1
|
Harris NJ, Pellowe GA, Blackholly LR, Gulaidi-Breen S, Findlay HE, Booth PJ. Methods to study folding of alpha-helical membrane proteins in lipids. Open Biol 2022; 12:220054. [PMID: 35855589 PMCID: PMC9297032 DOI: 10.1098/rsob.220054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.
Collapse
Affiliation(s)
- Nicola J. Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A. Pellowe
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Laura R. Blackholly
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | | | - Heather E. Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paula J. Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
2
|
Gaffney KA, Guo R, Bridges MD, Muhammednazaar S, Chen D, Kim M, Yang Z, Schilmiller AL, Faruk NF, Peng X, Jones AD, Kim KH, Sun L, Hubbell WL, Sosnick TR, Hong H. Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein. Proc Natl Acad Sci U S A 2022; 119:e2109169119. [PMID: 34969836 PMCID: PMC8740594 DOI: 10.1073/pnas.2109169119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | - Daoyang Chen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108
| | - Anthony L Schilmiller
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Nabil F Faruk
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Kelly H Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tobin R Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824;
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
3
|
Corin K, Bowie JU. How bilayer properties influence membrane protein folding. Protein Sci 2020; 29:2348-2362. [PMID: 33058341 DOI: 10.1002/pro.3973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
The question of how proteins manage to organize into a unique three-dimensional structure has been a major field of study since the first protein structures were determined. For membrane proteins, the question is made more complex because, unlike water-soluble proteins, the solvent is not homogenous or even unique. Each cell and organelle has a distinct lipid composition that can change in response to environmental stimuli. Thus, the study of membrane protein folding requires not only understanding how the unfolded chain navigates its way to the folded state, but also how changes in bilayer properties can affect that search. Here we review what we know so far about the impact of lipid composition on bilayer physical properties and how those properties can affect folding. A better understanding of the lipid bilayer and its effects on membrane protein folding is not only important for a theoretical understanding of the folding process, but can also have a practical impact on our ability to work with and design membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Karabadzhak AG, Weerakkody D, Deacon J, Andreev OA, Reshetnyak YK, Engelman DM. Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide. Biophys J 2019; 114:2107-2115. [PMID: 29742404 DOI: 10.1016/j.bpj.2018.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/30/2018] [Accepted: 03/05/2018] [Indexed: 11/15/2022] Open
Abstract
The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.
Collapse
Affiliation(s)
- Alexander G Karabadzhak
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | | | - John Deacon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, Rhode Island
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, Rhode Island.
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Diblock copolymers enhance folding of a mechanosensitive membrane protein during cell-free expression. Proc Natl Acad Sci U S A 2019; 116:4031-4036. [PMID: 30760590 PMCID: PMC6410776 DOI: 10.1073/pnas.1814775116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane protein folding is a critical step that underlies proper cellular function as well as the design of technologies like vesicle-based biosensors and artificial cells. Membrane composition is known to play a role in membrane protein folding; however, the specific mechanical properties of membranes that govern protein folding remain unclear. Using a highly elastic nonnatural amphiphile, we highlight the importance of a membrane mechanical property, membrane elasticity, on the spontaneous insertion and folding of a model α-helical membrane protein. Through this study, we gain a deeper understanding of cellular membrane protein folding and offer a potential approach to improve the production of membrane proteins through optimizing the mechanical properties of synthetic scaffolds present in cell-free reactions. The expression and integration of membrane proteins into vesicle membranes is a critical step in the design of cell-mimetic biosensors, bioreactors, and artificial cells. While membrane proteins have been integrated into a variety of nonnatural membranes, the effects of the chemical and physical properties of these vesicle membranes on protein behavior remain largely unknown. Nonnatural amphiphiles, such as diblock copolymers, provide an interface that can be synthetically controlled to better investigate this relationship. Here, we focus on the initial step in a membrane protein’s life cycle: expression and folding. We observe improvements in both the folding and overall production of a model mechanosensitive channel protein, the mechanosensitive channel of large conductance, during cell-free reactions when vesicles containing diblock copolymers are present. By systematically tuning the membrane composition of vesicles through incorporation of a poly(ethylene oxide)-b-poly(butadiene) diblock copolymer, we show that membrane protein folding and production can be improved over that observed in traditional lipid vesicles. We then reproduce this effect with an alternate membrane-elasticizing molecule, C12E8. Our results suggest that global membrane physical properties, specifically available membrane surface area and the membrane area expansion modulus, significantly influence the folding and yield of a membrane protein. Furthermore, our results set the stage for explorations into how nonnatural membrane amphiphiles can be used to both study and enhance the production of biological membrane proteins.
Collapse
|
6
|
Huang H, Ge B, Zhang S, Li J, Sun C, Yue T, Huang F. Using Fluorescence Quenching Titration to Determine the Orientation of a Model Transmembrane Protein in Mimic Membranes. MATERIALS 2019; 12:ma12030349. [PMID: 30678051 PMCID: PMC6384929 DOI: 10.3390/ma12030349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
After synthesis of transmembrane proteins (TMPs), they are transferred and inserted into plasma membranes to play biological functions. Crucially, orientation of TMPs in membranes determines whether they have biological activities. In cellular environments, a number of cofactors, such as translocon, can assist TMPs to be inserted into membranes in defined orientations. During in vitro reconstitution of TMPs with mimic membranes, both insertion and orientation of TMPs are primarily determined by interactions with the membrane. Yet the knowledge is limited, hindering the in vitro applications of TMPs. Here, we take Bacteriorhodopsin (bR) as a model TMP, using fluorescence quenching titration experiment to identify orientation of bR in mimic membranes, examining effects of a number of factors, including lipid composition, pH value, ionic strength and membrane curvature. The most effective determinant is the lipid type, which modulates insertion and orientation of bR in membranes by changing the membrane surface charge and the membrane fluidity. Both the pH value and the ionic strength play secondary roles by tuning the nature of the electrostatic interaction. The membrane curvature was found to have a minor effect on orientation of bR in membranes. By comparing orientations of bR in folded and unfolded states, no obvious change was observed, informing that nascent proteins could be inserted into membranes in defined orientations before folding into the native state inside the membrane.
Collapse
Affiliation(s)
- Haihong Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Baosheng Ge
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shuai Zhang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jiqiang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Chenghao Sun
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
7
|
Huang H, Ge B, Sun C, Zhang S, Huang F. Membrane curvature affects the stability and folding kinetics of bacteriorhodopsin. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein. Proc Natl Acad Sci U S A 2018; 115:E1799-E1808. [PMID: 29432185 DOI: 10.1073/pnas.1714668115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
α-Helical membrane proteins have eluded investigation of their thermodynamic stability in lipid bilayers. Reversible denaturation curves have enabled some headway in determining unfolding free energies. However, these parameters have been limited to detergent micelles or lipid bicelles, which do not possess the same mechanical properties as lipid bilayers that comprise the basis of natural membranes. We establish reversible unfolding of the membrane transporter LeuT in lipid bilayers, enabling the comparison of apparent unfolding free energies in different lipid compositions. LeuT is a bacterial ortholog of neurotransmitter transporters and contains a knot within its 12-transmembrane helical structure. Urea is used as a denaturant for LeuT in proteoliposomes, resulting in the loss of up to 30% helical structure depending upon the lipid bilayer composition. Urea unfolding of LeuT in liposomes is reversible, with refolding in the bilayer recovering the original helical structure and transport activity. A linear dependence of the unfolding free energy on urea concentration enables the free energy to be extrapolated to zero denaturant. Increasing lipid headgroup charge or chain lateral pressure increases the thermodynamic stability of LeuT. The mechanical and charge properties of the bilayer also affect the ability of urea to denature the protein. Thus, we not only gain insight to the long-sought-after thermodynamic stability of an α-helical protein in a lipid bilayer but also provide a basis for studies of the folding of knotted proteins in a membrane environment.
Collapse
|
9
|
The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition. Sci Rep 2017; 7:13056. [PMID: 29026149 PMCID: PMC5638818 DOI: 10.1038/s41598-017-13290-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Lipids play key roles in Biology. Mechanical properties of the lipid bilayer influence their neighbouring membrane proteins, however it is unknown whether different membrane protein properties have the same dependence on membrane mechanics, or whether mechanics are tuned to specific protein processes of the protein. We study the influence of lipid lateral pressure and electrostatic effects on the in vitro reconstitution, folding, stability and function of a representative of the ubiquitous major facilitator transporter superfamily, lactose permease. Increasing the outward chain lateral pressure in the bilayer, through addition of lamellar phosphatidylethanolamine lipids, lowers lactose permease folding and reconstitution yields but stabilises the folded state. The presence of phosphatidylethanolamine is however required for correct folding and function. An increase in headgroup negative charge through the addition of phosphatidylglycerol lipids favours protein reconstitution but is detrimental to topology and function. Overall the in vitro folding, reconstitution, topology, stability and function of lactose permease are found to have different dependences on bilayer composition. A regime of lipid composition is found where all properties are favoured, even if suboptimal. This lays ground rules for rational control of membrane proteins in nanotechnology and synthetic biology by manipulating global bilayer properties to tune membrane protein behaviour.
Collapse
|
10
|
Harris NJ, Reading E, Ataka K, Grzegorzewski L, Charalambous K, Liu X, Schlesinger R, Heberle J, Booth PJ. Structure formation during translocon-unassisted co-translational membrane protein folding. Sci Rep 2017; 7:8021. [PMID: 28808343 PMCID: PMC5556060 DOI: 10.1038/s41598-017-08522-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Correctly folded membrane proteins underlie a plethora of cellular processes, but little is known about how they fold. Knowledge of folding mechanisms centres on reversible folding of chemically denatured membrane proteins. However, this cannot replicate the unidirectional elongation of the protein chain during co-translational folding in the cell, where insertion is assisted by translocase apparatus. We show that a lipid membrane (devoid of translocase components) is sufficient for successful co-translational folding of two bacterial α-helical membrane proteins, DsbB and GlpG. Folding is spontaneous, thermodynamically driven, and the yield depends on lipid composition. Time-resolving structure formation during co-translational folding revealed different secondary and tertiary structure folding pathways for GlpG and DsbB that correlated with membrane interfacial and biological transmembrane amino acid hydrophobicity scales. Attempts to refold DsbB and GlpG from chemically denatured states into lipid membranes resulted in extensive aggregation. Co-translational insertion and folding is thus spontaneous and minimises aggregation whilst maximising correct folding.
Collapse
Affiliation(s)
- Nicola J Harris
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Lucjan Grzegorzewski
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Kalypso Charalambous
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Xia Liu
- School of Biochemistry, Medical Sciences, University Walk, University of Bristol, Bristol, UK
| | - Ramona Schlesinger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Paula J Booth
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK.
| |
Collapse
|
11
|
Miller DM, Findlay HE, Ces O, Templer RH, Booth PJ. Light-activated control of protein channel assembly mediated by membrane mechanics. NANOTECHNOLOGY 2016; 27:494004. [PMID: 27831930 DOI: 10.1088/0957-4484/27/49/494004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, The University of Melbourne, 3052, Australia
| | | | | | | | | |
Collapse
|
12
|
Peter EK, Pivkin IV, Shea JE. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica. J Chem Phys 2016; 145:044903. [DOI: 10.1063/1.4958325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emanuel K. Peter
- Institute of Computational Science, Faculty of Informatics, University of Lugano, Switzerland
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, University of Lugano, Switzerland
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
13
|
Barriga HMG, Law RV, Seddon JM, Ces O, Brooks NJ. The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility. Phys Chem Chem Phys 2016; 18:149-55. [DOI: 10.1039/c5cp04239a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We distinguish the liquid ordered and liquid disordered phases in diffraction patterns of biphasic mixtures, comparing their lateral compressibility and report the variations in the two phase region with increasing hydrostatic pressure.
Collapse
Affiliation(s)
| | - R. V. Law
- Department of Chemistry
- Imperial College London
- UK
| | - J. M. Seddon
- Department of Chemistry
- Imperial College London
- UK
| | - O. Ces
- Department of Chemistry
- Imperial College London
- UK
| | - N. J. Brooks
- Department of Chemistry
- Imperial College London
- UK
| |
Collapse
|
14
|
Ding W, Palaiokostas M, Wang W, Orsi M. Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics. J Phys Chem B 2015; 119:15263-74. [PMID: 26560961 DOI: 10.1021/acs.jpcb.5b06604] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.
Collapse
Affiliation(s)
- Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Wen Wang
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Mario Orsi
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| |
Collapse
|
15
|
Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, Polovinkin V, Borshchevskiy V, Gordeliy V. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. PLoS One 2015; 10:e0128390. [PMID: 26046789 PMCID: PMC4457421 DOI: 10.1371/journal.pone.0128390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/24/2015] [Indexed: 12/02/2022] Open
Abstract
Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.
Collapse
Affiliation(s)
- Dmitry Bratanov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, University of Aachen (RWTH), Jägerstrasse 17–19, Aachen, Germany
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- * E-mail:
| |
Collapse
|
16
|
Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel) 2015; 5:1019-53. [PMID: 25815781 PMCID: PMC4500129 DOI: 10.3390/life5021019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The increasing ease of producing nucleic acids and proteins to specification offers potential for design and fabrication of artificial synthetic "organisms" with a myriad of possible capabilities. The prospects for these synthetic organisms are significant, with potential applications in diverse fields including synthesis of pharmaceuticals, sources of renewable fuel and environmental cleanup. Until now, artificial cell technology has been largely restricted to the modification and metabolic engineering of living unicellular organisms. This review discusses emerging possibilities for developing synthetic protocell "machines" assembled entirely from individual biological components. We describe a host of recent technological advances that could potentially be harnessed in design and construction of synthetic protocells, some of which have already been utilized toward these ends. More elaborate designs include options for building self-assembling machines by incorporating cellular transport and assembly machinery. We also discuss production in miniature, using microfluidic production lines. While there are still many unknowns in the design, engineering and optimization of protocells, current technologies are now tantalizingly close to the capabilities required to build the first prototype protocells with potential real-world applications.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Jacqueline M Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| |
Collapse
|
17
|
Barriga HMG, Bazin R, Templer RH, Law RV, Ces O. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2979-2987. [PMID: 25738977 DOI: 10.1021/la5047996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.
Collapse
Affiliation(s)
- Hanna M G Barriga
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Richard Bazin
- ‡Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, United Kingdom
| | - Richard H Templer
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Robert V Law
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Oscar Ces
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Pignataro MF, Dodes-Traian MM, González-Flecha FL, Sica M, Mangialavori IC, Rossi JPFC. Modulation of plasma membrane Ca2+-ATPase by neutral phospholipids: effect of the micelle-vesicle transition and the bilayer thickness. J Biol Chem 2015; 290:6179-90. [PMID: 25605721 PMCID: PMC4358257 DOI: 10.1074/jbc.m114.585828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/29/2014] [Indexed: 11/06/2022] Open
Abstract
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca(2+)-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.
Collapse
Affiliation(s)
- María Florencia Pignataro
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Martín M Dodes-Traian
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - F Luis González-Flecha
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Mauricio Sica
- the Laboratorio de Bioenergías, IEDS, CONICET Centro Atómico Bariloche, E. Bustillo 9,500 (8400), San Carlos de Bariloche, Río Negro, Argentina
| | - Irene C Mangialavori
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Juan Pablo F C Rossi
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| |
Collapse
|
19
|
Barriga HMG, Booth P, Haylock S, Bazin R, Templer RH, Ces O. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. J R Soc Interface 2015; 11:20140404. [PMID: 25008079 PMCID: PMC4233688 DOI: 10.1098/rsif.2014.0404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Droplet interface bilayers (DIBs) provide an exciting new platform for the study of membrane proteins in stable bilayers of controlled composition. To date, the successful reconstitution and activity measurement of membrane proteins in DIBs has relied on the use of the synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). We report the functional reconstitution of the mechanosensitive channel of large conductance (MscL) into DIBs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a lipid of significantly greater biological relevance than DPhPC. MscL functionality has been demonstrated using a fluorescence-based assay, showing that dye flow occurs across the DIB when MscL is gated by the cysteine reactive chemical 2-(trimethylammonium)ethyl methane thiosulfonate bromide (MTSET). MscL has already been the subject of a number of studies investigating its interaction with the membrane. We propose that this method will pave the way for future MscL studies looking in detail at the effects of controlled composition or membrane asymmetry on MscL activity using biologically relevant lipids and will also be applicable to other lipid–protein systems, paving the way for the study of membrane proteins in DIBs with biologically relevant lipids.
Collapse
Affiliation(s)
- Hanna M G Barriga
- Membrane Biophysics Platform, Institute of Chemical Biology and Department of Chemistry, Imperial College London, South Kensington, London SW7 2AX, UK
| | - Paula Booth
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Stuart Haylock
- Membrane Biophysics Platform, Institute of Chemical Biology and Department of Chemistry, Imperial College London, South Kensington, London SW7 2AX, UK
| | - Richard Bazin
- Pfizer Global Research and Development, Sandwich CT13 9NJ, UK
| | - Richard H Templer
- Membrane Biophysics Platform, Institute of Chemical Biology and Department of Chemistry, Imperial College London, South Kensington, London SW7 2AX, UK
| | - Oscar Ces
- Membrane Biophysics Platform, Institute of Chemical Biology and Department of Chemistry, Imperial College London, South Kensington, London SW7 2AX, UK
| |
Collapse
|
20
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
22
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
23
|
Ng DP, Deber CM. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions. Biochemistry 2014; 53:3747-57. [PMID: 24857611 DOI: 10.1021/bi500317h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Central to the formation of tertiary structure in membrane protein folding is the presence of amino acid sequence motifs (such as "small-XXX-small" segments) in the TM segments that promote interaction-compatible surfaces through which the TM α-helices interact. Here, we sought to elucidate additional factors that may work in tandem to dictate the ultimate interaction fate of TM-embedded segments. In this context, we used proteolipid protein (PLP), the major protein from central nervous system myelin for which mutant-dependent non-native oligomerization has been implicated in neurological disorders, to explore the specific effects of TM boundary residues (the membrane entry and exit points), keying on the secondary structure and self-association of peptides corresponding to the PLP TM2 α-helix (wild-type sequence ⁶⁶AFQYVIYGTASFFFLYGALLLAEGF⁹⁰). Using gel electrophoresis, circular dichroism, and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate (SDS), we found that mutation of F90 to residues such as A, I, L, or V maintains the onset of TM2-TM2 dimerization, whereas mutation to E, G, Q, N, S, or T abrogates dimer formation. We attribute this sensitivity to changes in local hydrophobicity, viz., a decrease in hydrophobicity reduces local lipid-peptide interactions, which in turn disrupts peptide α-helicity and hence the effectiveness of an incipient interaction-compatible surface. Our results show that the secondary structure and oligomeric state of PLP TM2 Lys-tagged peptides are significantly modulated by the specific nature of their C-terminal boundary residue, thus providing insight as to how point mutations, particularly where they produce disease states, can compromise the folding process.
Collapse
Affiliation(s)
- Derek P Ng
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto, Ontario M5G 0A4, Canada
| | | |
Collapse
|
24
|
Affiliation(s)
- Karen G. Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
25
|
Harris NJ, Findlay HE, Simms J, Liu X, Booth PJ. Relative domain folding and stability of a membrane transport protein. J Mol Biol 2014; 426:1812-25. [PMID: 24530957 DOI: 10.1016/j.jmb.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately +2 kcal mol(-1). There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of +2 kcal mol(-1). This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.
Collapse
Affiliation(s)
- Nicola J Harris
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - John Simms
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xia Liu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paula J Booth
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
26
|
Orsi M, Essex JW. Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: insights from coarse-grain molecular dynamics simulations. Faraday Discuss 2013; 161:249-72; discussion 273-303. [DOI: 10.1039/c2fd20110k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Calcutta A, Jessen CM, Behrens MA, Oliveira CL, Renart ML, González-Ros JM, Otzen DE, Pedersen JS, Malmendal A, Nielsen NC. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2290-301. [DOI: 10.1016/j.bbamem.2012.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/23/2012] [Accepted: 04/09/2012] [Indexed: 11/25/2022]
|
28
|
Booth PJ. A successful change of circumstance: a transition state for membrane protein folding. Curr Opin Struct Biol 2012; 22:469-75. [DOI: 10.1016/j.sbi.2012.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 01/02/2023]
|
29
|
Krishnamani V, Lanyi JK. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles. Biochemistry 2012; 51:1061-9. [PMID: 22304411 DOI: 10.1021/bi201770y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report molecular dynamics simulations of the trends in the changes in secondary structure of the seven individual helices of bacteriorhodopsin when inserted into sodium dodecyl sulfate (SDS) micelles, and their dependence on the amino acid sequence. The results indicate that the partitioning of the helices in the micelles and their stability are dependent on the hydrophobicity of the transmembrane segments. Helices A, B, and E are stable and retain their initial secondary structure throughout the 100 ns simulation time. In contrast, helices C, D, F, and G show structural perturbations within the first 10 ns. The instabilities are localized near charged residues within the transmembrane segments. The overall structural instability of the helix is correlated with its partitioning to the surface of the micelle and its interaction with polar groups there. The in silico experiments were performed to complement the in vitro experiments that examined the partial denaturation of bacteriorhodopsin in SDS described in the preceding article (DOI 10.1021/bi201769z ). The simulations are consistent with the trends revealed by the experimental results but strongly underestimate the extent of helix to extended coil transformation. The reason may be either that the sampling time was not sufficiently long or, more interestingly, that interhelix residue interactions play a role in the unfolding of the helices.
Collapse
Affiliation(s)
- Venkatramanan Krishnamani
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States
| | | |
Collapse
|
30
|
Krishnamani V, Hegde BG, Langen R, Lanyi JK. Secondary and Tertiary Structure of Bacteriorhodopsin in the SDS Denatured State. Biochemistry 2012; 51:1051-60. [DOI: 10.1021/bi201769z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Venkatramanan Krishnamani
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Balachandra G. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Janos K. Lanyi
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
31
|
Mitchell DC. Progress in understanding the role of lipids in membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:951-6. [PMID: 22236837 DOI: 10.1016/j.bbamem.2011.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Detailed investigations of membrane protein folding present a number of serious technical challenges. Most studies addressing this subject have emphasized aspects of protein amino acid sequence and structure. While it is generally accepted that the interplay between proteins and lipids plays an important role in membrane protein folding, the role(s) played by membrane lipids in this process have only recently been explored in any detail. This review is intended to summarize recent studies in which particular lipids or membrane physical properties have been shown to play a role in the folding of intact, functionally competent integral membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Drake C Mitchell
- Department of Physics, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|
32
|
Harris NJ, Booth PJ. Folding and stability of membrane transport proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1055-66. [PMID: 22100867 DOI: 10.1016/j.bbamem.2011.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Transmembrane transporters are responsible for maintaining a correct internal cellular environment. The inherent flexibility of transporters together with their hydrophobic environment means that they are challenging to study in vitro, but recently significant progress been made. This review will focus on in vitro stability and folding studies of transmembrane alpha helical transporters, including reversible folding systems and thermal denaturation. The successful re-assembly of a small number of ATP binding cassette transporters is also described as this is a significant step forward in terms of understanding the folding and assembly of these more complex, multi-subunit proteins. The studies on transporters discussed here represent substantial advances for membrane protein studies as well as for research into protein folding. The work demonstrates that large flexible hydrophobic proteins are within reach of in vitro folding studies, thus holding promise for furthering knowledge on the structure, function and biogenesis of ubiquitous membrane transporter families. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
33
|
Cymer F, Veerappan A, Schneider D. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:963-73. [PMID: 21827736 DOI: 10.1016/j.bbamem.2011.07.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/19/2011] [Accepted: 07/24/2011] [Indexed: 12/22/2022]
Abstract
Folding of polytopic transmembrane proteins involves interactions of individual transmembrane helices, and multiple TM helix-helix interactions need to be controlled and aligned to result in the final TM protein structure. While defined interaction motifs, such as the GxxxG motif, might be critically involved in transmembrane helix-helix interactions, the sequence context as well as lipid bilayer properties significantly modulate the strength of a sequence specific transmembrane helix-helix interaction. Structures of 11 transmembrane helix dimers have been described today, and the influence of the sequence context as well as of the detergent and lipid environment on a sequence specific dimerization is discussed in light of the available structural information. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Florian Cymer
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Becher-Weg 30, 55128 Mainz, Germany
| | | | | |
Collapse
|
34
|
Hong H, Bowie JU. Dramatic destabilization of transmembrane helix interactions by features of natural membrane environments. J Am Chem Soc 2011; 133:11389-98. [PMID: 21682279 PMCID: PMC3140635 DOI: 10.1021/ja204524c] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins have evolved to fold and function in a lipid bilayer, so it is generally assumed that their stability should be optimized in a natural membrane environment. Yet optimal stability is not always in accord with optimization of function, so evolutionary pressure, occurring in a complex membrane environment, may favor marginal stability. Here, we find that the transmembrane helix dimer, glycophorin A (GpATM), is actually much less stable in the heterogeneous environment of a natural membrane than it is in model membranes and even common detergents. The primary destabilizing factors are electrostatic interactions between charged lipids and charged GpATM side chains, and nonspecific competition from other membrane proteins. These effects overwhelm stabilizing contributions from lateral packing pressure and excluded volume. Our work illustrates how evolution can employ membrane composition to modulate protein stability.
Collapse
Affiliation(s)
- Heedeok Hong
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - James U. Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
35
|
Krishnamani V, Lanyi JK. Structural changes in bacteriorhodopsin during in vitro refolding from a partially denatured state. Biophys J 2011; 100:1559-67. [PMID: 21402039 DOI: 10.1016/j.bpj.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022] Open
Abstract
We report on the formation of the secondary and tertiary structure of bacteriorhodopsin during its in vitro refolding from an SDS-denatured state. We used the mobility of single spin labels in seven samples, attached at various locations to six of the seven helical segments to engineered cysteine residues, to follow coil-to-helix formation. Distance measurements obtained by spin dipolar quenching in six samples labeled at either the cytoplasmic or extracellular ends of pairs of helices revealed the time dependence of the recovery of the transmembrane helical bundle. The secondary structure in the majority of the helical segments refolds with a time constant of <100-140 ms. Recovery of the tertiary structure is achieved by sequential association of the helices and occurs in at least three distinct steps with time constants of 1), well below 1 s; 2), 3-4 s; and 3), 60-130 s (the latter depending on the helical pair). The slowest of these processes occurs in concert with recovery of the retinal chromophore.
Collapse
|
36
|
Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Biophys J 2011; 100:1109-19. [PMID: 21320457 DOI: 10.1016/j.bpj.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 12/17/2022] Open
Abstract
Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein is embedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recently investigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here, we study this process by all-atom molecular dynamics simulations, in which single bacteriorhodopsin molecules were extracted and unfolded from an atomistic purple membrane model. In our simulations, key features from the experiments like force profiles and location of key residues that resist mechanical unfolding were reproduced. These key residues were seen to be stabilized by a dynamic network of intramolecular interactions. Further, the unfolding pathway was found to be velocity-dependent. Simulations in which the mechanical stress was released during unfolding revealed relaxation motions that allowed characterization of the nonequilibrium processes during fast extraction.
Collapse
|
37
|
Debnath DK, Basaiawmoit RV, Nielsen KL, Otzen DE. The role of membrane properties in Mistic folding and dimerisation. Protein Eng Des Sel 2010; 24:89-97. [DOI: 10.1093/protein/gzq095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Findlay HE, Rutherford NG, Henderson PJF, Booth PJ. Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc Natl Acad Sci U S A 2010; 107:18451-6. [PMID: 20937906 PMCID: PMC2972933 DOI: 10.1073/pnas.1005729107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how an amino acid sequence folds into a functional, three-dimensional structure has proved to be a formidable challenge in biological research, especially for transmembrane proteins with multiple alpha helical domains. Mechanistic folding studies on helical membrane proteins have been limited to unusually stable, single domain proteins such as bacteriorhodopsin. Here, we extend such work to flexible, multidomain proteins and one of the most widespread membrane transporter families, the major facilitator superfamily, thus showing that more complex membrane proteins can be successfully refolded to recover native substrate binding. We determine the unfolding free energy of the two-domain, Escherichia coli galactose transporter, GalP; a bacterial homologue of human glucose transporters. GalP is reversibly unfolded by urea. Urea causes loss of substrate binding and a significant reduction in alpha helical content. Full recovery of helical structure and substrate binding occurs in dodecylmaltoside micelles, and the unfolding free energy can be determined. A linear dependence of this free energy on urea concentration allows the free energy of unfolding in the absence of urea to be determined as +2.5 kcal·mol(-1). Urea has often been found to be a poor denaturant for transmembrane helical structures. We attribute the denaturation of GalP helices by urea to the dynamic nature of the transporter structure allowing denaturant access via the substrate binding pocket, as well as to helical structure that extends beyond the membrane. This study gives insight into the final, critical folding step involving recovery of ligand binding for a multidomain membrane transporter.
Collapse
Affiliation(s)
- Heather E. Findlay
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; and
| | - Nicholas G. Rutherford
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J. F. Henderson
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paula J. Booth
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; and
| |
Collapse
|
39
|
Sodt AJ, Head-Gordon T. An implicit solvent coarse-grained lipid model with correct stress profile. J Chem Phys 2010; 132:205103. [PMID: 20515115 DOI: 10.1063/1.3408285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a coarse-grained parametrization strategy for lipid membranes that we illustrate for a dipalmitoylphosphatidylcholine bilayer. Our coarse-graining approach eliminates the high cost of explicit solvent but maintains more lipid interaction sites. We use a broad attractive tail-tail potential and extract realistic bonded potentials of mean force from all-atom simulations, resulting in a model with a sharp gel to fluid transition, a correct bending modulus, and overall very reasonable dynamics when compared with experiment. We also determine a quantitative stress profile and correct breakdown of contributions from lipid components when compared with detailed all-atom simulation benchmarks, which has been difficult to achieve for implicit membrane models. Such a coarse-grained lipid model will be necessary for efficiently simulating complex constructs of the membrane, such as protein assembly and lipid raft formation, within these nonaqueous chemical environments.
Collapse
Affiliation(s)
- Alex J Sodt
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
40
|
Debnath DK, Otzen DE. Cell-free synthesis and folding of transmembrane OmpA reveals higher order structures and premature truncations. Biophys Chem 2010; 152:80-8. [PMID: 20813447 DOI: 10.1016/j.bpc.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/08/2010] [Indexed: 01/23/2023]
Abstract
We use a cell-free transcription-translation system to monitor the effect of different lipids on the synthesis and folding of the transmembrane domain of the outer membrane protein OmpA from E. coli under physiological conditions. Folding is consistent with previous observations made in vitro at high pH. Synthesis and folding yields are optimal in phosphocholine lipids, particularly in short chain lipids and small vesicles, while lipid rafts do not promote folding compared to the folding in the absence of lipids. Truncated species are observed during translation in the presence of the periplasmic chaperone Skp, which likely binds to the newly synthesized polypeptide chain during cell-free translation and thus prematurely terminate polypeptide chain synthesis. In contrast, folded and unfolded dimers of OmpA correlate negatively with folding yields. This suggests that dimer formation competes with folding and insertion of monomeric OmpA, though folded dimers slowly appear to convert to folded monomers.
Collapse
Affiliation(s)
- Dilip K Debnath
- Center for insoluble protein structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C., Denmark
| | | |
Collapse
|
41
|
Weise K, Triola G, Janosch S, Waldmann H, Winter R. Visualizing association of lipidated signaling proteins in heterogeneous membranes−Partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1409-17. [DOI: 10.1016/j.bbamem.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/05/2009] [Accepted: 12/08/2009] [Indexed: 01/05/2023]
|
42
|
Reinau ME, Thøgersen IB, Enghild JJ, Nielsen KL, Otzen DE. The diversity of FtsY-lipid interactions. Biopolymers 2010; 93:595-606. [DOI: 10.1002/bip.21404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Miller D, Charalambous K, Rotem D, Schuldiner S, Curnow P, Booth PJ. In vitro Unfolding and Refolding of the Small Multidrug Transporter EmrE. J Mol Biol 2009; 393:815-32. [DOI: 10.1016/j.jmb.2009.08.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 11/28/2022]
|
44
|
Gauthé BLLE, Heron AJ, Seddon JM, Ces O, Templer RH. A high pressure cell for simultaneous osmotic pressure and x-ray diffraction measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:035107. [PMID: 19334952 DOI: 10.1063/1.3089826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we report on a novel osmotic cell, developed to simultaneously subject a sample to osmotic stress and measure structural changes by small angle x-ray diffraction. The osmotic cell offers many advantages over more conventional methods of osmotically stressing soft materials to measure their structural response. In particular, a full osmotic analysis can be performed with a single small sample (25 microl). This reduces sample handling and the associated systematic errors, as well as enabling tight control and monitoring of the thermodynamic environment during osmosis, thereby increasing measurement precision. The cell design enables control of osmotic pressure to +/-0.04 bar over a pressure range of 1-100 bar, and temperature control to +/-0.05 degrees C. Under these conditions, the lattice spacing in lyotropic structures was resolved to better than +/-0.005 A. Using the osmotic cell, we demonstrate good agreement with previous conventional measurements on the energy of dehydrating the fluid lamellar phase of dioleoylphosphatidylcholine in water.
Collapse
Affiliation(s)
- Béatrice L L E Gauthé
- Department of Chemistry and Chemical Biology Centre, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Sanchez KM, Gable JE, Schlamadinger DE, Kim JE. Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: lessons from the transmembrane protein OmpA. Biochemistry 2008; 47:12844-52. [PMID: 18991402 PMCID: PMC2724591 DOI: 10.1021/bi800860k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Refolding curves of the integral membrane protein outer membrane protein A (OmpA) were measured to determine the conformational stabilities of this model system for membrane protein folding. Wild-type OmpA exhibits a free energy of unfolding (DeltaG degrees H2O) of 10.5 kcal/mol. Mutants, containing a single tryptophan residue at the native positions 7, 15, 57, 102, or 143, are less stable than wild-type OmpA, with DeltaG degrees H2O values of 6.7, 4.8, 2.4, 4.7, and 2.8 kcal/mol, respectively. The trend observed here is discussed in terms of noncovalent interactions, including aromatic interactions and hydrogen bonding. The effect of the soluble tail on the conformational stability of the transmembrane domain of OmpA was also investigated via truncated single-Trp mutants; DeltaG degrees H2O values for four of the five truncated mutants are greater by >2.7 kcal/mol relative to the full-length versions, suggesting that the absence of the soluble domain may destabilize the unfolded transmembrane domain. Finally, dynamic light scattering experiments were performed to measure the effects of urea and protein on vesicle size and stability. Urea concentrations greater than 1 M cause an increase in vesicle size, and these diameters are unaltered in the presence of protein. These dynamic light scattering results complement the fluorescence studies and illustrate the important effects of vesicle size on protein conformational stability.
Collapse
Affiliation(s)
- Katheryn M. Sanchez
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California, 92093
| | - Jonathan E. Gable
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California, 92093
| | - Diana E. Schlamadinger
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California, 92093
| | - Judy E. Kim
- Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California, 92093
| |
Collapse
|
46
|
Charalambous K, Miller D, Curnow P, Booth PJ. Lipid bilayer composition influences small multidrug transporters. BMC BIOCHEMISTRY 2008; 9:31. [PMID: 19032749 PMCID: PMC2605743 DOI: 10.1186/1471-2091-9-31] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Membrane proteins are influenced by their surrounding lipids. We investigate the effect of bilayer composition on the membrane transport activity of two members of the small multidrug resistance family; the Escherichia coli transporter, EmrE and the Mycobacterium tuberculosis, TBsmr. In particular we address the influence of phosphatidylethanolamine and anionic lipids on the activity of these multidrug transporters. Phosphatidylethanolamine lipids are native to the membranes of both transporters and also alter the lateral pressure profile of a lipid bilayer. Lipid bilayer lateral pressures affect membrane protein insertion, folding and activity and have been shown to influence reconstitution, topology and activity of membrane transport proteins. RESULTS Both EmrE and TBsmr are found to exhibit a similar dependence on lipid composition, with phosphatidylethanolamine increasing methyl viologen transport. Anionic lipids also increase transport for both EmrE and TBsmr, with the proteins showing a preference for their most prevalent native anionic lipid headgroup; phosphatidylglycerol for EmrE and phosphatidylinositol for TBsmr. CONCLUSION These findings show that the physical state of the membrane modifies drug transport and that substrate translocation is dependent on in vitro lipid composition. Multidrug transport activity seems to respond to alterations in the lateral forces exerted upon the transport proteins by the bilayer.
Collapse
|
47
|
Dymond MK, Attard GS. Cationic type I amphiphiles as modulators of membrane curvature elastic stress in vivo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11743-11751. [PMID: 18795806 DOI: 10.1021/la8017612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently we proposed that the antineoplastic properties observed in vivo for alkyl-lysophospholipid and alkylphosphocholine analogues are a direct consequence of the reduction of membrane stored elastic stress induced by these amphiphiles. Here we report similar behavior for a wide range of cationic surfactant analogues. Our systematic structure-activity studies show that the cytotoxic properties of cationic surfactants follow the same pattern of activity we observed previously for alkyl-lysophospholipid analogues, indicating a common mechanism of action that is consistent with the theory that these amphiphiles reduce membrane stored elastic stress. We note that several of the cationic surfactant compounds we have evaluated are also potent antibacterial and antifungal agents. The similarity of structure-activity relationships for cationic surfactants against microorganisms and those we have observed in eukaryotic cell lines leads us to suggest the possibility that the antibacterial and antifungal properties of cationic surfactants may also be due to modulation of membrane stored elastic stress.
Collapse
Affiliation(s)
- Marcus K Dymond
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ. U.K
| | | |
Collapse
|
48
|
Gautier A, Kirkpatrick J, Nietlispach D. Solution-State NMR Spectroscopy of a Seven-Helix Transmembrane Protein Receptor: Backbone Assignment, Secondary Structure, and Dynamics. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Marsh D. Protein modulation of lipids, and vice-versa, in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1545-75. [DOI: 10.1016/j.bbamem.2008.01.015] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 11/29/2022]
|
50
|
Seddon AM, Lorch M, Ces O, Templer RH, Macrae F, Booth PJ. Phosphatidylglycerol lipids enhance folding of an alpha helical membrane protein. J Mol Biol 2008; 380:548-56. [PMID: 18565344 DOI: 10.1016/j.jmb.2008.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/07/2008] [Accepted: 05/01/2008] [Indexed: 11/27/2022]
Abstract
Membrane lipids are increasingly being recognised as active participants in biological events. The precise roles that individual lipids or global properties of the lipid bilayer play in the folding of membrane proteins remain to be elucidated, Here, we find a significant effect of phosphatidylglycerol (PG) on the folding of a trimeric alpha helical membrane protein from Escherichia coli diacylglycerol kinase. Both the rate and the yield of folding are increased by increasing the amount of PG in lipid vesicles. Moreover, there is a direct correlation between the increase in yield and the increase in rate; thus, folding becomes more efficient in terms of speed and productivity. This effect of PG seems to be a specific requirement for this lipid, rather than a charge effect. We also find an effect of single-chain lyso lipids in decreasing the rate and yield of folding. We compare this to our previous work in which lyso lipids increased the rate and yield of another membrane protein, bacteriorhodopsin. The contrasting effect of lyso lipids on the two proteins can be explained by the different folding reaction mechanisms and key folding steps involved. Our findings provide information on the lipid determinants of membrane protein folding.
Collapse
Affiliation(s)
- Annela M Seddon
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|