1
|
Tang D, Xu J, Li Y, Zhao P, Kong X, Hu H, Liang S, Tang C, Liu Z. Molecular mechanisms of centipede toxin SsTx-4 inhibition of inwardly rectifying potassium channels. J Biol Chem 2021; 297:101076. [PMID: 34391777 PMCID: PMC8413892 DOI: 10.1016/j.jbc.2021.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Inwardly rectifying potassium channels (Kirs) are important drug targets, with antagonists for the Kir1.1, Kir4.1, and pancreatic Kir6.2/SUR1 channels being potential drug candidates for treating hypertension, depression, and diabetes, respectively. However, few peptide toxins acting on Kirs are identified and their interacting mechanisms remain largely elusive yet. Herein, we showed that the centipede toxin SsTx-4 potently inhibited the Kir1.1, Kir4.1, and Kir6.2/SUR1 channels with nanomolar to submicromolar affinities and intensively studied the molecular bases for toxin–channel interactions using patch-clamp analysis and site-directed mutations. Other Kirs including Kir2.1 to 2.4, Kir4.2, and Kir7.1 were resistant to SsTx-4 treatment. Moreover, SsTx-4 inhibited the inward and outward currents of Kirs with different potencies, possibly caused by a K+ “knock-off” effect, suggesting the toxin functions as an out pore blocker physically occluding the K+-conducting pathway. This conclusion was further supported by a mutation analysis showing that M137 located in the outer vestibule of the Kir6.2/ΔC26 channel was the key residue mediating interaction with SsTx-4. On the other hand, the molecular determinants within SsTx-4 for binding these Kir channels only partially overlapped, with K13 and F44 being the common key residues. Most importantly, K11A, P15A, and Y16A mutant toxins showed improved affinity and/or selectivity toward Kir6.2, while R12A mutant toxin had increased affinity for Kir4.1. To our knowledge, SsTx-4 is the first characterized peptide toxin with Kir4.1 inhibitory activity. This study provides useful insights for engineering a Kir6.2/SUR1 channel–specific antagonist based on the SsTx-4 template molecule and may be useful in developing new antidiabetic drugs.
Collapse
Affiliation(s)
- Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Jiahui Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yinping Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Haoliang Hu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
3
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
4
|
Bajaj S, Han J. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Front Pharmacol 2019; 10:58. [PMID: 30863305 PMCID: PMC6399158 DOI: 10.3389/fphar.2019.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. Their ubiquitous tissue distribution and the physiological relevancies of their opening and closing suggest that cation channels are particularly attractive drug targets, and years of research has revealed a variety of natural toxins that bind to these channels and alter their function. In this review, we provide an introductory overview of the major cation ion channels: potassium channels, sodium channels and calcium channels, describe their venom-derived peptide modulators, and how these peptides provide great research and therapeutic value to both basic and translational medical research.
Collapse
Affiliation(s)
- Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jingyao Han
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017; 127:161-172. [PMID: 28716449 DOI: 10.1016/j.neuropharm.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Inwardly rectifying K+ (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K+ ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K+-selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca2+-activated and voltage-gated K+ channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
6
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
7
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
8
|
Meneses D, Mateos V, Islas G, Barral J. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation. Synapse 2015; 69:446-52. [DOI: 10.1002/syn.21833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
|
9
|
Senatore A, Guan W, Boone AN, Spafford JD. T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter. J Biol Chem 2014; 289:11952-11969. [PMID: 24596098 DOI: 10.1074/jbc.m114.551473] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T-type (Cav3) channels are categorized as calcium channels, but invertebrate ones can be highly sodium-selective channels. We illustrate that the snail LCav3 T-type channel becomes highly sodium-permeable through exon splicing of an extracellular turret and descending helix in domain II of the four-domain Cav3 channel. Highly sodium-permeable T-type channels are generated without altering the invariant ring of charged residues in the selectivity filter that governs calcium selectivity in calcium channels. The highly sodium-permeant T-type channel expresses in the brain and is the only splice isoform expressed in the snail heart. This unique splicing of turret residues offers T-type channels a capacity to serve as a pacemaking sodium current in the primitive heart and brain in lieu of Nav1-type sodium channels and to substitute for voltage-gated sodium channels lacking in many invertebrates. T-type channels would also contribute substantially to sodium leak conductances at rest in invertebrates because of their large window currents.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wendy Guan
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Adrienne N Boone
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Angsanakul J, Sitprija V. Scorpion venoms, kidney and potassium. Toxicon 2013; 73:81-7. [DOI: 10.1016/j.toxicon.2013.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 01/28/2023]
|
11
|
Towards therapeutic applications of arthropod venom k(+)-channel blockers in CNS neurologic diseases involving memory acquisition and storage. J Toxicol 2012; 2012:756358. [PMID: 22701481 PMCID: PMC3373146 DOI: 10.1155/2012/756358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms.
Collapse
|
12
|
Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 2010; 326:1668-74. [PMID: 20019282 DOI: 10.1126/science.1180310] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inward-rectifier potassium (K+) channels conduct K+ ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb+), strontium (Sr2+), and europium (Eu3+) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K+ channel family.
Collapse
Affiliation(s)
- Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
13
|
King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 2008; 52:264-76. [DOI: 10.1016/j.toxicon.2008.05.020] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/25/2022]
|
14
|
Abstract
Voltage-activated ion channels open and close in response to changes in membrane voltage, a process that is crucial for electrical signaling in the nervous system. The venom from many poisonous creatures contains a diverse array of small protein toxins that bind to voltage-activated channels and modify the gating mechanism. Hanatoxin and a growing number of related tarantula toxins have been shown to inhibit activation of voltage-activated potassium (K(v)) channels by interacting with their voltage-sensing domains. This review summarizes our current understanding of the mechanism by which these toxins alter gating, the location of the toxin receptor within K(v) channels and the disposition of this receptor with respect to the lipid membrane. The conservation of tarantula toxin receptors among voltage-activated ion channels will also be discussed.
Collapse
Affiliation(s)
- Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J Pharmacol Exp Ther 2005; 314:1353-61. [PMID: 15947038 DOI: 10.1124/jpet.105.085928] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K(+) (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1+GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca(2+)-activated large conductance K(+) channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1+GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K(+) channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K(+) channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1+GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca(2+), Mg(2+), Zn(2+), and Ba(2+)) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K(+) currents, but Cs(+)-blocked hyperpolarization-activated inward currents including I(H) were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca(2+)-activated K(+) channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Australia.
| | | | | | | |
Collapse
|
16
|
Liu H, Li Y, Song M, Tan X, Cheng F, Zheng S, Shen J, Luo X, Ji R, Yue J, Hu G, Jiang H, Chen K. Structure-Based Discovery of Potassium Channel Blockers from Natural Products. ACTA ACUST UNITED AC 2003; 10:1103-13. [PMID: 14652078 DOI: 10.1016/j.chembiol.2003.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Potassium ion (K(+)) channels are attractive targets for rational drug design. Based upon a three-dimensional model of the eukaryotic K(+) channels, the docking virtual screening approach was employed to search the China Natural Products Database. Compounds were ranked according to the relative binding energy, favorable shape complementarity, and potential of forming hydrogen bonds with the K(+) channel. Four candidate compounds found by virtual screening were investigated by using the whole-cell voltage-clamp recording in rat dissociated hippocampal neurons. When applied extracellularly, compound 1 markedly depressed the delayed rectifier K(+) current (I(K)) and fast transient K(+) current (I(A)), whereas compounds 2, 3, and 4 exerted a more potent and selective inhibitory effect on I(K). Intracellular application of the four compounds had no effect on both the K(+) currents.
Collapse
Affiliation(s)
- Hong Liu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 201203, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schultz JH, Czachurski J, Volk T, Ehmke H, Seller H. Central sympathetic chemosensitivity and Kir1 potassium channels in the cat. Brain Res 2003; 963:113-20. [PMID: 12560116 DOI: 10.1016/s0006-8993(02)03952-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The possible involvement of potassium channels in central chemosensitivity, with special reference to the Kir1.1 potassium channel, was investigated by studying the CO(2) response of presympathetic neurons in the rostroventrolateral medulla (RVLM) in the absence or presence of various K(+) channel inhibitors. Synaptic input to RVLM neurons was blocked by local injection of omega-agatoxin and omega-conotoxin. Activity of RVLM neurons was measured by recording the electrical activity in preganglionic (WR-T(3)) or postganglionic (renal) sympathetic nerves after perfusion of the lower brainstem via the left vertebral artery with CO(2)-enriched saline solution. Unspecific K(+) channel blockade by BaCl(2) reduced the excitatory response of sympathetic activity after CO(2)-perfusion to 56% of control. A quantitatively similar inhibition of the central CO(2) response was obtained after administration of 9-fluorenylmethylchloroformate (FMOC-Cl) which eliminates pH sensitivity of Kir1 and Kir4.1. Furthermore, two structurally different Kir1 inhibiting toxins, tertiapin and Lq2, also reduced the central CO(2) response to approximately 50% of control. In contrast, charybdotoxin (CTX) had no effect on the CO(2) response. Using RT-PCR the expression of mRNA homologous to rat Kir1 mRNA was identified in the cat medulla oblongata. These data suggest that a modulation of potassium channel activity possibly via Kir1 may contribute to central chemosensitivity.
Collapse
Affiliation(s)
- Jobst Hendrik Schultz
- Institut für Vegetative Physiologie und Pathophysiologie, Universität Hamburg, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
19
|
Takeuchi K, Park E, Lee C, Kim J, Takahashi H, Swartz K, Shimada I. Solution structure of omega-grammotoxin SIA, a gating modifier of P/Q and N-type Ca(2+) channel. J Mol Biol 2002; 321:517-26. [PMID: 12162963 DOI: 10.1016/s0022-2836(02)00595-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
omega-Grammotoxin SIA (GrTx) is a 36 amino acid residue protein toxin from spider venom that inhibits P/Q and N-type voltage-gated Ca(2+) channels by modifying voltage-dependent gating. We determined the three-dimensional structure of GrTx using NMR spectroscopy. The toxin adopts an "inhibitor cystine knot" motif composed of two beta-strands (Leu19-Cys21 and Cys30-Trp32) and a beta-bulge (Trp6, Gly7-Cys30) with a +2x, -1 topology, which are connected by four chain reversals. Although GrTx was originally identified as an inhibitor of voltage-gated Ca(2+) channel, it also binds to K(+) channels with lower affinity. A similar cross-reaction was observed for Hanatoxin1 (HaTx), which binds to the voltage-sensing domains of K(+) and Ca(2+) channels with different affinities. A detailed comparison of the GrTx and HaTx structures identifies a conserved face containing a large hydrophobic patch surrounded by positively charged residues. The slight differences in the surface shape, which result from the orientation of the surface aromatic residues and/or the distribution of the charged residues, may explain the differences in the binding affinity of these gating modifiers with different voltage-gated ion channels.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Cho H, Youm JB, Ryu SY, Earm YE, Ho WK. Inhibition of acetylcholine-activated K(+) currents by U73122 is mediated by the inhibition of PIP(2)-channel interaction. Br J Pharmacol 2001; 134:1066-72. [PMID: 11682455 PMCID: PMC1573039 DOI: 10.1038/sj.bjp.0704347] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. We have investigated the effect of U73122, a specific inhibitor of phospholipase C (PLC), on acetylcholine-activated K(+) currents (I(KACh)) in mouse atrial myocytes. 2. In perforated patch clamp mode, I(KACh) was activated by 10 microM acetylcholine. When atrial myocytes were pretreated with U73122 or U73343, I(KACh) was inhibited dose-dependently (half-maximal inhibition at 0.12+/-0.0085 and 0.16+/-0.0176 microM, respectively). The current-voltage relationships for I(KACh) in the absence and in the presence of U73122 showed that the inhibition occurred uniformly from -120 to +40 mV, indicating a voltage-independent inhibition. 3. When U73122 was applied after I(KACh) reached steady-state, a gradual decrease in I(KACh) was observed. The time course of the current decrease was well fitted to a single exponential, and the rate constant was proportional to the concentration of U73122. 4. When K(ACh) channels were directly activated by adding 1 mM GTP gamma S to the bath solution in inside-out patches, U73122 (1 microM) decreased the open probability significantly without change in mean open time. When K(ACh) channels were activated independently of G-protein activation by 20 mM Na(+), open probability was also inhibited by U73122. 5. Voltage-activated K(+) currents and inward rectifying K(+) currents were not affected by U73122. 6. These findings show that inhibition by U73122 and U73343 of K(ACh) channels occurs at a level downstream of the action of G beta gamma or Na(+) on channel activation. The interference with phosphatidylinositol 4,5-bisphosphate (PIP(2))-channel interaction can be suggested as a most plausible mechanism.
Collapse
Affiliation(s)
- Hana Cho
- National Research Laboratory for Cellular Signalling, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
- Department of Physiology & Biophysics, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
| | - Jae Boum Youm
- Department of Physiology, Cheju National University College of Medicine, Ara 1-1, Cheju, Korea
| | - Shin Young Ryu
- National Research Laboratory for Cellular Signalling, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
- Department of Physiology & Biophysics, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
| | - Yung E Earm
- National Research Laboratory for Cellular Signalling, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
- Department of Physiology & Biophysics, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
| | - Won-Kyung Ho
- National Research Laboratory for Cellular Signalling, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
- Department of Physiology & Biophysics, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul, 110-799, Korea
- Author for correspondence: .
| |
Collapse
|
21
|
Abstract
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.
Collapse
Affiliation(s)
- Z Lu
- Department of Physiology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|
22
|
Zhou W, Arrabit C, Choe S, Slesinger PA. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 2001; 98:6482-7. [PMID: 11353868 PMCID: PMC33494 DOI: 10.1073/pnas.111447798] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Local anesthetics, commonly used for treating cardiac arrhythmias, pain, and seizures, are best known for their inhibitory effects on voltage-gated Na(+) channels. Cardiovascular and central nervous system toxicity are unwanted side-effects from local anesthetics that cannot be attributed to the inhibition of only Na(+) channels. Here, we report that extracellular application of the membrane-permeant local anesthetic bupivacaine selectively inhibited G protein-gated inwardly rectifying K(+) channels (GIRK:Kir3) but not other families of inwardly rectifying K(+) channels (ROMK:Kir1 and IRK:Kir2). Bupivacaine inhibited GIRK channels within seconds of application, regardless of whether channels were activated through the muscarinic receptor or directly via coexpressed G protein G(beta)gamma subunits. Bupivacaine also inhibited alcohol-induced GIRK currents in the absence of functional pertussis toxin-sensitive G proteins. The mutated GIRK1 and GIRK2 (GIRK1/2) channels containing the high-affinity phosphatidylinositol 4,5-bisphosphate (PIP(2)) domain from IRK1, on the other hand, showed dramatically less inhibition with bupivacaine. Surprisingly, GIRK1/2 channels with high affinity for PIP(2) were inhibited by ethanol, like IRK1 channels. We propose that membrane-permeant local anesthetics inhibit GIRK channels by antagonizing the interaction of PIP(2) with the channel, which is essential for G(beta)gamma and ethanol activation of GIRK channels.
Collapse
Affiliation(s)
- W Zhou
- Graduate Program in Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
23
|
Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J 2001; 80:1659-69. [PMID: 11259281 PMCID: PMC1301357 DOI: 10.1016/s0006-3495(01)76138-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The association of the scorpion toxin Lq2 and a potassium ion (K(+)) channel has been studied using the Brownian dynamics (BD) simulation method. All of the 22 available structures of Lq2 in the Brookhaven Protein Data Bank (PDB) determined by NMR were considered during the simulation, which indicated that the conformation of Lq2 affects the binding between the two proteins significantly. Among the 22 structures of Lq2, only 4 structures dock in the binding site of the K(+) channel with a high probability and favorable electrostatic interactions. From the 4 candidates of the Lq2-K(+) channel binding models, we identified a good three-dimensional model of Lq2-K(+) channel complex through triplet contact analysis, electrostatic interaction energy estimation by BD simulation and structural refinement by molecular mechanics. Lq2 locates around the extracellular mouth of the K(+) channel and contacts the K(+) channel using its beta-sheet rather than its alpha-helix. Lys27, a conserved amino acid in the scorpion toxins, plugs the pore of the K(+) channel and forms three hydrogen bonds with the conserved residues Tyr78(A-C) and two hydrophobic contacts with Gly79 of the K(+) channel. In addition, eight hydrogen-bonds are formed between residues Arg25, Cys28, Lys31, Arg34 and Tyr36 of Lq2 and residues Pro55, Tyr78, Gly79, Asp80, and Tyr82 of K(+) channel. Many of them are formed by side chains of residues of Lq2 and backbone atoms of the K(+) channel. Thirteen hydrophobic contacts exist between residues Met29, Asn30, Lys31 and Tyr36 of Lq2 and residues Pro55, Ala58, Gly79, Asp80 and Tyr82 of the K(+) channel. These favorable interactions stabilize the association between the two proteins. These observations are in good agreement with the experimental results and can explain the binding phenomena between scorpion toxins and K(+) channels at the level of molecular structure. The consistency between the BD simulation and the experimental data indicates that our three-dimensional model of Lq2-K(+) channel complex is reasonable and can be used in further biological studies such as rational design of blocking agents of K(+) channels and mutagenesis in both toxins and K(+) channels.
Collapse
Affiliation(s)
- M Cui
- Center for Drug Discovery and Design, State Key Laboratory of New Drug Research, Shanghai Institute of Meteria Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Korolkova YV, Kozlov SA, Lipkin AV, Pluzhnikov KA, Hadley JK, Filippov AK, Brown DA, Angelo K, Strøbaek D, Jespersen T, Olesen SP, Jensen BS, Grishin EV. An ERG channel inhibitor from the scorpion Buthus eupeus. J Biol Chem 2001; 276:9868-76. [PMID: 11136720 DOI: 10.1074/jbc.m005973200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The isolation of the peptide inhibitor of M-type K(+) current, BeKm-1, from the venom of the Central Asian scorpion Buthus eupeus has been described previously (Fillipov A. K., Kozlov, S. A., Pluzhnikov, K. A., Grishin, E. V., and Brown, D. A. (1996) FEBS Lett. 384, 277-280). Here we report the cloning, expression, and selectivity of BeKm-1. A full-length cDNA of 365 nucleotides encoding the precursor of BeKm-1 was isolated using the rapid amplification of cDNA ends polymerase chain reaction technique from mRNA obtained from scorpion telsons. Sequence analysis of the cDNA revealed that the precursor contains a signal peptide of 21 amino acid residues. The mature toxin consists of 36 amino acid residues. BeKm-1 belongs to the family of scorpion venom potassium channel blockers and represents a new subgroup of these toxins. The recombinant BeKm-1 was produced as a Protein A fusion product in the periplasm of Escherichia coli. After cleavage and high performance liquid chromatography purification, recombinant BeKm-1 displayed the same properties as the native toxin. Three BeKm-1 mutants (R27K, F32K, and R27K/F32K) were generated, purified, and characterized. Recombinant wild-type BeKm-1 and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cation Transport Proteins
- Cell Line
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- ERG1 Potassium Channel
- Electrophysiology
- Escherichia coli/metabolism
- Ether-A-Go-Go Potassium Channels
- Humans
- Inhibitory Concentration 50
- KCNQ Potassium Channels
- KCNQ1 Potassium Channel
- Kinetics
- Mass Spectrometry
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames
- Polymerase Chain Reaction
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Potassium Channels, Voltage-Gated
- Protein Sorting Signals
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Recombinant Fusion Proteins/metabolism
- Scorpion Venoms/biosynthesis
- Scorpion Venoms/chemistry
- Scorpion Venoms/genetics
- Scorpions
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Substrate Specificity
- Time Factors
- Trans-Activators
- Transcriptional Regulator ERG
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y V Korolkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997, GSP-7, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li-Smerin Y, Swartz KJ. Localization and molecular determinants of the Hanatoxin receptors on the voltage-sensing domains of a K(+) channel. J Gen Physiol 2000; 115:673-84. [PMID: 10828242 PMCID: PMC2232886 DOI: 10.1085/jgp.115.6.673] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hanatoxin inhibits voltage-gated K(+) channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K(+) channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1-S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K(+) channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K(+) channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20-25 A away from the central pore axis.
Collapse
Affiliation(s)
- Yingying Li-Smerin
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Wu JJ, Dai L, Lan ZD, Chi CW. The gene cloning and sequencing of Bm-12, a chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. Toxicon 2000; 38:661-8. [PMID: 10673158 DOI: 10.1016/s0041-0101(99)00181-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to the known amino acid sequence of Bm-12, a short chain insect neurotoxin from the venom of the scorpion Buthus martensi Karsch (BmK) with considerable primary sequence homology to chlorotoxin, the gene specific primers were designed and synthesized for 3' and 5'RACE (Rapid Amplification of cDNA Ends). The two partial cDNA fragments obtained by 3' and 5'RACE were cloned and sequenced, and the full length cDNA sequence of Bm-12 was then completed by overlapping these two partial cDNA sequences. The predicted amino acid sequence consists of 59 amino acid residues including a putative signal peptide of 24 residues and a mature toxin of 35 residues. The predicted amino acid sequence of Bm-12 was almost consistent with the determined, different only in one residue at position 27, Lys was replaced by Gly. Based on the determined cDNA sequence, and using the total DNA isolated from the scorpion venom glands as a template, the genomic DNA of Bm-12 was also amplified by PCR and sequenced. The genomic DNA sequence revealed an intron of 93 bp present within the signal peptide region.
Collapse
Affiliation(s)
- J J Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Xiong YM, Lan ZD, Wang M, Liu B, Liu XQ, Fei H, Xu LG, Xia QC, Wang CG, Wang DC, Chi CW. Molecular characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsch. Toxicon 1999; 37:1165-80. [PMID: 10400300 DOI: 10.1016/s0041-0101(98)00253-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Besides the neurotoxins active on mammals, a new excitatory insect selective toxin with a mice analgesic activity was found and purified from the venom of the scorpion Buthus martensi Karsch (BmK) (Ji, Y.H., Mansuelle, P., Terakawa, S., Kopeyan, C., Yanaihara, N., Hsu, K., Rochat, H., 1996. Toxicon 34, 987; Luo, M.J., Xiong, Y.M., Wang, M., Wang, D.C., Chi, C.W., 1997. Toxicon 35, 723.). This peptide (designated as BmK IT-AP) is composed of 72 amino acid residues. Its primary structure was determined by automated Edman degradation of the N-terminal part of the reduced and S-carboxamidemethylated protein and its lysylendopeptidase degraded fragments. Based on the determined sequence, the gene specific primers were designed and synthesized for 3' and 5' RACE (rapid amplification of cDNA ends). Their partial cDNA fragments obtained by 3' and 5' RACEwere cloned and sequenced and the full length cDNA sequence of BmK IT-AP was then completed by overlapping their two partial cDNA sequences. It encodes a precursor of 90 amino acid residues: a signal peptide of 18 residues and a mature peptide of 72 residues which are consistent with the determined protein sequence of BmK IT-AP. The genomic DNA of the peptide was also amplified by PCR from the scorpion genomic DNA and sequenced, which is a first report on the genomic structure of a scorpion toxin specific for insects. Its sequence revealed an intron of 590 bp inserted in the end part of the signal peptide. The peptide caused a fast excitatory contraction paralysis on house fly larvae. Furthermore, the peptide also showed an obvious analgesic effect on mice, as assayed by using a twisting test model. This effect of BmK IT-AP well characterized at molecular level is first reported among the known scorpion insect neurotoxins.
Collapse
Affiliation(s)
- Y M Xiong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dart C, Leyland ML, Spencer PJ, Stanfield PR, Sutcliffe MJ. Topology of the pore region of an inward rectifier K+ channel, Kir2.1. Ann N Y Acad Sci 1999; 868:414-7. [PMID: 10414311 DOI: 10.1111/j.1749-6632.1999.tb11303.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C Dart
- Department of Cell Physiology, University of Leicester, UK
| | | | | | | | | |
Collapse
|
29
|
Abstract
Inwardly rectifying potassium channels (K(ir)), comprising four subunits each with two transmembrane domains, M1 and M2, regulate many important physiological processes. We employed a yeast genetic screen to identify functional channels from libraries of K(ir) 2.1 containing mutagenized M1 or M2 domains. Patterns in the allowed sequences indicate that M1 and M2 are helices. Protein-lipid and protein-water interaction surfaces identified by the patterns were verified by sequence minimization experiments. Second-site suppressor analyses of helix packing indicate that the M2 pore-lining inner helices are surrounded by the M1 lipid-facing outer helices, arranged such that the M1 helices participate in subunit-subunit interactions. This arrangement is distinctly different from the structure of a bacterial potassium channel with the same topology and identifies helix-packing residues as hallmark sequences common to all K(ir) superfamily members.
Collapse
Affiliation(s)
- D L Minor
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0725, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Lq2 is a unique scorpion toxin. Acting from the extracellular side, Lq2 blocks the ion conduction pore in not only the voltage- and Ca2+ -activated channels, but also the inward-rectifier K+ channels. This finding argues that the three-dimensional structures of the pores in these K+ channels are similar. However, the amino acid sequences that form the external part of the pore are minimally conserved among the various classes of K+ channels. Because Lq2 can bind to all the three classes of K+ channels, we can use Lq2 as a structural probe to examine how the non-conserved pore-forming sequences are arranged in space to form similar pore structures. In the present study, we determined the three-dimensional structure of Lq2 using nuclear magnetic resonance (NMR) techniques. Lq2 consists of an alpha-helix (residues S10 to L20) and a beta-sheet, connected by an alphabeta3 loop (residues N22 to N24). The beta-sheet has two well-defined anti-parallel strands (residues G26 to M29 and residues K32 to C35), which are connected by a type I' beta-turn centered between residues N30 and K31. The N-terminal segment (residues Z1 to T8) appears to form a quasi-third strand of the beta-sheet.
Collapse
Affiliation(s)
- J G Renisio
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UPR 9039, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Dart C, Leyland ML, Spencer PJ, Stanfield PR, Sutcliffe MJ. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis. J Physiol 1998; 511 ( Pt 1):25-32. [PMID: 9679160 PMCID: PMC2231101 DOI: 10.1111/j.1469-7793.1998.025bi.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have produced a structural model of the pore-forming H5 (or P) region of the strong inward rectifier K+ channel, Kir2.1, based initially on an existing molecular model of the pore region of the voltage-gated K+ channel, Kv1.3. Cysteine-scanning mutagenesis and subsequent blockage by Ag+ was used to test our model by determining the residues in H5 whose side chains line the ion conduction pathway. Mutations made in eight positions within the highly conserved H5 region resulted in apparently non-functional channels. Constructing covalently linked dimers, which carry a cysteine substitution in only one of the linked subunits, rescued six of these mutants; a covalently linked tetramer, carrying a cysteine substitution on only one of the linked subunits, rescued a further mutant. Our results using the dimers and tetramers suggest that residues Thr141, Thr142, Ile143, Tyr145, Phe147 and Cys149 are accessible to externally applied Ag+ (100-200 nM) and therefore that their side chains line the channel pore. We conclude that the topology of the Kir pore is similar, but not identical, to that of Kv channels. Additionally, the molecular model suggests that selectivity may be conferred both by aromatic residues (Tyr145 and Phe147) via cation-pi interactions and by backbone carbonyl groups (Thr142 and Gly144).
Collapse
Affiliation(s)
- C Dart
- Ion Channel Group, Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester LE1 9HN, UK
| | | | | | | | | |
Collapse
|
32
|
Li-Smerin Y, Swartz KJ. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc Natl Acad Sci U S A 1998; 95:8585-9. [PMID: 9671721 PMCID: PMC21119 DOI: 10.1073/pnas.95.15.8585] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein toxins from venomous animals exhibit remarkably specific and selective interactions with a wide variety of ion channels. Hanatoxin and grammotoxin are two related protein toxins found in the venom of the Chilean Rose Tarantula, Phrixotrichus spatulata. Hanatoxin inhibits voltage-gated K+ channels and grammotoxin inhibits voltage-gated Ca2+ channels. Both toxins inhibit their respective channels by interfering with normal operation of the voltage-dependent gating mechanism. The sequence homology of hanatoxin and grammotoxin, as well as their similar mechanism of action, raises the possibility that they interact with the same region of voltage-gated Ca2+ and K+ channels. Here, we show that each toxin can interact with both voltage-gated Ca2+ and K+ channels and modify channel gating. Moreover, mutagenesis of voltage-gated K+ channels suggests that hanatoxin and grammotoxin recognize the same structural motif. We propose that these toxins recognize a voltage-sensing domain or module present in voltage-gated ion channels and that this domain has a highly conserved three-dimensional structure.
Collapse
Affiliation(s)
- Y Li-Smerin
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|