1
|
Niland CN, Ghosh A, Cahill SM, Schramm VL. Mechanism and Inhibition of Human Methionine Adenosyltransferase 2A. Biochemistry 2021; 60:791-801. [PMID: 33656855 DOI: 10.1021/acs.biochem.0c00998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is synthesized by the MAT2A isozyme of methionine adenosyltransferase in most human tissues and in cancers. Its contribution to epigenetic control has made it a target for anticancer intervention. A recent kinetic isotope effect analysis of MAT2A demonstrated a loose nucleophilic transition state. Here we show that MAT2A has a sequential mechanism with a rate-limiting step of formation of AdoMet, followed by rapid hydrolysis of the β-γ bond of triphosphate, and rapid release of phosphate and pyrophosphate. MAT2A catalyzes the slow hydrolysis of both ATP and triphosphate in the absence of other reactants. Positional isotope exchange occurs with 18O as the 5'-oxygen of ATP. Loss of the triphosphate is sufficiently reversible to permit rotation and recombination of the α-phosphoryl group of ATP. Adenosine (α-β or β-γ)-imido triphosphates are slow substrates, and the respective imido triphosphates are inhibitors. The hydrolytically stable (α-β, β-γ)-diimido triphosphate (PNPNP) is a nanomolar inhibitor. The MAT2A protein structure is highly stabilized against denaturation by binding of PNPNP. A crystal structure of MAT2A with 5'-methylthioadenosine and PNPNP shows the ligands arranged appropriately in the ATP binding site. Two magnesium ions chelate the α- and γ-phosphoryl groups of PNPNP. The β-phosphoryl oxygen is in contact with an essential potassium ion. Imidophosphate derivatives provide contact models for the design of catalytic site ligands for MAT2A.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
3
|
Taylor JC, Bock CW, Takusagawa F, Markham GD. Discovery of novel types of inhibitors of S-adenosylmethionine synthesis by virtual screening. J Med Chem 2009; 52:5967-73. [PMID: 19739644 PMCID: PMC2869451 DOI: 10.1021/jm9006142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-adenosylmethionine (AdoMet) lies at an intersection of nucleotide and amino acid metabolism and performs a multitude of metabolic functions. AdoMet formation is catalyzed by S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase (MAT)), which is a target for development of anticancer and antimicrobial agents. High affinity MAT inhibitors have been found through computational docking of more than 200000 compounds for predicted binding to the crystallographically defined nucleotide binding region of the enzyme's active site. Two of the top scoring candidate compounds had IC(50) values less than 10 nM, more than 10000-fold lower than the substrates' K(M) values. The compounds are structurally unrelated to the natural ligands of the enzyme. The enzyme is protected from inhibition by ATP, but not by methionine, consistent with binding at the adenosyl region of the active site. These results validate in silico screening as a robust approach to the discovery of inhibitors of this chemotherapeutically relevant enzyme.
Collapse
Affiliation(s)
| | - Charles W. Bock
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
- Department of Chemistry and Biochemistry, School of Science and Health, Philadelphia University, School House Lane and Henry Avenue, Philadelphia, PA 19144
| | - Fusao Takusagawa
- Department of Molecular Biosciences University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045-7534
| | - George D. Markham
- Correspondence and proofs to: George D. Markham, Ph.D., Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111; Telephone: 215-728-2439; Fax: 215-728-3574.
| |
Collapse
|
4
|
Abstract
Methionine adenosyltransferases (MATs) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. The high sequence conservation among catalytic subunits from bacteria and eukarya preserves key residues that control activity and oligomerization, which is reflected in the protein structure. However, structural differences among complexes with substrates and products have led to proposals of several reaction mechanisms. In parallel, folding studies begin to explain how the three intertwined domains of the catalytic subunit are produced, and to highlight the importance of certain intermediates in attaining the active final conformation. This review analyzes the available structural data and proposes a consensus interpretation that facilitates an understanding of the pathological problems derived from impairment of MAT function. In addition, new research opportunities directed toward clarification of aspects that remain obscure are also identified.
Collapse
Affiliation(s)
- G. D. Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111 USA
| | - M. A. Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
5
|
Zakirova NF, Golubeva NA, Shipitsin AV. The synthesis of imidodiphosphoric acid derivatives as potential substrates in the pyrophosphorolysis reaction. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:96-102. [PMID: 15787220 DOI: 10.1007/s11171-005-0012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation conditions for dichlorophosphinylphosphorimidic trichloride were optimized. It was used in the synthesis of esters of imidodiphosphoric acid. The interaction of the trichloride with amines resulted in the corresponding amidodiphosphates rather than in the expected amides of imidodiphosphoric acid.
Collapse
|
6
|
Taylor JC, Markham GD. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling. Arch Biochem Biophys 2003; 415:164-71. [PMID: 12831838 DOI: 10.1016/s0003-9861(03)00277-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase, methionine adenosyltransferase, a.k.a. MAT) is one of numerous enzymes that have a flexible polypeptide loop that moves to gate access to the active site in a motion that is closely coupled to catalysis. Crystallographic studies of this tetrameric enzyme have shown that the loop is closed in the absence of bound substrates. However, the loop must open to allow substrate binding and a variety of data indicate that the loop is closed during the catalytic steps. Previous kinetic studies indicate that during turnover loop motion occurs on a time scale of 10(-2)s, ca. 10-fold faster than chemical transformations and turnover. Site-directed spin labeling has been used to introduce nitroxide groups at two positions in the loop to illuminate how the motion of the loop is affected by substrate binding. The two loop mutants constructed, G105C and D107C, retain wild type levels of MAT activity; attachment of a methanethiosulfonate spin label to convert the cysteine to the "R1" residue reduced the k(cat) only for the labeled D107R1 form (7-fold). The K(m) value for methionine increased 2- to 4-fold for the cysteine mutants and 2- to 7-fold for the labeled proteins, whereas the K(m) for ATP was changed by at most 2-fold. EPR spectra for both labeled proteins are nearly identical and show the presence of two major spin label environments with rotational diffusion rates differing by approximately 10-fold; the slower rate is ca. 4-fold faster than the estimated protein rotational rate. The spectra are not altered by addition of substrates or products. At both positions the less mobile conformation constitutes ca. 65% of the total species, indicating an equilibrium that only slightly favors one form, that in which the label is more immobilized. The equilibrium constant that relates the two forms is comparable to the equilibrium constant of 1.5 for a conformational change that was previously deduced from the viscosity dependence of the rate of AdoMet formation. The results suggest that the motion of the loop may be an intrinsic property of the protein and not be strictly ligand modulated.
Collapse
Affiliation(s)
- John C Taylor
- Fox Chase Cancer Center, Institute for Cancer Research, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
7
|
Fonseca MV, Buan NR, Horswill AR, Rayment I, Escalante-Semerena JC. The ATP:Co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica requires the 2'-OH group of ATP for function and yields inorganic triphosphate as its reaction byproduct. J Biol Chem 2002; 277:33127-31. [PMID: 12080060 DOI: 10.1074/jbc.m203893200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specificity of the ATP:corrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica serovar Typhimurium LT2 for its nucleotide substrate was tested using ATP analogs and alternative nucleotide donors. The enzyme showed broad specificity for the nucleotide base and required the 2'-OH group of the ribosyl moiety of ATP for activity. (31)P NMR spectroscopy was used to identify inorganic triphosphate (PPP(i)) as the byproduct of the reaction catalyzed by the CobA enzyme. Cleavage of triphosphate into pyrophosphate and orthophosphate did not occur, indicating that triphosphate cleavage was not required for release of the adenosylcorrinoid product. Triphosphate was a strong inhibitor of the reaction, with 85% of CobA activity lost when the ATP/PPP(i) ratio present in the reaction mixture was 1:2.5.
Collapse
Affiliation(s)
- Maris V Fonseca
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
8
|
Lu ZJ, Markham GD. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. J Biol Chem 2002; 277:16624-31. [PMID: 11872742 DOI: 10.1074/jbc.m110456200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine synthetase (ATP:l-methionine S-adenosyltransferase, MAT) catalyzes a unique enzymatic reaction that leads to formation of the primary biological alkylating agent. MAT from the hyperthermophilic archaeon Methanococcus jannaschii (MjMAT) is a prototype of the newly discovered archaeal class of MAT proteins that are nearly unrecognizable in sequence when compared with the class that encompasses both the eucaryal and bacterial enzymes. In this study the functional properties of purified recombinant MjMAT have been evaluated. The products of the reaction are AdoMet, PP(i), and P(i); >90% of the P(i) originates from the gamma-phosphoryl group of ATP. The circular dichroism spectrum of the dimeric MjMAT indicates that the secondary structure is more helical than the Escherichia coli counterpart (EcMAT), suggesting a different protein topology. The steady state kinetic mechanism is sequential, with random addition of ATP and methionine; AdoMet is the first product released, followed by release of PP(i) and P(i). The substrate specificity differs remarkably from the previously characterized MATs; the nucleotide binding site has a very broad tolerance of alterations in the adenosine moiety. MjMAT has activity at 70 degrees C comparable with that of EcMAT at 37 degrees C, consistent with the higher temperature habitat of M. jannaschii. The activation energy for AdoMet formation is larger than that for the E. coli MAT-catalyzed reaction, in accord with the notion that enzymes from thermophilic organisms are often more rigid than their mesophilic counterparts. The broad substrate tolerance of this enzyme proffers routes to preparation of novel AdoMet analogs.
Collapse
Affiliation(s)
- Zichun J Lu
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
9
|
Pérez Mato I, Sanchez del Pino MM, Chamberlin ME, Mudd SH, Mato JM, Corrales FJ. Biochemical basis for the dominant inheritance of hypermethioninemia associated with the R264H mutation of the MAT1A gene. A monomeric methionine adenosyltransferase with tripolyphosphatase activity. J Biol Chem 2001; 276:13803-13809. [PMID: 11278456 DOI: 10.1074/jbc.m009017200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main alkylating agent in living cells. Additionally, in the liver, MAT is also responsible for up to 50% of methionine catabolism. Humans with mutations in the gene MAT1A, the gene that encodes the catalytic subunit of MAT I and III, have decreased MAT activity in liver, which results in a persistent hypermethioninemia without homocystinuria. The hypermethioninemic phenotype associated with these mutations is inherited as an autosomal recessive trait. The only exception is the dominant mild hypermethioninemia associated with a G-A transition at nucleotide 791 of exon VII. This change yields a MAT1A-encoded subunit in which arginine 264 is replaced by histidine. Our results indicate that in the homologous rat enzyme, replacement of the equivalent arginine 265 by histidine (R265H) results in a monomeric MAT with only 0.37% of the AdoMet synthetic activity. However the tripolyphosphatase activity is similar to that found in the wild type (WT) MAT and is inhibited by PP(i). Our in vivo studies demonstrate that the R265H MAT I/III mutant associates with the WT subunit resulting in a dimeric R265H-WT MAT unable to synthesize AdoMet. Tripolyphosphatase activity is maintained in the hybrid MAT, but is not stimulated by methionine and ATP, indicating a deficient binding of the substrates. Our data indicate that the active site for tripolyphosphatase activity is functionally active in the monomeric R265H MAT I/III mutant. Moreover, our results provide a molecular mechanism that might explain the dominant inheritance of the hypermethioninemia associated with the R264H mutation of human MAT I/III.
Collapse
Affiliation(s)
- I Pérez Mato
- Division of Hepatology and Gene Therapy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Birck MR, Holler TP, Woodard RW. Identification of a Slow Tight-Binding Inhibitor of 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase. J Am Chem Soc 2000. [DOI: 10.1021/ja002142z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew R. Birck
- College of Pharmacy, University of Michigan Ann Arbor, Michigan 48109-1065 Parke-Davis Pharmaceutical Research Division of Warner-Lambert, 2800 Plymouth Road Ann Arbor, Michigan 48105
| | - Tod P. Holler
- College of Pharmacy, University of Michigan Ann Arbor, Michigan 48109-1065 Parke-Davis Pharmaceutical Research Division of Warner-Lambert, 2800 Plymouth Road Ann Arbor, Michigan 48105
| | - Ronald W. Woodard
- College of Pharmacy, University of Michigan Ann Arbor, Michigan 48109-1065 Parke-Davis Pharmaceutical Research Division of Warner-Lambert, 2800 Plymouth Road Ann Arbor, Michigan 48105
| |
Collapse
|
11
|
González B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol 2000; 300:363-75. [PMID: 10873471 DOI: 10.1006/jmbi.2000.3858] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.
Collapse
Affiliation(s)
- B González
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
McQueney MS, Anderson KS, Markham GD. Energetics of S-adenosylmethionine synthetase catalysis. Biochemistry 2000; 39:4443-54. [PMID: 10757994 DOI: 10.1021/bi992876s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced.
Collapse
Affiliation(s)
- M S McQueney
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
13
|
Taylor JC, Markham GD. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. J Biol Chem 2000; 275:4060-5. [PMID: 10660564 DOI: 10.1074/jbc.275.6.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.
Collapse
Affiliation(s)
- J C Taylor
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|