1
|
Krutinin GG, Krutinina EA, Kamzolova SG, Osypov AA. Bacteriophage λ: Electrostatic properties of the genome and its elements. Mol Biol 2015. [DOI: 10.1134/s0026893315030115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Poorey K, Viswanathan R, Carver MN, Karpova TS, Cirimotich SM, McNally JG, Bekiranov S, Auble DT. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 2013; 342:369-72. [PMID: 24091704 PMCID: PMC3997053 DOI: 10.1126/science.1242369] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins, but it is unknown how stable most native interactions are. Although live-cell imaging suggests short-lived interactions at tandem gene arrays, current methods cannot measure rapid binding dynamics at single-copy genes. We show, by using a modified ChIP assay with subsecond temporal resolution, that the time dependence of formaldehyde cross-linking can be used to extract in vivo on and off rates for site-specific chromatin interactions varying over a ~100-fold dynamic range. By using the method, we show that a regulatory process can shift weakly bound TATA-binding protein to stable promoter interactions, thereby facilitating transcription complex formation. This assay provides an approach for systematic, quantitative analyses of chromatin binding dynamics in vivo.
Collapse
Affiliation(s)
- Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Tatiana S. Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shana M. Cirimotich
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - James G. McNally
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Blair RH, Goodrich JA, Kugel JF. Single-molecule fluorescence resonance energy transfer shows uniformity in TATA binding protein-induced DNA bending and heterogeneity in bending kinetics. Biochemistry 2012; 51:7444-55. [PMID: 22934924 DOI: 10.1021/bi300491j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule fluorescence resonance energy transfer (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP-DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to the results of previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA, the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP-DNA complexes exist; however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations led to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA.
Collapse
Affiliation(s)
- Rebecca H Blair
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
4
|
Inoue S, Kaji N, Kataoka M, Shinohara Y, Okamoto Y, Tokeshi M, Baba Y. Rapid qualitative evaluation of DNA transcription factor NF-κB by microchip electrophoretic mobility shift assay in mammalian cells. Electrophoresis 2012; 32:3241-7. [PMID: 22102498 DOI: 10.1002/elps.201100261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have developed a separation technique for DNA-protein complex based on electrophoretic mobility shift assay (EMSA) by microchip electrophoresis, which we call microchip electrophoretic mobility shift assay (μEMSA). To evaluate the μEMSA, we employed recombinant human nuclear factor-κB (rhNF-κB) and its consensus double-stranded oligonucleotide (dsOligo) fluorescently labeled with Cy5. We carried out the electrophoretic separation of the consensus dsOligo-rhNF-κB complex and the unbound dsOligo in methylcellulose solution and confirmed rapid (∼200 s) and reliable identification and semi-quantitation of the specific interaction between dsOligo and rhNF-κB. The binding specificity of rhNF-κB was confirmed by introducing non-fluorescently labeled consensus oligonucleotide as a competitor. The progression of the binding reaction under various incubation times was monitored, and it was found that the dsOligo and rhNF-κB complex formation reached equilibrium (ca. 90% of the dsOligo was bound to rhNF-κB) after 5 min. Furthermore, without any purification process, even crude NF-κB in nuclear extracts from HeLa cells was specifically detected within 120 s by the μEMSA.
Collapse
Affiliation(s)
- Sonoko Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Connaghan KD, Heneghan AF, Miura MT, Bain DL. Na(+) and K(+) allosterically regulate cooperative DNA binding by the human progesterone receptor. Biochemistry 2010; 49:422-31. [PMID: 20000807 DOI: 10.1021/bi901525m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cooperativity is a common mechanism used by transcription factors to generate highly responsive yet stable gene regulation. For the two isoforms of human progesterone receptor (PR-A and PR-B), differences in cooperative DNA binding energetics may account for their differing transcriptional activation properties. Here we report on the molecular origins responsible for cooperativity, finding that it can be activated or repressed with Na(+) and K(+), respectively. We demonstrate that PR self-association and DNA-dependent cooperativity are linked to a monovalent cation binding event and that this binding is coupled to modulation of receptor structure. K(+) and Na(+) are therefore allosteric effectors of PR function. Noting that the apparent binding affinities of Na(+) and K(+) are comparable to their intracellular concentrations and that PR isoforms directly regulate the genes of a number of ion pumps and channels, these results suggest that Na(+) and K(+) may additionally function as physiological regulators of PR action.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
6
|
Nagatoishi S, Tanaka Y, Kudou M, Tsumoto K. Temperature and salt concentration alter base-sequence selectivity of a duplex DNA-bindingprotein. MOLECULAR BIOSYSTEMS 2010; 6:98-101. [DOI: 10.1039/b914828k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Millán-Pacheco C, Capistrán VM, Pastor N. On the consequences of placing amino groups at the TBP-DNA interface. Does TATA really matter? J Mol Recognit 2009; 22:453-64. [DOI: 10.1002/jmr.963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Nagatoishi S, Tanaka Y, Kudou M, Tsumoto K. The interaction of hyperthermophilic TATA-box binding protein with single-stranded DNA is entropically favorable and exhibits a large negative heat capacity change at high salt concentration. MOLECULAR BIOSYSTEMS 2009; 5:957-61. [PMID: 19668860 DOI: 10.1039/b904200h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the thermodynamics of the interaction between the TATA-box-binding protein from Pyrococcus horikoshii (PhoTBP) and its target DNA (TATA-1). The interaction between PhoTBP and double-stranded DNA (dsDNA) is entropically favorable and enthalpically unfavorable. The thermodynamic parameters for TATA-1 duplex formation in the presence of PhoTBP, that is, ternary PhoTBP-dsDNA complexation, are similar to those for TATA-1 duplex formation, which is enthalpically favorable. Surface plasmon resonance analysis indicates that the interaction between PhoTBP and single-stranded DNA (ssDNA) of TATA-1 is entropy driven and has a large negative heat capacity change (-1.19 kcal mol(-1) K(-1)) at high salt concentration (800 mM NaCl). These results suggest that the favorable entropic effect corresponding to the interaction between PhoTBP and dsDNA is due not to ternary complexation but to the interaction between PhoTBP and ssDNA. This report is the first to describe the thermodynamics of the interaction between TBP and ssDNA.
Collapse
Affiliation(s)
- Satoru Nagatoishi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
9
|
Sprouse RO, Wells MN, Auble DT. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J Biol Chem 2009; 284:4525-35. [PMID: 19098311 PMCID: PMC2640957 DOI: 10.1074/jbc.m808951200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Mot1 is an essential TATA-binding protein (TBP)-associated factor and Snf2/Swi2 ATPase that both represses and activates transcription. Biochemical and structural results support a model in which ATP binding and hydrolysis induce a conformational change in Mot1 that drives local translocation along DNA, thus removing TBP. Although this activity explains transcriptional repression, it does not as easily explain Mot1-mediated transcriptional activation, and several different models have been proposed to explain how Mot1 activates transcription. To better understand the function of Mot1 in yeast cells in vivo, particularly with regard to gene activation, TBP mutants were identified that bypass the requirement for Mot1 in vivo. Although TBP has been extensively mutated and analyzed previously, this screen uncovered two novel TBP variants that are unique in their ability to bypass the requirement for Mot1. Surprisingly, in vitro analyses reveal that rather than having acquired an improved biochemical activity, one of the TBPs was defective for interaction with polymerase II preinitiation complex (PIC) components and other regulators of TBP function. The other mutant was defective for DNA binding in vitro yet was still recruited to chromatin in vivo. These results suggest that Mot1-mediated dissociation of TBP (or TBP-containing complexes) from chromatin can explain the Mot1 activation mechanism at some promoters. The results also suggest that PICs can be dynamically unstable and that appropriate PIC instability is critical for the regulation of transcription in vivo.
Collapse
Affiliation(s)
- Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
10
|
Kugel JF. Using FRET to measure the angle at which a protein bends DNA: TBP binding a TATA box as a model system. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:341-346. [PMID: 21591217 DOI: 10.1002/bmb.20202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as TATA boxes. When TBP binds to a TATA box, it bends the DNA. Such bending will be detected using FRET to measure the distance between two fluorophores located on the ends of the DNA. When TBP binds and bends the DNA, the fluorophores move closer together, reflected by an increase in FRET. At the completion of the experiment, three parameters will be determined: 1) the efficiency of the FRET, 2) the end-to-end distance between the fluorophores, and 3) the angle at which TBP bends the DNA. In performing this experiment, students will be introduced to FRET, gain experience in quantitative biophysical measurements, and appreciate how a protein can induce a dramatic change in DNA conformation.
Collapse
Affiliation(s)
- Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309-0215.
| |
Collapse
|
11
|
Connaghan-Jones KD, Moody AD, Bain DL. Quantitative DNase footprint titration: a tool for analyzing the energetics of protein-DNA interactions. Nat Protoc 2008; 3:900-14. [PMID: 18451798 DOI: 10.1038/nprot.2008.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major goal in biomedical research is to determine the mechanisms responsible for gene regulation. However, the promoters and operators that control transcription are often complex in nature, containing multiple-binding sites with which DNA-binding proteins can interact cooperatively. Quantitative DNase footprint titration is one of the few techniques capable of resolving the microscopic binding affinities responsible for the macroscopic assembly process. Here, we present a step-by-step protocol for carrying out a footprint titration experiment. We then describe how to quantify the resultant images to generate individual-site binding curves. Finally, we derive basic equations for binding at each site and present an overview of the fitting process, applying it to the anticipated results. Users should anticipate that the footprinting experiment will take 3-5 d starting from DNA template isolation to image acquisition and quantitation.
Collapse
Affiliation(s)
- Keith D Connaghan-Jones
- Department of Pharmaceutical Sciences, University of Colorado Denver, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
12
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Following molecular transitions with single residue spatial and millisecond time resolution. Methods Cell Biol 2008; 84:589-615. [PMID: 17964944 DOI: 10.1016/s0091-679x(07)84019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
"Footprinting" describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions, respectively. The hydroxyl radical (*OH) is a uniquely insightful footprinting probe by virtue of it being among the most reactive chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved *OH footprinting is presented based on the Fenton reaction, Fe(II) + H(2)O(2) --> Fe(III) + *OH + OH(-). It is implemented using a standard three-syringe quench-flow mixer. The utility of this method is demonstrated by its application to the studies on RNA folding. Its applicability to a broad range of biological questions involving the function of DNA, RNA, and proteins is discussed.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
13
|
Vitko J, Rujan I, Androga L, Mukerji I, Bolton PH. Molecular beacon-equilibrium cyclization detection of DNA-protein complexes. Biophys J 2007; 93:3210-7. [PMID: 17631534 PMCID: PMC2025667 DOI: 10.1529/biophysj.106.097642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular beacon detection of equilibrium cyclization (MBEC) is a novel, high sensitivity technique that can allow DNA-protein complex formation to be studied under diverse conditions in a cost effective and rapid manner that can be adapted to high throughput screening. To demonstrate the ease and utility of applying MBEC to the investigation of the K(D) values of protein-DNA complexes, the sequence-specific Escherichia coli integration host factor (IHF) protein has been used as a test system. Competition between a labeled MBEC DNA construct and unlabeled duplex DNA for IHF binding allows the determination of K(D) values as a function of the DNA duplex sequence. This allows sequence specificity to be monitored while using only a single molecular beacon-labeled DNA. The robustness of MBEC for monitoring protein-DNA complex formation has been further demonstrated by determining the K(D) values as a function of salt concentration to investigate the net number of salt bridges formed in sequence-specific and -nonspecific IHF-DNA complexes. These MBEC results have been compared with those from other approaches.
Collapse
Affiliation(s)
- Jason Vitko
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
14
|
Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J Mol Biol 2007; 372:619-32. [PMID: 17681538 DOI: 10.1016/j.jmb.2007.06.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/11/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core promoters and bends the TATA DNA. We have used quantitative solution fluorescence resonance energy transfer (FRET) and gel-based FRET (gelFRET) to determine the effect of TFIIA on the conformation of the DNA in TBP/TATA complexes and on the kinetic stability of these complexes. Our results indicate that human TFIIA decreases the angle to which human TBP bends consensus TATA DNA from 104 degrees to 80 degrees when calculated using a two-kink model. The kinetic stability of TBP/TATA complexes was greatly reduced by increasing the KCl concentration from 50 mM to 140 mM, which is more physiologically relevant. TFIIA significantly enhanced the kinetic stability of TBP/TATA complexes, thereby attenuating the effect of higher salt concentrations. We also found that TBP bent non-consensus TATA DNA to a lesser degree than consensus TATA DNA and complexes between TBP and a non-consensus TATA box were kinetically unstable even at 50 mM KCl. Interestingly, TFIIA increased the calculated bend angle and kinetic stability of complexes on a non-consensus TATA box, making them similar to those on a consensus TATA box. Our data show that TFIIA induces a conformational change within the TBP/TATA complex that enhances its stability under both in vitro and physiological salt conditions. Furthermore, we present a refined model for the effect that TFIIA has on DNA conformation that takes into account potential changes in bend angle as well as twist angle.
Collapse
Affiliation(s)
- Aaron R Hieb
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
15
|
Khrapunov S, Brenowitz M. Influence of the N-terminal domain and divalent cations on self-association and DNA binding by the Saccharomyces cerevisiae TATA binding protein. Biochemistry 2007; 46:4876-87. [PMID: 17378582 PMCID: PMC2265637 DOI: 10.1021/bi061651w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The localization of a single tryptophan to the N-terminal domain and six tyrosines to the C-terminal domain of TBP allows intrinsic fluorescence to separately report on the structures and dynamics of the full-length TATA binding protein (TBP) of Saccharomyces cerevisiae and its C-terminal DNA binding domain (TBPc) as a function of self-association and DNA binding. TBPc is more compact than the C-terminal domain within the full-length protein. Quenching of the intrinsic fluorescence by DNA and external dynamic quenchers shows that the observed tyrosine fluorescence is due to the four residues surrounding the "DNA binding saddle" of the C-terminal domain. TBP's N-terminal domain unfolds and changes its position relative to the C-terminal domain upon DNA binding. It partially shields the DNA binding saddle in octameric TBP, shifting upon dissociation to monomers to expose the saddle to DNA. Structure-energetic correlations were obtained by comparing the contribution that electrostatic interactions make to DNA binding by TBP and TBPc; DNA binding by TBPc is more hydrophobic than that by TBP, suggesting that the N-terminal domain either interacts with bound DNA directly or screens a part of the C-terminal domain, diminishing its electronegativity. The competition between divalent cations, K+, and DNA is not straightforward. Divalent cations strengthen binding of TBP to DNA and do so more strongly for TBPc. We suggest that divalent cations affect the structure of the bound DNA perhaps by stabilizing its distorted conformation in complexes with TBPc and TBP and that the N-terminal domain mimics the effects of divalent cations. These data support an autoinhibitory mechanism in which competition between the N-terminal domain and DNA for the saddle diminishes the DNA binding affinity of the full-length protein.
Collapse
Affiliation(s)
- Sergei Khrapunov
- * To whom correspondence should be addressed. S.K.: e-mail, . M.B.: e-mail,
| | - Michael Brenowitz
- * To whom correspondence should be addressed. S.K.: e-mail, . M.B.: e-mail,
| |
Collapse
|
16
|
Tsihlis ND, Grove A. The Saccharomyces cerevisiae RNA polymerase III recruitment factor subunits Brf1 and Bdp1 impose a strict sequence preference for the downstream half of the TATA box. Nucleic Acids Res 2006; 34:5585-93. [PMID: 17028095 PMCID: PMC1636458 DOI: 10.1093/nar/gkl534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Association of the TATA-binding protein (TBP) with its cognate site within eukaryotic promoters is key to accurate and efficient transcriptional initiation. To achieve recruitment of Saccharomyces cerevisiae RNA polymerase III, TBP is associated with two additional factors, Brf1 and Bdp1, to form the initiation factor TFIIIB. Previous data have suggested that the structure or dynamics of the TBP–DNA complex may be altered upon entry of Brf1 and Bdp1 into the complex. We show here, using the altered specificity TBP mutant TBPm3 and an iterative in vitro selection assay, that entry of Brf1 and Bdp1 into the complex imposes a strict sequence preference for the downstream half of the TATA box. Notably, the selected sequence (TGTAAATA) is a perfect match to the TATA box of the RNA polymerase III-transcribed U6 small nuclear RNA (SNR6) gene. We suggest that the selected T•A base pair step at the downstream end of the 8 bp TBP site may provide a DNA flexure that promotes TFIIIB-DNA complex formation.
Collapse
Affiliation(s)
| | - Anne Grove
- To whom correspondence should be addressed. Tel: +1 225 578 5148; Fax: +1 225 578 8790;
| |
Collapse
|
17
|
Shcherbakova I, Mitra S, Beer RH, Brenowitz M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 2006; 34:e48. [PMID: 16582097 PMCID: PMC1421499 DOI: 10.1093/nar/gkl055] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022] Open
Abstract
'Footprinting' describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions. The hydroxyl radical (*OH) is a particularly valuable footprinting probe by virtue of it being among the most reactive of chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved .OH footprinting has been developed based on the Fenton reaction, Fe(II) + H2O2 --> Fe(III) + *OH + OH-. This method can be implemented in laboratories using widely available three-syringe quench flow mixers and inexpensive reagents to study local changes in the solvent accessibility of DNA, RNA and proteins associated with their biological function.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Robert H. Beer
- Department of Chemistry, Fordham University441 East Fordham Road, Bronx, NY 10458, USA
| | - Michael Brenowitz
- To whom correspondence should be addressed. Tel: 00 1 718 430 3179; Fax: 00 1 718 430 8565;
| |
Collapse
|
18
|
Williams SL, Parkhurst LK, Parkhurst LJ. Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer. Nucleic Acids Res 2006; 34:1028-35. [PMID: 16481311 PMCID: PMC1369283 DOI: 10.1093/nar/gkj498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Local DNA deformation arises from an interplay among sequence-related base stacking, intrastrand phosphate repulsion, and counterion and water distribution, which is further complicated by the approach and binding of a protein. The role of electrostatics in this complex chemistry was investigated using tethered cationic groups that mimic proximate side chains. A DNA duplex was modified with one or two centrally located deoxyuracils substituted at the 5-position with either a flexible 3-aminopropyl group or a rigid 3-aminopropyn-1-yl group. End-to-end helical distances and duplex flexibility were obtained from measurements of the time-resolved Förster resonance energy transfer between 5′- and 3′-linked dye pairs. A novel analysis utilized the first and second moments of the G(t) function, which encompasses only the energy transfer process. Duplex flexibility is altered by the presence of even a single positive charge. In contrast, the mean 5′–3′ distance is significantly altered by the introduction of two adjacently tethered cations into the double helix but not by a single cation: two adjacent aminopropyl groups decrease the 5′–3′ distance while neighboring aminopropynyl groups lengthen the helix.
Collapse
Affiliation(s)
| | | | - Lawrence J. Parkhurst
- To whom correspondence should be addressed. Tel: +1 402 472 3501; Fax: +1 402 472 9402;
| |
Collapse
|
19
|
Su TJ, Tock MR, Egelhaaf SU, Poon WCK, Dryden DTF. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Res 2005; 33:3235-44. [PMID: 15942026 PMCID: PMC1143692 DOI: 10.1093/nar/gki618] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5′-AACNNNNNNGTGC-3′, where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.
Collapse
Affiliation(s)
- Tsueu-Ju Su
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Mark R. Tock
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Stefan U. Egelhaaf
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - Wilson C. K. Poon
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- To whom correspondence should be addressed. Tel: +44 131 650 4735; Fax: +44 131 650 6453;
| |
Collapse
|
20
|
Peters WB, Edmondson SP, Shriver JW. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. J Mol Biol 2004; 343:339-60. [PMID: 15451665 DOI: 10.1016/j.jmb.2004.08.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 11/28/2022]
Abstract
Sac7d is a hyperthermophile chromatin protein which binds non-specifically to the minor groove of duplex DNA and induces a sharp kink of 66 degrees with intercalation of valine and methionine side-chains. We have utilized the thermal stability of Sac7d and the lack of sequence specificity to define the thermodynamics of DNA binding over a wide temperature range. The binding affinity for poly(dGdC) was moderate at 25 degrees C (Ka = 3.5(+/-1.6) x 10(6) M(-1)) and increased by nearly an order of magnitude from 10 degrees C to 80 degrees C. The enthalpy of binding was unfavorable at 25 degrees C, and decreased linearly from 5 degrees C to 60 degrees C. A positive binding heat at 25 degrees C is attributed in part to the energy of distorting DNA, and ensures that the temperature of maximal binding affinity (75.1+/-5.6 degrees C) is near the growth temperature of Sulfolobus acidocaldarius. Truncation of the two intercalating residues to alanine led to a decreased ability to bend and unwind DNA at 25 degrees C with a small decrease in binding affinity. The energy gained from intercalation is slightly greater than the free energy penalty of bending duplex DNA. Surprisingly, reduced distortion from the double alanine substitution did not lead to a significant decrease in the heat of binding at 25 degrees C. In addition, an anomalous positive DeltaCp of binding was observed for the double alanine mutant protein which could not be explained by the change in polar and apolar accessible surface areas. Both the larger than expected binding enthalpy and the positive heat capacity can be explained by a temperature dependent structural transition in the protein-DNA complex with a Tm of 15-20 degrees C and a DeltaH of 15 kcal/mol. Data are discussed which indicate that the endothermic transition in the complex is consistent with DNA distortion.
Collapse
Affiliation(s)
- William B Peters
- Laboratory for Structural Biology, Graduate Program in Biotechnology Science and Engineering, Department of Chemistry, Materials Science Building, John Wright Drive University of Alabama in Huntsville, 35899, USA
| | | | | |
Collapse
|
21
|
Khrapunov S, Brenowitz M. Comparison of the effect of water release on the interaction of the Saccharomyces cerevisiae TATA binding protein (TBP) with "TATA Box" sequences composed of adenosine or inosine. Biophys J 2004; 86:371-83. [PMID: 14695279 PMCID: PMC1303802 DOI: 10.1016/s0006-3495(04)74113-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The formation of sequence-specific complexes of TATA binding protein (TBP) with the minor groove of DNA results in the burial of large nonpolar surfaces and the exclusion of water from these interfaces. The release of water is thus expected to provide a significant entropic driving force for formation of the transcription-preinitiated complexes mediated by the binding of TBP to specific sequences. In this article are described equilibrium-binding studies of Saccharomyces cerevisiae TBP to 14 bp oligonucleotides bearing either the tightly bound and efficiently transcribed adenovirus major late promoter (TATAAAAG) or its inosine-substituted derivative (TITIIIIG) as a function of neutral osmolyte concentration. These two DNA sequences present the same pattern of minor groove hydrogen-bond donors and acceptors to the protein. TBP-DNA complex formation was monitored by steady-state fluorescence resonance energy transfer measurements of the oligonucleotides end-labeled with fluorescein (donor) and TAMRA (acceptor). Correct interpretation of the results obtained with the inosine-substituted sequence required careful consideration of the optical properties of the dyes as a function of osmolyte concentration to demonstrate that the relative change in the end-to-end distances for TATAAAAG- and TITIIIIG-bearing oligonucleotides is the same upon TBP binding. Although the affinity of TBP is slightly greater for the adenosine compared with the inosine-substituted TATA sequence in the absence of osmolyte, the end-to-end distances of the bound DNA in complex with TBP, the enthalpic and electrostatic components of binding, are identical within experimental precision. However, approximately 18 additional molecules of water are released upon TBP binding the TATAAAAG as compared with the TITIIIIG sequence resulting in an entropic advantage to the binding of the natural promoter sequence. These results are considered with regard to differences in the flexibility and hydration of the two DNA sequences.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | |
Collapse
|
22
|
Park S, Chung S, Kim KM, Jung KC, Park C, Hahm ER, Yang CH. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding. Biochim Biophys Acta Gen Subj 2004; 1670:217-28. [PMID: 14980448 DOI: 10.1016/j.bbagen.2003.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 12/18/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
The truncated myc and max proteins, only containing basic regions and helix-loop-helix/zipper (b/HLH/Zip) regions were over-expressed in E. coli and used for the determination of the binding constant and of the inhibitory mechanism on myc-max (or max-max)-DNA complex formation. The association kinetic constants (k(1) and k(-1)) of truncated max-max or myc-max dimer and DNA were determined as k(1)=(1.7+/-0.6)x10(5) M(-1) s(-1), k(-1)=(3.4+/-1.2)x10(-2) s(-1) for max-max and DNA or k(1)=(2.1+/-0.7)x10(5) M(-1) s(-1), k(-1)=(3.2+/-1.4)x10(-2) s(-1) for myc-max and DNA. The equilibrium binding constant (K(1)) was determined using these kinetic parameters [K(XXD)=(7.8+/-2.6)x10(6) M(-1) for max-max and DNA or K(XYD)=(6.9+/-2.2)x10(6) M(-1) for myc-max and DNA]. The binding constants of myc-max or max-max dimer formation were K(XX)=(2.6+/-0.9)x10(5) M(-1) or K(XY)=(1.3+/-0.4)x10(4) M(-1), respectively. When truncated proteins were used, the max-max dimer formation was easier than the myc-max dimer formation, contrary to the physiologically determined case. This leads us to deduce that domains other than b/HLH/Zip are very important for the transcriptional regulatory activity in physiological conditions. The truncated myc and max proteins, which were expressed in E. coli and contained only b/HLH/Zip regions were also used for the screening of inhibitors of myc-max-DNA complex formation. A synthesized curcuminoid, 1,7-bis(4-methyl-3-nitrophenyl)-1,6-heptadiene-3,5-dione (curcuminoid 004), showed the most potent inhibition out of the synthesized curcuminoids, in competition with DNA. The dissociation constant of max-max dimer and the inhibitor was 9 microM, when investigated using in vitro expressed b/HLH/Zip dimer proteins. The curcuminoid 004 showed an inhibitory effect on the binding of myc-max protein to the E-box element in SNU16 cells, and suppressed the expression of myc target genes including ornithine decarboxylase (ODC), cdc25a and c-myc in myc over-expressed human stomach cancer cell line SNU16.
Collapse
Affiliation(s)
- Seyeon Park
- Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Masters KM, Parkhurst KM, Daugherty MA, Parkhurst LJ. Native human TATA-binding protein simultaneously binds and bends promoter DNA without a slow isomerization step or TFIIB requirement. J Biol Chem 2003; 278:31685-90. [PMID: 12791683 DOI: 10.1074/jbc.m305201200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of TATA-binding protein (TBP) with promoter DNA is central to the initiation and regulation of eukaryotic protein synthesis. Our laboratory has previously conducted detailed investigations of this interaction using yeast TBP and seven consensus and variant TATA sequences. We have now investigated this key interaction using human TBP and the TATA sequence from the adenovirus major late promoter (AdMLP). Recombinant native human protein was used together with fluorescently labeled DNA, allowing real time data acquisition in solution. We find that the wild-type hTBP-DNAAdMLP reaction is characterized by high affinity (Kd < or = 5 nm), simultaneous binding and DNA bending, and rapid formation of a stable human TBP-DNA complex having DNA bent approximately 100 degrees. These data allow, for the first time, a direct comparison of the reactions of the full-length, native human and yeast TBPs with a consensus promoter, studied under identical conditions. The general reaction characteristics are similar for the human and yeast proteins, although the details differ and the hTBPwt-induced bend is more severe. This directly measured hTBPwt-DNAAdMLP interaction differs fundamentally from a recently published hTBPwt-DNAAdMLP model characterized by low affinity (microM) binding and an unstable complex requiring either a 30-min isomerization or TFIIB to achieve DNA bending. Possible sources of these significant differences are discussed.
Collapse
Affiliation(s)
- Kristina M Masters
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | |
Collapse
|
24
|
Mishra AK, Vanathi P, Bhargava P. The transcriptional activator GAL4-VP16 regulates the intra-molecular interactions of the TATA-binding protein. J Biosci 2003; 28:423-36. [PMID: 12799489 DOI: 10.1007/bf02705117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Binding characteristics of yeast TATA-binding protein (yTBP) over five oligomers having different TATA variants and lacking a UASGAL, showed that TATA-binding protein (TBP)-TATA complex gets stabilized in the presence of the acidic activator GAL4-VP16. Activator also greatly suppressed the non-specific TBP-DNA complex formation. The effects were more pronounced over weaker TATA boxes. Activator also reduced the TBP dimer levels both in vitro and in vivo, suggesting the dimer may be a direct target of transcriptional activators. The transcriptional activator facilitated the dimer to monomer transition and activated monomers further to help TBP bind even the weaker TATA boxes stably. The overall stimulatory effect of the GAL4-VP16 on the TBP-TATA complex formation resembles the known effects of removal of the N-terminus of TBP on its activity, suggesting that the activator directly targets the N-terminus of TBP and facilitates its binding to the TATA box.
Collapse
Affiliation(s)
- Anurag Kumar Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007,India
| | | | | |
Collapse
|
25
|
Parkhurst LJ, Parkhurst KM, Powell R, Wu J, Williams S. Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes. Biopolymers 2002; 61:180-200. [PMID: 11987180 DOI: 10.1002/bip.10138] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Time-resolved Förster resonance energy transfer (trFRET) has been used to obtain interdye distance distributions. These distributions give the most probable distance as well as a parameter, sigma, that characterize the width of the distribution. This latter parameter contains information not only on the flexibility of the dyes tethered to macromolecules, but on the flexibility of the macromolecules. Both the most probable interdye distance as well as sigma provide insight into DNA static bending and DNA flexibility. Time-resolved fluorescence anisotropy and static anisotropy measurements can be combined to provide a measure of the cone angle within which the tethered dyes appear to wobble. When this motion is an order of magnitude faster than the average lifetime that characterizes transfer, an average value of the dipolar orientational parameter kappa2 can be calculated for various mutual dye orientations. The resulting kappa2 distribution is very much narrower than the limiting values of 0 and 4, allowing more precise distances and distance changes to be determined. Static and time-resolved fluorescence data can be combined to constrain the analyses of DNA-protein kinetics to provide thermodynamic parameters for binding and for conformational changes along a reaction coordinate. The parameter sigma can be used to model multiple DNA-protein complexes with varying DNA bend angles in a global fitting of trFRET data. Such a global fitting approach has shown how the range of bends in single base DNA variants, when bound by the TATA binding protein (TBP), can be understood in terms of two limiting forms. Time-resolved FRET, combined with steady-state FRET, can be used to show not only how osmolytes affect the binding of DNA to proteins, but also how DNA bending depends on osmolyte concentration in the DNA-protein complexes.
Collapse
Affiliation(s)
- L J Parkhurst
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588-0304, USA.
| | | | | | | | | |
Collapse
|
26
|
Powell RM, Parkhurst KM, Parkhurst LJ. Comparison of TATA-binding protein recognition of a variant and consensus DNA promoters. J Biol Chem 2002; 277:7776-84. [PMID: 11726667 DOI: 10.1074/jbc.m110147200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of transcription pre-initiation complexes proceeds from the initial complex formed between "TATA" bearing promoter DNA and the TATA-binding protein (TBP). Our laboratory has been investigating the relationships among TATA sequence, TBP center dot TATA solution structure, recognition mechanisms, and transcription efficiency. TBP center dot TATA interactions have been modeled by global analysis of detailed kinetic and thermodynamic data obtained using fluorimetric and fluorometric techniques in conjunction with fluorescence resonance energy transfer. We have reported recently that TBP recognition of two consensus promoters, adenovirus major late (AdMLP: TATAAAAG) and E4 (TATATATA), is well described by a linear two-intermediate mechanism with simultaneous DNA binding and bending. Similar DNA geometries and high transcription efficiencies characterize these TBP x TATA complexes. Here we show that, in contrast to the consensus sequences, TBP recognition of a variant sequence (C7: TATAAACG) is described by a three-step model with two branching pathways. One pathway proceeds through an intermediate having severely bent DNA, reminiscent of the consensus interactions, with the other branch yielding a unique conformer with shallowly bent DNA. The resulting TBP x C7 complex has a dramatically different solution conformation than for TBP x DNA(CONSENSUS) and is correlated with diminished relative transcription activity. The temperature dependence of the TBP x C7 helical bend is postulated to derive from population shifts between the conformers with slightly and severely bent DNA.
Collapse
Affiliation(s)
- Robyn M Powell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA
| | | | | |
Collapse
|
27
|
Tretyachenko-Ladokhina V, Ross JBA, Senear DF. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation. J Mol Biol 2002; 316:531-46. [PMID: 11866516 DOI: 10.1006/jmbi.2001.5302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between the Escherichia coli cytidine repressor protein (CytR) and its operator sites at the different promoters that comprise the CytR regulon, play an important role in the regulation of these promoters. The natural operators are palindromes separated by variable length central spacers (0-9 bp). We have suggested that this variability affects the flexibility of CytR-DNA contacts, thereby affecting the critical protein-protein interactions between CytR and the cAMP receptor protein (CRP) that underlie differential repression and activation of CytR-regulated genes. To assess this hypothesis, we investigated the thermodynamics of CytR binding to the natural operator sequences found in udpP and deoP2. To separate effects due to spacing from effects due to the differing sequences of the recognition half-sites of these two operators, we also investigated CytR binding to artificial hybrid operators, in which the half-site sequences of udpP and deoP2 were exchanged. Thermodynamic parameters, DeltaS(o), DeltaH(o) and DeltaC(o)(p), were determined by van't Hoff analysis of CytR binding, monitored by changes in the steady-state fluorescence anisotropy of dye-conjugated, operator-containing oligonucleotides. Large differences in thermodynamics were observed that depend primarily on the central spacer rather than the sequences of the recognition half-sites. Binding to operators with deoP2 spacing results in a very large, negative DeltaC(o)(p). Association is strongly favored enthalpically and strongly disfavored entropically at ambient temperature. By contrast, binding to operators with udpP spacing results in a small, negative DeltaC(o)(p). Association is weakly favored both enthalpically and entropically at ambient temperature. A difference of such magnitude in DeltaDeltaC(o)(p) has not been reported previously for specific binding of a transcription factor to different sites. The identical salt dependence of CytR binding to deoP2 and udpP operators indicates that ion-dependent processes do not contribute significantly to this difference. Thus, the different thermodynamic effects appear to reflect distinctly different modes of site-specific DNA binding. We discuss similarities to operator binding by CytR homologs among LacI family repressors, and we consider how different CytR binding modes might affect interactions with other components of the gene regulatory machinery that contribute to differential gene regulation.
Collapse
|
28
|
Dhavan GM, Crothers DM, Chance MR, Brenowitz M. Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 2002; 315:1027-37. [PMID: 11827473 DOI: 10.1006/jmbi.2001.5303] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integration host factor (IHF) is a heterodimeric Escherichia coli protein that plays essential roles in a variety of cellular processes including site-specific recombination, transcription, and DNA replication. The IHF-DNA interface extends over three helical turns and includes sequential minor groove contacts that present strong, sequence specific protection patterns against hydroxyl radical cleavage. Synchrotron X-ray footprinting has been used to follow the kinetics of formation of DNA-protein contacts in the IHF-DNA complex with single base-pair spatial, and millisecond time, resolution. The three sites of IHF protection on the DNA develop with similar time-dependence, indicating that sequence specific binding and bending occur concertedly. Two distinct phases are observed in the association process. The first "burst" phase is characterized by a rate that is greater than diffusion limited (>10(10) s(-1) M(-1)) and the second phase is on the order of diffusion controlled (approximately 10(8) M(-1) s(-1)). The overall kinetics of association become faster with increasing IHF concentration showing that complex formation is second-order with protein. The rate of association is maximal between 100 and 200 mM KCl decreasing at higher and lower concentrations. The rate of IHF dissociation from site-specifically bound DNA increases monotonically as KCl concentration is increased. The dissociation progress curves are biphasic with the amplitude of the first phase dependent upon competitor DNA concentration. These results are the first analysis by synchrotron footprinting of the fast kinetics of a protein-DNA interaction and suggest that IHF binds its specific site through a multiple-step mechanism in which the first step is facilitated diffusion along the length of the duplex followed by subsequent binding and bending of the DNA in a concerted manner.
Collapse
Affiliation(s)
- Gauri M Dhavan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
29
|
Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J Biol Chem 2001; 276:49100-9. [PMID: 11677244 DOI: 10.1074/jbc.m109246200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a combination of fluorescence anisotropy spectroscopy and fluorescence-based native gel electrophoresis methods to examine the effects of the transcription factor IID-specific subunit TAF130p (TAF145p) upon the TATA box DNA binding properties of TATA box-binding protein (TBP). Purified full-length recombinant TAF130p decreases TBP-TATA DNA complex formation at equilibrium by competing directly with DNA for binding to TBP. Interestingly, we have found that full-length TAF130p is capable of binding multiple molecules of TBP with nanomolar binding affinity. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- U Banik
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
30
|
Rimsky S, Zuber F, Buckle M, Buc H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 2001; 42:1311-23. [PMID: 11886561 DOI: 10.1046/j.1365-2958.2001.02706.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The H-NS protein is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Although H-NS does not exhibit a high DNA sequence specificity, a number of H-NS-responsive promoters have been shown to contain regions of intrinsic DNA curvature located either upstream or downstream of the transcription start point. We have studied H-NS binding to DNA and in vitro transcriptional regulation by H-NS at several synthetic promoters with or without curved sequences inserted upstream of the Pribnow box. We show how such inserts determine the final organization of H-NS-containing nucleoprotein complexes and how this affects transcription. We refine a two-step mechanism for the constitution of H-NS assemblies that are efficient in regulation.
Collapse
Affiliation(s)
- S Rimsky
- Unité de Physicochimie des Macromolécules Biologiques, URA 1773 du Centre National de la Recherche Scientifique, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
31
|
Jung Y, Mikata Y, Lippard SJ. Kinetic studies of the TATA-binding protein interaction with cisplatin-modified DNA. J Biol Chem 2001; 276:43589-96. [PMID: 11568187 DOI: 10.1074/jbc.m108299200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TATA-binding protein (TBP) recognizes the TATA box element of transcriptional promoters and recruits other initiation factors. This essential protein binds selectively to cisplatin-damaged DNA. Electrophoretic mobility shift assays were performed to study the kinetics of TBP binding both to the TATA box and to cisplatin-damaged DNA in different sequence contexts. TBP binds with high affinity (K(d) = 0.3 nm) to DNA containing site-specific cisplatin 1,2-intrastrand d(GpG) cross-links. The k(on) and k(off) values for the formation of these TBP complexes are 1-3 x 10(5) m(-1) s(-1) and approximately 1-5 x 10(-4) s(-1), respectively, similar to the corresponding values for the formation of a TBP-TATA box complex. In electrophoretic mobility shift assay competition assays, cisplatin-damaged DNA extensively sequesters TBP from its natural binding site, the TATA box. Nine DNA probes were prepared to determine the flanking sequence dependence of TBP binding to cisplatin-modified DNA. TBP clearly displays sequence context selectivity for platinated DNA, very similar to but not as dramatic as that of the high mobility group protein HMGB1. When TBP was added to an in vitro nucleotide excision repair assay, it specifically shielded cisplatin-modified 1,2-(GpG) intrastrand cross-links from repair. These results indicate that TBP is likely to be a key protein in mediating the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Y Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
32
|
Powell RM, Parkhurst KM, Brenowitz M, Parkhurst LJ. Marked stepwise differences within a common kinetic mechanism characterize TATA-binding protein interactions with two consensus promoters. J Biol Chem 2001; 276:29782-91. [PMID: 11387341 DOI: 10.1074/jbc.m104099200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of the TATA-binding protein (TBP) to promoter DNA bearing the TATA sequence is an obligatory initial step in RNA polymerase II transcription initiation. The interactions of Saccharomyces cerevisiae TBP with the E4 (TATATATA) and adenovirus major late (TATAAAAG) promoters have been modeled via global analysis of kinetic and thermodynamic data obtained using fluorescence resonance energy transfer. A linear two-intermediate kinetic mechanism describes the reaction of both of these consensus strong promoters with TBP. Qualitative features common to both interactions include tightly bound TBP-DNA complexes with similar solution geometries, simultaneous DNA binding and bending, and the presence of intermediate TBP-DNA conformers at high mole fraction throughout most of the reaction and at equilibrium. Despite very similar energetic changes overall, the stepwise entropic and enthalpic compensations along the two pathways differ markedly following the initial binding/bending event. Furthermore, TBP-E4 dissociation ensues from both replacement and displacement processes, in contrast to replacement alone for TBP-adenovirus major late promoter. A model is proposed that explicitly correlates these similarities and differences with the sequence-specific structural properties inherent to each promoter. This detailed mechanistic comparison of two strong promoters interacting with TBP provides a foundation for subsequent comparison between consensus and variant promoter sequences reacting with TBP.
Collapse
Affiliation(s)
- R M Powell
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | |
Collapse
|
33
|
Kwon H, Park S, Lee S, Lee DK, Yang CH. Determination of binding constant of transcription factor AP-1 and DNA. Application of inhibitors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:565-72. [PMID: 11168395 DOI: 10.1046/j.1432-1327.2001.01897.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The equilibrium binding and association kinetics of the fos-jun dimer (basic and leucine zipper domain) to the AP-1 DNA were studied using a quantitative assay. The basic-region and leucine zipper (bZip) domain of c-fos was expressed as a fusion protein with glutathione S-transferase, and it was bound to glutathione-agarose. The GST-fused fos bZip region was allowed to form a heterodimer with the bZip domain of c-jun, to which radiolabeled AP-1 nucleotides were added. After thorough washing, the gel-bound radioactivity was counted. The binding and dissociation rate constants (k(1) and k-(1)) of the fos-jun dimer and DNA could be obtained from a time-course experiment. The association binding constant (K(1)) was determined using both a thermodynamic equation and kinetic parameters. Nordihydroguaiaretic acid (NDGA), momordin I, natural product inhibitors of the fos-jun/DNA complex formation, was applied to this jun-GST-fused fos system and it was found to decrease the apparent equilibrium binding of dimer and DNA. The thermodynamic constant of dimer and inhibitor binding was also determined.
Collapse
Affiliation(s)
- H Kwon
- School of Chemistry and Molecular Engineering, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
34
|
Protein-DNA interactions in the initiation of transcription: The Role of Flexibility and Dynamics of the TATA Recognition Sequence and the TATA Box Binding Protein. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1380-7323(01)80011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol 2000; 304:55-68. [PMID: 11071810 DOI: 10.1006/jmbi.2000.4173] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydroxyl radical footprint of the TATA-binding protein (TBP) bound to the high-affinity sequence TATAAAAG of the adenovirus 2 major late promoter has been quantitatively compared to a 2 ns molecular dynamics simulation of the complex in aqueous solution at room temperature using the CHARMM23 potential. The nucleotide-by-nucleotide analysis of the TBP-TATA hydroxyl radical footprint correlates with the solvent-accessible surface calculated from the dynamics simulation. The results suggest that local reactivity towards OH radicals results from the interplay between the local DNA geometry imposed by TBP binding, and the dynamics of the side-chains contacting the sugar hydrogen atoms. Analysis of the dynamics suggests that, over time, TBP forms stable interactions with the sugar-phosphate backbone through multiple contacts to different partners. This mechanism results in an enthalpic advantage to complex formation at a low entropic cost.
Collapse
Affiliation(s)
- N Pastor
- Facultad de Ciencias, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| | | | | | | |
Collapse
|
36
|
Abstract
The TATA box-binding protein (TBP) recognizes its target sites (TATA boxes) by indirectly reading the DNA sequence through its conformation effects (indirect readout). Here, we explore the molecular mechanisms underlying indirect readout of TATA boxes by TBP by studying the binding of TBP to adenovirus major late promoter (AdMLP) sequence variants, including alterations inside as well as in the sequences flanking the TATA box. We measure here the dissociation kinetics of complexes of TBP with AdMLP targets and, by phase-sensitive assay, the intrinsic bending in the TATA box sequences as well as the bending of the same sequence induced by TBP binding. In these experiments we observe a correlation of the kinetic stability to sequence changes within the TATA recognition elements. Comparison of the kinetic data with structural properties of TATA boxes in known crystalline TBP/TATA box complexes reveals several "signals" for TATA box recognition, which are both on the single base-pair level, as well as larger DNA tracts within the TATA recognition element. The DNA bending induced by TBP on its binding sites is not correlated to the stability of TBP/TATA box complexes. Moreover, we observe a significant influence on the kinetic stability of alteration in the region flanking the TATA box. This effect is limited however to target sites with alternating TA sequences, whereas the AdMLP target, containing an A tract, is not influenced by these changes.
Collapse
Affiliation(s)
- A Bareket-Samish
- Department of Biology, Technion, Technion City, Haifa, 32000, Israel.
| | | | | |
Collapse
|
37
|
Abstract
Thermodynamic and kinetic analyses of biomolecular interactions reveal details of the energetic and dynamic features of molecular recognition processes, and complement structural analyses of the free and complexed conformations. The recent improvements in both isothermal titration calorimetry and surface plasmon resonance sensoring provide powerful tools for analysing biomolecular interactions in thermodynamic and kinetic approaches. The thermodynamic and kinetic parameters obtained for binding between protein and DNA indicate the mechanism of specific DNA recognition, in the high-resolution structures of the protein-DNA complexes. The effects of temperature and ionic strength reflect the conformational changes of the protein and DNA molecules upon complex formation, including important contributions of water and solutes. When combined with mutational studies, the interactions can be reduced to several energetic contributions from individual contacts. These studies should be useful to determine general features of protein functions in genetic regulation.
Collapse
Affiliation(s)
- M Oda
- Research Institute for Biological Sciences (RIBS), Science University of Tokyo, Noda, Chiba 278-0022, Japan
| | | |
Collapse
|
38
|
Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev 1999; 13:3217-30. [PMID: 10617571 PMCID: PMC317201 DOI: 10.1101/gad.13.24.3217] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cocrystal structures of wild-type TATA box-binding protein (TBP) recognizing 10 naturally occurring TATA elements have been determined at 2.3-1.8 A resolution, and compared with our 1.9 A resolution structure of TBP bound to the Adenovirus major late promoter (AdMLP) TATA box (5'-TATAAAAG-3'). Minor-groove recognition by the saddle-shaped protein induces the same conformational change in each of these oligonucleotides, despite variations in promoter sequence that reduce the efficiency of transcription initiation. Three molecular mechanisms explain assembly of diverse TBP-TATA element complexes. (1) T --> A and A --> T transversions leave the minor-groove face unchanged, permitting formation of TBP-DNA complexes on many A/T-rich core promoter sequences. (2) Cavities in the interface between TBP and the minor-groove face of the AdMLP TATA box accommodate the exocyclic NH(2) groups of G in a TACA box and in a TATAAG box. (3) Formation of a C:G Hoogsteen basepair in a TATAAAC box eliminates steric clashes that would be produced by the Watson-Crick base pair. We conclude that the structure of the TBP-TATA box complex found at the heart of the polymerase II (pol II) transcription machinery has remained constant over the course of evolution, despite variations in TBP and its DNA targets.
Collapse
Affiliation(s)
- G A Patikoglou
- Laboratories of Molecular Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021 USA
| | | | | | | | | | | |
Collapse
|
39
|
Parkhurst KM, Richards RM, Brenowitz M, Parkhurst LJ. Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex. J Mol Biol 1999; 289:1327-41. [PMID: 10373370 DOI: 10.1006/jmbi.1999.2835] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of the TATA-binding protein (TBP) to the "TATA" sequences present in the promoters of eukaryotic class II genes is the first step in the sequential assembly of transcription pre-initiation complexes. Myriad structural changes, including severe bending of the DNA, accompany TBP-TATA complex formation. A detailed kinetic study has been conducted to elucidate the mechanistic details of TBP binding and DNA bending. The binding of Saccharomyces cerevisiae TBP to the adenovirus major late promoter (AdMLP) was followed in real-time through a range of temperatures and TBP concentrations using fluorescence resonance energy transfer (FRET) and stopped-flow mixing. The results of association and relaxation kinetics and equilibrium binding experiments were analyzed globally to obtain the complete kinetic and energetic profile of the reaction. This analysis reveals a complex mechanism with two intermediate species, with the DNA in the intermediates apparently bent similarly to the DNA in the final complex. TBP binding and DNA bending occur simultaneously through the multiple steps of the reaction. The first and third steps in this sequential process show nearly identical large increases in both enthalpy and entropy, whereas the middle step is highly exothermic and proceeds with a large decrease in entropy. The first intermediate is significantly populated at equilibrium and resembles the final complex both structurally and energetically. It is postulated that both this intermediate and the final complex bind transcription factor IIB in the second step of pol II pre-initiation complex assembly. A consequence of such a reactive intermediate is that the rate of assembly of transcriptionally competent pre-initiation complexes from bi-directionally bound TBP is greatly increased.
Collapse
Affiliation(s)
- K M Parkhurst
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
| | | | | | | |
Collapse
|
40
|
Daugherty MA, Brenowitz M, Fried MG. The TATA-binding protein from Saccharomyces cerevisiae oligomerizes in solution at micromolar concentrations to form tetramers and octamers. J Mol Biol 1999; 285:1389-99. [PMID: 9917384 DOI: 10.1006/jmbi.1998.2427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equilibrium analytical ultracentrifugation has been used to determine the stoichiometry and energetics of the self-assembly of the TATA-binding protein of Saccharomyces cerevisiae at 30 degreesC, in buffers ranging in salt concentration from 60 mM KCl to 1 M KCl. The data are consistent with a sequential association model in which monomers are in equilibrium with tetramers and octamers at protein concentrations above 2.6 microM. Association is highly cooperative, with octamer formation favored by approximately 7 kcal/mol over tetramers. At high [KCl], the concentration of tetramers becomes negligible and the data are best described by a monomer-octamer reaction mechanism. The equilibrium association constants for both monomer <--> tetramer and tetramer <--> octamer reactions change with [KCl] in a biphasic manner, decreasing with increasing [KCl] from 60 mM to 300 mM, and increasing with increasing [KCl] from 300 mM to 1 M. At low [KCl], approximately 3 mole equivalents of ions are released at each association step, while at high [KCl], approximately 3 mole equivalents of ions are taken up at each association step. These results suggest that there is a salt concentration-dependent change in the assembly mechanism, and that the mechanistic switch takes place near 300 mM KCl. The possibility that this self-association reaction may play a role in the activity of the TATA-binding protein in vivo is discussed.
Collapse
Affiliation(s)
- M A Daugherty
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | | |
Collapse
|