1
|
Krantz BA. Anthrax Toxin: Model System for Studying Protein Translocation. J Mol Biol 2024; 436:168521. [PMID: 38458604 DOI: 10.1016/j.jmb.2024.168521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on β-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Scott H, Huang W, Andra K, Mamillapalli S, Gonti S, Day A, Zhang K, Mehzabeen N, Battaile KP, Raju A, Lovell S, Bann JG, Taylor DJ. Structure of the anthrax protective antigen D425A dominant negative mutant reveals a stalled intermediate state of pore maturation. J Mol Biol 2022; 434:167548. [PMID: 35304125 DOI: 10.1016/j.jmb.2022.167548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of β-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.
Collapse
Affiliation(s)
- Harry Scott
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kiran Andra
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kaiming Zhang
- Stanford Linear Accelerator Center and the Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Anjali Raju
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Solution Structures of Bacillus anthracis Protective Antigen Proteins Using Small Angle Neutron Scattering and Protective Antigen 63 Ion Channel Formation Kinetics. Toxins (Basel) 2021; 13:toxins13120888. [PMID: 34941724 PMCID: PMC8708185 DOI: 10.3390/toxins13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.
Collapse
|
4
|
Landenberger M, Nieland J, Roeder M, Nørgaard K, Papatheodorou P, Ernst K, Barth H. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183603. [PMID: 33689753 DOI: 10.1016/j.bbamem.2021.183603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.
Collapse
Affiliation(s)
- Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maurice Roeder
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Loftis AR, Santos MS, Truex NL, Biancucci M, Satchell KJF, Pentelute BL. Anthrax Protective Antigen Retargeted with Single-Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. Chembiochem 2020; 21:2772-2776. [PMID: 32369652 PMCID: PMC7541672 DOI: 10.1002/cbic.202000201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Indexed: 12/15/2022]
Abstract
The nontoxic, anthrax protective antigen/lethal factor N-terminal domain (PA/LFN ) complex is an effective platform for translocating proteins into the cytosol of cells. Mutant PA (mPA) was recently fused to epidermal growth factor (EGF) to retarget delivery of LFN to cells bearing EGF receptors (EGFR), but the requirement for a known cognate ligand limits the applicability of this approach. Here, we render practical protective antigen retargeting to a variety of receptors with mPA single-chain variable fragment (scFv) fusion constructs. Our design enables the targeting of two pancreatic cancer-relevant receptors, EGFR and carcinoembryonic antigen. We demonstrate that fusion to scFvs does not disturb the basic functions of mPA. Moreover, mPA-scFv fusions enable cell-specific delivery of diphtheria toxin catalytic domain and Ras/Rap1-specific endopeptidase to pancreatic cancer cells. Importantly, mPA-scFv fusion-based treatments display potent cell-specific toxicity in vitro, opening fundamentally new routes toward engineered immunotoxins and providing a potential solution to the challenge of targeted protein delivery to the cytosol of cancer cells.
Collapse
Affiliation(s)
- Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael S Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nicholas L Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Karadeniz H, Erdem A. Label-Free Electrochemical Detection of DNA Hybridization Related to Anthrax Lethal Factor by using Carbon Nanotube Modified Sensors. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666181004151547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Anthrax Lethal Factor (ANT) is the dominant virulence factor produced by
B. anthracis and is the major cause of death of infected animals. In this paper, pencil graphite electrodes
GE were modified with single-walled and multi-walled carbon nanotubes (CNTs) for the detection
of hybridization related to the ANT DNA for the first time in the literature.
Methods:
The electrochemical monitoring of label-free DNA hybridization related to ANT DNA was
explored using both SCNT and MCNT modified PGEs with differential pulse voltammetry (DPV).
The performance characteristics of ANT-DNA hybridization on disposable GEs were explored by
measuring the guanine signal in terms of optimum analytical conditions; the concentration of SCNT
and MCNT, the concentrations of probe and target, and also the hybridization time. Under the optimum
conditions, the selectivity of probe modified electrodes was tested and the detection limit was
calculated.
Results:
The selectivity of ANT probes immobilized onto MCNT-GEs was tested in the presence of
hybridization of probe with NC no response was observed and with MM, smaller responses were observed
in comparison to full-match DNA hybridization case. Even though there are unwanted substituents
in the mixture samples containing both the target and NC in the ratio 1:1 and both the target
and MM in the ratio 1:1, it has been found that ANT probe immobilized CNT modified graphite sensor
can also select its target by resulting with 20.9% decreased response in comparison to the one
measured in the case of full-match DNA hybridization case Therefore, it was concluded that the detection
of direct DNA hybridization was performed by using MCNT-GEs with an acceptable selectivity.
Conclusion:
Disposable SCNT/MCNT modified GEs bring some important advantages to our assay
including easy use, cost-effectiveness and giving a response in a shorter time compared to unmodified
PGE, carbon paste electrode and glassy carbon electrode developed for electrochemical monitoring
of DNA hybridization. Consequently, the detection of DNA hybridization related to the ANT
DNA by MCNT modified sensors was performed by using lower CNT, probe and target concentrations,
in a shorter hybridization time and resulting in a lower detection limit according to the SCNT
modified sensors. In conclusion, MCNT modified sensors can yield the possibilities leading to the
development of nucleic acid sensors platforms for the improvement of fast and cost-effective detection
systems with respect to DNA chip technology.
Collapse
Affiliation(s)
- Hakan Karadeniz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
7
|
Shali A, Hasannia S, Gashtasbi F, Abdous M, Shahangian SS, Jalili S. Generation and screening of efficient neutralizing single domain antibodies (VHHs) against the critical functional domain of anthrax protective antigen (PA). Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
10
|
Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. J Mol Evol 2017; 84:174-186. [DOI: 10.1007/s00239-017-9791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
11
|
Kulma M, Kacprzyk-Stokowiec A, Kwiatkowska K, Traczyk G, Sobota A, Dadlez M. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1075-1088. [PMID: 28263714 DOI: 10.1016/j.bbamem.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Perfringolysin O (PFO) belongs to the family of cholesterol-dependent cytolysins. Upon binding to a cholesterol-containing membrane, PFO undergoes a series of structural changes that result in the formation of a β-barrel pore and cell lysis. Recognition and binding to cholesterol are mediated by the D4 domain, one of four domains of PFO. The D4 domain contains a conserved tryptophan-rich loop named undecapeptide (E458CTGLAWEWWR468) in which arginine 468 is essential for retaining allosteric coupling between D4 and other domains during interaction of PFO with the membrane. In this report we studied the impact of R468A mutation on the whole protein structure using hydrogen-deuterium exchange coupled with mass spectrometry. We found that in aqueous solution, compared to wild type (PFO), PFOR468A showed increased deuterium uptake due to exposure of internal toxin regions to the solvent. This change reflected an overall structural destabilization of PFOR468A in solution. Conversely, upon binding to cholesterol-containing membranes, PFOR468A revealed a profound decrease of hydrogen-deuterium exchange when compared to PFO. This block of deuterium uptake resulted from PFOR468A-induced aggregation and fusion of liposomes, as found by dynamic light scattering, microscopic observations and FRET measurements. In the result of liposome aggregation and fusion, the entire PFOR468A molecule became shielded from aqueous solution and thereby was protected against proteolytic digestion and deuteration. We have established that structural changes induced by the R468A mutation lead to exposure of an additional cholesterol-independent liposome-binding site in PFO that confers its fusogenic property, altering the mode of the toxin action.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Biophysics, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | - Aleksandra Kacprzyk-Stokowiec
- Department of Biophysics, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Andrzej Sobota
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Department of Biology, Warsaw University, 1 Miecznikowa St., 02-185 Warsaw, Poland.
| |
Collapse
|
12
|
Sellami S, Jemli S, Abdelmalek N, Dabbéche E, Jamoussi K. Localization and in silico study of the vegetative insecticidal proteins Vip2S-Vip1S of Bacillus thuringiensis. Int J Biol Macromol 2016; 91:510-7. [PMID: 27264647 DOI: 10.1016/j.ijbiomac.2016.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
The Bacillus thuringiensis S1/4 strain was previously found to harbour vip1S, vip2S, and vip3 genes. Its plasmid curing led to the obtaining of four partially cured strains S1/4-2, S1/4-3, S1/4-7, and S1/4-9 (vip2S-vip1S (-), vip3 (+)), one strain S1/4-4 (vip2S-vip1S (+), vip3 (-)), and S1/4-0 strain lacking the three genes. Using these derivative strains as templates, PCR amplification and southern blot assay revealed that vip2S-vip1S operon and vip3 gene were localized on two different large plasmids. Bioinformatics studies showed that vip2S (1.356 kb), and vip1S (2.637 kb) genes are encoding by an operon consisting of two ORFs separated by an intergenic spacer of 4bp. Using the InterPro tool, Vip2S was found to belong to the family of Binary exotoxin A and Vip1S to bacterial exotoxin B. In silico modeling indicated that the 3D structure of Vip2S is a mixed α/β protein and proposed 3D-model of Vip1S. Bioassays of the partially cured strains supernatants showed a weak toxicity of S1/4-4 to the lepidopteran Spodoptera littoralis comparing to a better effect of S1/4-2, S1/4-3, S1/4-7, and S1/4-9, suggesting its eventual contribution to the toxicity. Nevertheless, the concentrated supernatant of S1/4-4 strain was not toxic against the coleopteran Tribolium castaneum.
Collapse
Affiliation(s)
- Sameh Sellami
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box: "1177", 3018 Sfax, Tunisia.
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box: "1177", 3018 Sfax, Tunisia
| | - Nouha Abdelmalek
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box: "1177", 3018 Sfax, Tunisia
| | - Emna Dabbéche
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box: "1177", 3018 Sfax, Tunisia
| | - Kaïs Jamoussi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box: "1177", 3018 Sfax, Tunisia
| |
Collapse
|
13
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
14
|
McComb RC, Martchenko M. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine. Vaccine 2015; 34:13-9. [PMID: 26611201 DOI: 10.1016/j.vaccine.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin.
Collapse
Affiliation(s)
- Ryan C McComb
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States
| | - Mikhail Martchenko
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States.
| |
Collapse
|
15
|
Pore-forming activity of clostridial binary toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:512-25. [PMID: 26278641 DOI: 10.1016/j.bbamem.2015.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
16
|
Schiffmiller A, Anderson D, Finkelstein A. Ion selectivity of the anthrax toxin channel and its effect on protein translocation. ACTA ACUST UNITED AC 2015; 146:183-92. [PMID: 26170174 PMCID: PMC4516782 DOI: 10.1085/jgp.201511388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
Abstract
Anthrax toxin consists of three ∼ 85-kD proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA63 (the 63-kD, C-terminal portion of PA) forms heptameric channels ((PA63)7) in planar phospholipid bilayer membranes that enable the translocation of LF and EF across the membrane. These mushroom-shaped channels consist of a globular cap domain and a 14-stranded β-barrel stem domain, with six anionic residues lining the interior of the stem to form rings of negative charges. (PA63)7 channels are highly cation selective, and, here, we investigate the effects on both cation selectivity and protein translocation of mutating each of these anionic residues to a serine. We find that although some of these mutations reduce cation selectivity, selectivity alone does not directly predict the rate of protein translocation; local changes in electrostatic forces must be considered as well.
Collapse
Affiliation(s)
- Aviva Schiffmiller
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Alan Finkelstein
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
17
|
Auger A, Park M, Nitschke F, Minassian LM, Beilhartz GL, Minassian BA, Melnyk RA. Efficient Delivery of Structurally Diverse Protein Cargo into Mammalian Cells by a Bacterial Toxin. Mol Pharm 2015; 12:2962-71. [DOI: 10.1021/acs.molpharmaceut.5b00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anick Auger
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Minyoung Park
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Felix Nitschke
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lori M. Minassian
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Greg L. Beilhartz
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Berge A. Minassian
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Roman A. Melnyk
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, Roussel A. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form. J Biol Chem 2015; 290:13191-201. [PMID: 25847242 DOI: 10.1074/jbc.m115.646109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
β-Barrel pore-forming toxins (β-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a β-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of β-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other β-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex.
Collapse
Affiliation(s)
- Philippe Leone
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Cecilia Bebeacua
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Onya Opota
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Christine Kellenberger
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Klaholz
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Igor Orlov
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christian Cambillau
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Lemaitre
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Alain Roussel
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France,
| |
Collapse
|
19
|
Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR. Residues involved in the pore-forming activity of theClostridium perfringensiota toxin. Cell Microbiol 2014; 17:288-302. [DOI: 10.1111/cmi.12366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Elke Maier
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
| | - Eva Waltenberger
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Michel R. Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| |
Collapse
|
20
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
21
|
Schiffmiller A, Finkelstein A. Ion conductance of the stem of the anthrax toxin channel during lethal factor translocation. J Mol Biol 2014; 427:1211-23. [PMID: 24996036 DOI: 10.1016/j.jmb.2014.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022]
Abstract
The tripartite anthrax toxin consists of protective antigen, lethal factor (LF), and edema factor. PA63 (the 63-kDa, C-terminal part of protective antigen) forms heptameric channels in cell membranes that allow for the transport of LF and edema factor into the cytosol. These channels are mushroom shaped, with a ring of seven phenylalanine residues (known as the phenylalanine clamp) lining the junction between the cap and the stem. It is known that when LF is translocated through the channel, the phenylalanine clamp creates a seal that causes an essentially complete block of conduction. In order to examine ion conductance in the stem of the channel, we used Venus yellow fluorescent protein as a molecular stopper to trap LFN (the 30-kDa, 263-residue N-terminal segment of LF), as well as various truncated constructs of LFN, in mutant channels in which the phenylalanine clamp residues were mutated to alanines. Here we present evidence that ion movement occurs within the channel stem (but is stopped, of course, at the phenylalanine clamp) during protein translocation. Furthermore, we also propose that the lower region of the stem plays an important role in securing peptide chains during translocation.
Collapse
Affiliation(s)
- Aviva Schiffmiller
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Alan Finkelstein
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Dennis MK, Mogridge J. A protective antigen mutation increases the pH threshold of anthrax toxin receptor 2-mediated pore formation. Biochemistry 2014; 53:2166-71. [PMID: 24641616 PMCID: PMC3985898 DOI: 10.1021/bi5000756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Anthrax toxin protective antigen
(PA) binds cellular receptors
and self-assembles into oligomeric prepores. A prepore converts to
a protein translocating pore after it has been transported to an endosome
where the low pH triggers formation of a membrane-spanning β-barrel
channel. Formation of this channel occurs after some PA–receptor
contacts are broken to allow pore formation, while others are retained
to preserve receptor association. The interaction between PA and anthrax
toxin receptor 1 (ANTXR1) is weaker than its interaction with ANTXR2
such that the pH threshold of ANTXR1-mediated pore formation is higher
by 1 pH unit. Here we examine receptor-specific differences in toxin
binding and pore formation by mutating PA residue G342 that selectively
abuts ANTXR2. Mutation of G342 to valine, leucine, isoleucine, or
tryptophan increased the amount of PA bound to ANTXR1-expressing cells
and decreased the amount of PA bound to ANTXR2-expressing cells. The
more conservative G342A mutation did not affect the level of binding
to ANTXR2, but ANTXR2-bound PA-G342A prepores exhibited a pH threshold
higher than that of wild-type prepores. Mixtures of wild-type PA and
PA-G342A were functional in toxicity assays, and the pH threshold
of ANTXR2-mediated pore formation was dictated by the relative amounts
of the two proteins in the hetero-oligomers. These results suggest
that PA subunits within an oligomer do not have to be triggered simultaneously
for a productive membrane insertion event to occur.
Collapse
Affiliation(s)
- Melissa K Dennis
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
23
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
25
|
Wynia-Smith SL, Brown MJ, Chirichella G, Kemalyan G, Krantz BA. Electrostatic ratchet in the protective antigen channel promotes anthrax toxin translocation. J Biol Chem 2012; 287:43753-64. [PMID: 23115233 PMCID: PMC3527960 DOI: 10.1074/jbc.m112.419598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Central to the power-stroke and Brownian-ratchet mechanisms of protein translocation is the process through which nonequilibrium fluctuations are rectified or ratcheted by the molecular motor to transport substrate proteins along a specific axis. We investigated the ratchet mechanism using anthrax toxin as a model. Anthrax toxin is a tripartite toxin comprised of the protective antigen (PA) component, a homooligomeric transmembrane translocase, which translocates two other enzyme components, lethal factor (LF) and edema factor (EF), into the cytosol of the host cell under the proton motive force (PMF). The PA-binding domains of LF and EF (LFN and EFN) possess identical folds and similar solution stabilities; however, EFN translocates ∼10–200-fold slower than LFN, depending on the electrical potential (Δψ) and chemical potential (ΔpH) compositions of the PMF. From an analysis of LFN/EFN chimera proteins, we identified two 10-residue cassettes comprised of charged sequence that were responsible for the impaired translocation kinetics of EFN. These cassettes have nonspecific electrostatic requirements: one surprisingly prefers acidic residues when driven by either a Δψ or a ΔpH; the second requires basic residues only when driven by a Δψ. Through modeling and experiment, we identified a charged surface in the PA channel responsible for charge selectivity. The charged surface latches the substrate and promotes PMF-driven transport. We propose an electrostatic ratchet in the channel, comprised of opposing rings of charged residues, enforces directionality by interacting with charged cassettes in the substrate, thereby generating forces sufficient to drive unfolding.
Collapse
Affiliation(s)
- Sarah L Wynia-Smith
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
26
|
Rajapaksha M, Lovell S, Janowiak BE, Andra KK, Battaile KP, Bann JG. pH effects on binding between the anthrax protective antigen and the host cellular receptor CMG2. Protein Sci 2012; 21:1467-80. [PMID: 22855243 DOI: 10.1002/pro.2136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The anthrax protective antigen (PA) binds to the host cellular receptor capillary morphogenesis protein 2 (CMG2) with high affinity. To gain a better understanding of how pH may affect binding to the receptor, we have investigated the kinetics of binding as a function of pH to the full-length monomeric PA and to two variants: a 2-fluorohistidine-labeled PA (2-FHisPA), which is ∼1 pH unit more stable to variations in pH than WT, and an ∼1 pH unit less stable variant in which Trp346 in the domain 2β(3) -2β(4) loop is substituted with a Phe (W346F). We show using stopped-flow fluorescence that the binding rate increases as the pH is lowered for all proteins, with little influence on the rate of dissociation. In addition, we have crystallized PA and the two variants and examine the influence of pH on structure. In contrast to previous X-ray studies, the domain 2β(3) -2β(4) loop undergoes little change in structure from pH ∼8 to 5.5 for the WT protein, but for the 2-FHis labeled and W346F mutant there are changes in structure consistent with previous X-ray studies. In accord with pH stability studies, we find that the average B-factor values increase by ∼20-30% for all three proteins at low pH. Our results suggest that for the full-length PA, low pH increases the binding affinity, likely through a change in structure that favors a more "bound-like" conformation.
Collapse
|
27
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
28
|
Bann JG. Anthrax toxin protective antigen--insights into molecular switching from prepore to pore. Protein Sci 2012; 21:1-12. [PMID: 22095644 DOI: 10.1002/pro.752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective antigen is a key component of the anthrax toxin, as it allows entry of the enzymatic components edema factor and lethal factor into the host cell, through the formation of a membrane spanning pore. This event is absolutely critical for the pathogenesis of anthrax, and although we have yet to understand the mechanism of pore formation, recent developments have provided key insights into how this process may occur. Based on the available data, a model is proposed for the kinetic steps for protective antigen conversion from prepore to pore. In this model, the driving force for pore formation is the formation of the phi (ϕ)-clamp, a region that forms a leak-free seal around the translocating polypeptide. Formation of the ϕ-clamp elicits movements within the prepore that provide steric freedom for the subsequent conformational changes required to form the membrane spanning pore.
Collapse
Affiliation(s)
- James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
29
|
Feld GK, Brown MJ, Krantz BA. Ratcheting up protein translocation with anthrax toxin. Protein Sci 2012; 21:606-24. [PMID: 22374876 DOI: 10.1002/pro.2052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
30
|
Rubert Pérez C, López-Pérez D, Chmielewski J, Lipton M. Small molecule inhibitors of anthrax toxin-induced cytotoxicity targeted against protective antigen. Chem Biol Drug Des 2012; 79:260-9. [PMID: 22146079 DOI: 10.1111/j.1747-0285.2011.01285.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two molecular scaffolds were designed using the CAVEAT molecular design package to inhibit the oligomerization of protective antigen (PA(63) ), a key protein component of anthrax toxin. The inhibitors were designed to prevent heptamerization of PA(63) by mimicking key residues of PA(63) needed for the intermolecular interactions that stabilize the heptamer. Using the scaffolds identified by CAVEAT, seven candidate inhibitors were synthesized and tested for their ability to inhibit anthrax toxin-induced cytotoxicity, with three of the agents demonstrating modest inhibition in murine J774A.1 macrophage cells.
Collapse
|
31
|
Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11. [PMID: 22919577 PMCID: PMC3417380 DOI: 10.3389/fcimb.2011.00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 02/04/2023] Open
Abstract
There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, USA; Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| | | | | | | |
Collapse
|
32
|
Basilio D, Kienker PK, Briggs SW, Finkelstein A. A kinetic analysis of protein transport through the anthrax toxin channel. ACTA ACUST UNITED AC 2011; 137:521-31. [PMID: 21624946 PMCID: PMC3105512 DOI: 10.1085/jgp.201110627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell’s endosomal membrane, disrupting cellular homeostasis. (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel can be driven by voltage on a timescale of seconds. A characteristic of the translocation of LFN, the N-terminal 263 residues of LF, is its S-shaped kinetics. Because all of the translocation experiments reported in the literature have been performed with more than one LFN molecule bound to most of the channels, it is not clear whether the S-shaped kinetics are an intrinsic characteristic of translocation kinetics or are merely a consequence of the translocation in tandem of two or three LFNs. In this paper, we show both in macroscopic and single-channel experiments that even with only one LFN bound to the channel, the translocation kinetics are S shaped. As expected, the translocation rate is slower with more than one LFN bound. We also present a simple electrodiffusion model of translocation in which LFN is represented as a charged rod that moves subject to both Brownian motion and an applied electric field. The cumulative distribution of first-passage times of the rod past the end of the channel displays S-shaped kinetics with a voltage dependence in agreement with experimental data.
Collapse
Affiliation(s)
- Daniel Basilio
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA. dab2043@-med.cornell.edu
| | | | | | | |
Collapse
|
33
|
Venter PA, Dirksen A, Thomas D, Manchester M, Dawson PE, Schneemann A. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies. Biomacromolecules 2011; 12:2293-301. [PMID: 21545187 DOI: 10.1021/bm200369e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery, and tissue-specific bioimaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to display covalently a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development.
Collapse
Affiliation(s)
- P Arno Venter
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The essential cellular functions of secretion and protein degradation require a molecular machine to unfold and translocate proteins either across a membrane or into a proteolytic complex. Protein translocation is also critical for microbial pathogenesis, namely bacteria can use translocase channels to deliver toxic proteins into a target cell. Anthrax toxin (Atx), a key virulence factor secreted by Bacillus anthracis, provides a robust biophysical model to characterize transmembrane protein translocation. Atx is comprised of three proteins: the translocase component, protective antigen (PA) and two enzyme components, lethal factor (LF) and oedema factor (OF). Atx forms an active holotoxin complex containing a ring-shaped PA oligomer bound to multiple copies of LF and OF. These complexes are endocytosed into mammalian host cells, where PA forms a protein-conducting translocase channel. The proton motive force unfolds and translocates LF and OF through the channel. Recent structure and function studies have shown that LF unfolds during translocation in a force-dependent manner via a series of metastable intermediates. Polypeptide-binding clamps located throughout the PA channel catalyse substrate unfolding and translocation by stabilizing unfolding intermediates through the formation of a series of interactions with various chemical groups and α-helical structure presented by the unfolding polypeptide during translocation.
Collapse
Affiliation(s)
- Katie L Thoren
- Departments of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Barth H. Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:237-45. [PMID: 21120455 DOI: 10.1007/s00210-010-0581-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 01/31/2023]
Abstract
Bacterial exotoxins exploit protein transport pathways of their mammalian target cells to deliver their enzymatic active moieties into the cytosol. There, they modify their specific substrate molecules resulting in cell damage and the clinical symptoms characteristic for each individual toxin. We have investigated the cellular uptake of the binary actin ADP-ribosylating C2 toxin from Clostridium botulinum and the binary lethal toxin from Bacillus anthracis, a metalloprotease. Both toxins are composed of a binding/translocation component and a separate enzyme component. During cellular uptake, the binding/translocation components form pores in membranes of acidified endosomes, and the enzyme components translocate as unfolded proteins through the pores into the cytosol. We found by using specific pharmacological inhibitors that the host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase cyclophilin A are crucial for membrane translocation of the enzyme component of the C2 toxin but not of the lethal toxin, although the structures of the binding/translocation components and the overall uptake mechanisms of both toxins are widely comparable. In conclusion, the new findings imply that Hsp90 and cyclophilin function selectively in promoting translocation of certain bacterial toxins depending on the enzyme domains of the individual toxins. The targeted pharmacological inhibition of individual host cell chaperones/PPIases prevents uptake of certain bacterial exotoxins into the cytosol of mammalian cells and thus protects cells from intoxication. Such substances could represent attractive lead substances for development of novel therapeutics to prevent toxic effects during infection with toxin-producing bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
36
|
Dmochewitz L, Lillich M, Kaiser E, Jennings LD, Lang AE, Buchner J, Fischer G, Aktories K, Collier RJ, Barth H. Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cell Microbiol 2010; 13:359-73. [PMID: 20946244 DOI: 10.1111/j.1462-5822.2010.01539.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus anthracis lethal toxin consists of the protective antigen (PA) and the metalloprotease lethal factor (LF). During cellular uptake PA forms pores in membranes of endosomes, and unfolded LF translocates through the pores into the cytosol. We have investigated whether host cell chaperones facilitate translocation of LF and the fusion protein LF(N)DTA. LF(N) mediates uptake of LF(N)DTA into the cytosol, where DTA, the catalytic domain of diphtheria toxin, ADP-ribosylates elongation factor-2, allowing for detection of small amounts of translocated LF(N)DTA. Cyclosporin A, which inhibits peptidyl-prolyl cis/trans isomerase activity of cyclophilins, and radicicol, which inhibits Hsp90 activity, prevented uptake of LF(N)DTA into the cytosol of CHO-K1 cells and protected cells from intoxication by LF(N)DTA/PA. Both inhibitors, as well as an antibody against cyclophilin A blocked the release of active LF(N)DTA from endosomal vesicles into the cytosol in vitro. In contrast, the inhibitors did not inhibit cellular uptake of LF. In vitro, cyclophilin A and Hsp90 bound to LF(N)DTA and DTA but not to LF, implying that DTA determines this interaction. In conclusion, cyclophilin A and Hsp90 facilitate translocation of LF(N)DTA, but not of LF, across endosomal membranes, and thus they function selectively in promoting translocation of certain proteins, but not of others.
Collapse
Affiliation(s)
- Lydia Dmochewitz
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Blockage of anthrax PA63 pore by a multicharged high-affinity toxin inhibitor. Biophys J 2010; 99:134-43. [PMID: 20655841 DOI: 10.1016/j.bpj.2010.03.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/09/2010] [Accepted: 03/31/2010] [Indexed: 11/23/2022] Open
Abstract
Single channels of Bacillus anthracis protective antigen, PA(63), were reconstituted into planar lipid membranes and their inhibition by cationic aminopropylthio-beta-cyclodextrin, AmPrbetaCD, was studied. The design of the highly efficient inhibitor, the sevenfold symmetrical cyclodextrin molecule chemically modified to add seven positive charges, was guided by the symmetry and predominantly negative charge of the PA(63) pore. The protective action of this compound has been demonstrated earlier at both single-molecule and whole-organism levels. In this study, using noise analysis, statistics of time-resolved single-channel closure events, and multichannel measurements, we find that AmPrbetaCD action is bimodal. The inhibitor, when added to the cis side of the membrane, blocks the channel reversibly. At high salt concentrations, the AmPrbetaCD blockage of the channel is well described as a two-state Markov process, in which both the on- and off-rates are functions of the salt concentration, whereas the applied voltage affects only the off-rate. At salt concentrations smaller than 1.5 M, the second mode of AmPrbetaCD action on the channel is discovered: addition of the inhibitor enhances voltage gating, making the closed states of the channel more favorable. The effect depends on the lipid composition of the membrane.
Collapse
|
38
|
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 2010; 17:1383-90. [PMID: 21037566 PMCID: PMC3133606 DOI: 10.1038/nsmb.1923] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023]
Abstract
The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LF(N)). The first α-helix and β-strand of each LF(N) unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.
Collapse
|
39
|
Wimalasena DS, Janowiak BE, Lovell S, Miyagi M, Sun J, Zhou H, Hajduch J, Pooput C, Kirk KL, Battaile KP, Bann JG. Evidence that histidine protonation of receptor-bound anthrax protective antigen is a trigger for pore formation. Biochemistry 2010; 49:6973-83. [PMID: 20672855 PMCID: PMC2924283 DOI: 10.1021/bi100647z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protective antigen (PA) component of the anthrax toxin forms pores within the low pH environment of host endosomes through mechanisms that are poorly understood. It has been proposed that pore formation is dependent on histidine protonation. In previous work, we biosynthetically incorporated 2-fluorohistidine (2-FHis), an isosteric analogue of histidine with a significantly reduced pK(a) ( approximately 1), into PA and showed that the pH-dependent conversion from the soluble prepore to a pore was unchanged. However, we also observed that 2-FHisPA was nonfunctional in the ability to mediate cytotoxicity of CHO-K1 cells by LF(N)-DTA and was defective in translocation through planar lipid bilayers. Here, we show that the defect in cytotoxicity is due to both a defect in translocation and, when bound to the host cellular receptor, an inability to undergo low pH-induced pore formation. Combining X-ray crystallography with hydrogen-deuterium (H-D) exchange mass spectrometry, our studies lead to a model in which hydrogen bonds to the histidine ring are strengthened by receptor binding. The combination of both fluorination and receptor binding is sufficient to block low pH-induced pore formation.
Collapse
Affiliation(s)
| | - Blythe E. Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott Lovell
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas 66047
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology, Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988
| | - Jianjun Sun
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haiying Zhou
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Jan Hajduch
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Chaya Pooput
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kenneth L. Kirk
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kevin P. Battaile
- IMCA-CAT, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg 435A, Argonne, IL 60439, USA
| | - James G. Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
40
|
Laetiporus sulphureus lectin and aerolysin protein family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:67-80. [PMID: 20687481 DOI: 10.1007/978-1-4419-6327-7_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The parasitic mushroom Laetiporus sulphureus produces a family of lectins (LSL's) sharing 80-90% sequence identity that possesses a low but significant sequence similarity to the bacterial pore-forming toxins mosquitocidal toxin Mtx-2 from Bacillus sphaericus and a toxin from Clostridium septicum. The crystal structure of one member of the L. sulphureus lectins family (LSLa) reveals unexpected structural similarities to the 1-pore-forming toxins from the aerolysin family, namely, aerolysin from the Gram-negative bacterium Aeromonas hydrophila, epsilon-toxin from Clostridium perfringens and parasporin from B. thuringiensis. This similarity presumably indicates that the hemolytic activity of LSLa proceeds through a molecular mechanism that involves the formation of oligomeric transmembrane beta-barrels. Comparison of the crystal structures of the above mentioned proteins reveals common pore-forming modules, which are then distributed both in bacteria and fungi. Currently, it can be stated that the above three dimensional structures have been key in revealing structural similarities that were elusive at the sequence level. A potential corollary from this is that structural studies aimed at determining high resolution structures of aerolysin-like pore-forming toxins, whose biological activity involves large conformational changes, are mandatory to define protein domains or structural motifs with membrane-binding properties.
Collapse
|
41
|
Henrickson SE, DiMarzio EA, Wang Q, Stanford VM, Kasianowicz JJ. Probing single nanometer-scale pores with polymeric molecular rulers. J Chem Phys 2010; 132:135101. [PMID: 20387958 PMCID: PMC4108643 DOI: 10.1063/1.3328875] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/04/2010] [Indexed: 11/14/2022] Open
Abstract
We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus alpha-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the alpha-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.
Collapse
Affiliation(s)
- Sarah E Henrickson
- Semiconductor Electronics Division, NIST, Bldg. 225, Room B326, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | |
Collapse
|
42
|
Soluble expression and purification of the anthrax protective antigen in E. coli and identification of a novel dominant-negative mutant N435C. Appl Microbiol Biotechnol 2010; 87:609-16. [PMID: 20213183 DOI: 10.1007/s00253-010-2495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The anthrax toxin is an AB-type bacterium toxin composed of the protective antigen (PA) as the cell-binding B component, and the lethal factor (LF) and edema toxin (EF) as the catalytic A components. The PA component is a key factor in anthrax-related research and recombinant PA can be produced in general in Escherichia coli. However, such recombinant PA always forms inclusion bodies in the cytoplasm of E. coli, making difficult the procedure of its purification. In this study, we found that the solubility of recombinant PA was dramatically enhanced by fusion with glutathione S-transferase (GST) and an induction of its expression at 28 degrees C. The PA was purified to high homogeneity and a yield of 3 mg protein was obtained from 1 l culture by an affinity-chromatography approach. Moreover, we expressed and purified three PA mutants, I394C, A396C, and N435C, which were impaired in expression in previous study. Among them, a novel mutant N435C which conferred dominant-negative inhibitory activity on PA was identified. This new mutant may be useful in designing new antitoxin for anthrax prophylaxis and therapy.
Collapse
|
43
|
Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 2010; 107:3453-7. [PMID: 20142512 DOI: 10.1073/pnas.1000100107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major goal in understanding the pathogenesis of the anthrax bacillus is to determine how the protective antigen (PA) pore mediates translocation of the enzymatic components of anthrax toxin across membranes. To obtain structural insights into this mechanism, we constructed PA-pore membrane complexes and visualized them by using negative-stain electron microscopy. Two populations of PA pores were visualized in membranes, vesicle-inserted and nanodisc-inserted, allowing us to reconstruct two virtually identical PA-pore structures at 22-A resolution. Reconstruction of a domain 4-truncated PA pore inserted into nanodiscs showed that this domain does not significantly influence pore structure. Normal mode flexible fitting of the x-ray crystallographic coordinates of the PA prepore indicated that a prominent flange observed within the pore lumen is formed by the convergence of mobile loops carrying Phe427, a residue known to catalyze protein translocation. Our results have identified the location of a crucial functional element of the PA pore and documented the value of combining nanodisc technology with electron microscopy to examine the structures of membrane-interactive proteins.
Collapse
|
44
|
Vernier G, Wang J, Jennings LD, Sun J, Fischer A, Song L, Collier RJ. Solubilization and characterization of the anthrax toxin pore in detergent micelles. Protein Sci 2009; 18:1882-95. [PMID: 19609933 DOI: 10.1002/pro.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteolytically activated Protective Antigen (PA) moiety of anthrax toxin self-associates to form a heptameric ring-shaped oligomer (the prepore). Acidic pH within the endosome converts the prepore to a pore that serves as a passageway for the toxin's enzymatic moieties to cross the endosomal membrane. Prepore is stable in solution under mildly basic conditions, and lowering the pH promotes a conformational transition to an insoluble pore-like state. N-tetradecylphosphocholine (FOS14) was the only detergent among 110 tested that prevented aggregation without dissociating the multimer into its constituent subunits. FOS14 maintained the heptamers as monodisperse, insertion-competent 440-kDa particles, which formed channels in planar phospholipid bilayers with the same unitary conductance and ability to translocate a model substrate protein as channels formed in the absence of detergent. Electron paramagnetic resonance analysis detected pore-like conformational changes within PA on solubilization with FOS14, and electron micrograph images of FOS14-solubilized pore showed an extended, mushroom-shaped structure. Circular dichroïsm measurements revealed an increase in alpha helix and a decrease in beta structure in pore formation. Spectral changes caused by a deletion mutation support the hypothesis that the 2beta2-2beta3 loop transforms into the transmembrane segment of the beta-barrel stem of the pore. Changes caused by selected point mutations indicate that the transition to alpha structure is dependent on residues of the luminal 2beta11-2beta12 loop that are known to affect pore formation. Stabilizing the PA pore in solution with FOS14 may facilitate further structural analysis and a more detailed understanding of the folding pathway by which the pore is formed.
Collapse
Affiliation(s)
- Gregory Vernier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG. Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci 2009; 18:2277-86. [PMID: 19722284 PMCID: PMC2788282 DOI: 10.1002/pro.238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domain 4 of the anthrax protective antigen (PA) plays a key role in cellular receptor recognition as well as in pH-dependent pore formation. We present here the 1.95 A crystal structure of domain 4, which adopts a fold that is identical to that observed in the full-length protein. We have also investigated the structural properties of the isolated domain 4 as a function of pH, as well as the pH-dependence on binding to the von Willebrand factor A domain of capillary morphogenesis protein 2 (CMG2). Our results provide evidence that the isolated domain 4 maintains structure and interactions with CMG2 at pH 5, a pH that is known to cause release of the receptor on conversion of the heptameric prepore (PA(63))(7) to a membrane-spanning pore. Our results suggest that receptor release is not driven solely by a pH-induced unfolding of domain 4.
Collapse
Affiliation(s)
| | - Scott Lovell
- Structural Biology Center, The University of KansasLawrence, Kansas 66047
| | - Asokan Anbanandam
- Structural Biology Center, The University of KansasLawrence, Kansas 66047
| | - Rahif El-Chami
- Department of Chemistry, Wichita State UniversityWichita, Kansas 67226
| | - James G Bann
- Department of Chemistry, Wichita State UniversityWichita, Kansas 67226,*Correspondence to: James G. Bann, Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051. E-mail:
| |
Collapse
|
46
|
Knapp O, Maier E, Benz R, Geny B, Popoff MR. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2584-93. [PMID: 19835840 DOI: 10.1016/j.bbamem.2009.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/17/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Epsilon-toxin (ETX) is a potent toxin produced by Clostridium perfringens strains B and D. The bacteria are important pathogens in domestic animals and cause edema mediated by ETX. This toxin acts most likely by heptamer formation and rapid permeabilization of target cell membranes for monovalent anions and cations followed by a later entry of calcium. In this study, we compared the primary structure of ETX with that of the channel-forming stretches of a variety of binding components of A-B-types of toxins such as Anthrax protective antigen (PA), C2II of C2-toxin and Ib of Iota-toxin and found a remarkable homology to amino acids 151-180 of ETX. Site-directed mutagenesis of amino acids within the putative channel-forming domain resulted in changes of cytotoxicity and effects on channel characteristics in lipid bilayer experiments including changes of selectivity and partial channel block by methanethiosulfonate (MTS) reagents and antibodies against His(6)-tags from the trans-side of the lipid bilayer membranes.
Collapse
Affiliation(s)
- Oliver Knapp
- Department of Biotechnology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, Zhang TT, Williams ER, Berger JM, Krantz BA. The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol 2009; 392:614-29. [PMID: 19627991 PMCID: PMC2742380 DOI: 10.1016/j.jmb.2009.07.037] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy-the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-A crystal structure of the PA octamer. The octamer comprises approximately 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.
Collapse
Affiliation(s)
- Alexander F. Kintzer
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A.,California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, CA, 94720, U.S.A
| | - Katie L. Thoren
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A
| | - Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A
| | - Ken C. Dong
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A
| | - Geoffrey K. Feld
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A
| | - Iok I. Tang
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A
| | - Teri T. Zhang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, U.S.A
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A.,California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, CA, 94720, U.S.A
| | - James M. Berger
- California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, CA, 94720, U.S.A.,Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, U.S.A
| | - Bryan A. Krantz
- Department of Chemistry, University of California, Berkeley, CA, 94720, U.S.A.,California Institute for Quantitative Biomedical Research (QB3), University of California, Berkeley, CA, 94720, U.S.A.,Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, U.S.A.,To whom correspondence should be addressed. University of California, Berkeley 492 Stanley Hall, #3220 Berkeley, CA 94720−3220 1−510−666−2788 (B.A.K.)
| |
Collapse
|
48
|
Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009; 77:4859-67. [PMID: 19703971 DOI: 10.1128/iai.00117-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anthrax protective antigen (PA) is the receptor-binding subunit common to lethal toxin (LT) and edema toxin (ET), which are responsible for the high mortality rates associated with inhalational Bacillus anthracis infection. Although recombinant PA (rPA) is likely to be an important constituent of any future anthrax vaccine, evaluation of the efficacies of the various candidate rPA vaccines is currently difficult, because the specific B-cell epitopes involved in toxin neutralization have not been completely defined. In this study, we describe the identification and characterization of two murine monoclonal immunoglobulin G1 antibodies (MAbs), 1-F1 and 2-B12, which recognize distinct linear neutralizing epitopes on domain 4 of PA. 1-F1 recognized a 12-mer peptide corresponding to residues 692 to 703; this epitope maps to a region of domain 4 known to interact with the anthrax toxin receptor CMG-2 and within a conformation-dependent epitope recognized by the well-characterized neutralizing MAb 14B7. As expected, 1-F1 blocked PA's ability to associate with CMG-2 in an in vitro solid-phase binding assay, and it protected murine macrophage cells from intoxication with LT. 2-B12 recognized a 12-mer peptide corresponding to residues 716 to 727, an epitope located immediately adjacent to the core 14B7 binding site and a stretch of amino acids not previously identified as a target of neutralizing antibodies. 2-B12 was as effective as 1-F1 in neutralizing LT in vitro, although it only partially inhibited PA binding to its receptor. Mice passively administered 1-F1 or 2-B12 were partially protected against a lethal challenge with LT. These results advance our fundamental understanding of the mechanisms by which antibodies neutralize anthrax toxin and may have future application in the evaluation of candidate rPA vaccines.
Collapse
|
49
|
Rajapaksha M, Eichler JF, Hajduch J, Anderson DE, Kirk KL, Bann JG. Monitoring anthrax toxin receptor dissociation from the protective antigen by NMR. Protein Sci 2009; 18:17-23. [PMID: 19177347 DOI: 10.1002/pro.26] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin-like protease on the cell surface followed by the formation of a donut-shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1-dimensional (13)C-edited (1)H NMR that low pH induces dissociation of the Von-Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon-13 labeled, 2-fluorohistidine labeled CMG2, consistent with studies showing that protonation of His-121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface.
Collapse
|
50
|
Abboud N, De Jesus M, Nakouzi A, Cordero RJB, Pujato M, Fiser A, Rivera J, Casadevall A. Identification of linear epitopes in Bacillus anthracis protective antigen bound by neutralizing antibodies. J Biol Chem 2009; 284:25077-86. [PMID: 19617628 DOI: 10.1074/jbc.m109.022061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protective antigen (PA), the binding subunit of anthrax toxin, is the major component in the current anthrax vaccine, but the fine antigenic structure of PA is not well defined. To identify linear neutralizing epitopes of PA, 145 overlapping peptides covering the entire sequence of the protein were synthesized. Six monoclonal antibodies (mAbs) and antisera from mice specific for PA were tested for their reactivity to the peptides by enzyme-linked immunosorbent assays. Three major linear immunodominant B-cell epitopes were mapped to residues Leu(156) to Ser(170), Val(196) to Ile(210), and Ser(312) to Asn(326) of the PA protein. Two mAbs with toxin-neutralizing activity recognized two different epitopes in close proximity to the furin cleavage site in domain 1. The three-dimensional complex structure of PA and its neutralizing mAbs 7.5G and 19D9 were modeled using the molecular docking method providing models for the interacting epitope and paratope residues. For both mAbs, LeTx neutralization was associated with interference with furin cleavage, but they differed in effectiveness depending on whether they bound on the N- or C-terminal aspect of the cleaved products. The two peptides containing these epitopes that include amino acids Leu(156)-Ser(170) and Val(196)-Ile(210) were immunogenic and elicited neutralizing antibody responses to PA. These results identify the first linear neutralizing epitopes of PA and show that peptides containing epitope sequences can elicit neutralizing antibody responses, a finding that could be exploited for vaccine design.
Collapse
Affiliation(s)
- Nareen Abboud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|