstract
Among DNA repair pathways, nucleotide excision repair (NER) is able to recognize and process a wide variety of DNA lesions. The NER mechanism can be summarized in two stages: incision/excision of the lesion and DNA repair synthesis. Here, we have assessed the repair synthesis activity of protein extracts from different rat tissues by an in vitro biochemical assay that reproduces the entire NER reaction. The protein extraction procedure was adapted to rat tissues and the biochemical parameters of the assay (high salt concentration, addition of EGTA) in order to minimize non-specific nuclease activity which allows the measurement of repair activity. Using this repair assay we detected a small increase in the extent of repair synthesis in liver compared to brain and lung tissue protein extracts. Similar results were obtained using a derivative assay that allows the measurement of the incision activity of tissue protein extracts with lower incision activity in lung tissue extract.
Collapse
Affiliation(s)
- F Coudoré
- Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, Toulouse, France
| | | | | |
Collapse
|