1
|
Kumar S, Inns PG, Ward S, Lagage V, Wang J, Kaminska R, Booth MJ, Uphoff S, Cohen EAK, Mamou G, Kleanthous C. Immobile lipopolysaccharides and outer membrane proteins differentially segregate in growing Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2414725122. [PMID: 40030021 PMCID: PMC11912417 DOI: 10.1073/pnas.2414725122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is a robust, impermeable barrier that excludes many classes of antibiotics. Contrary to the classical model of an asymmetric lipid bilayer, recent evidence suggests the OM is predominantly an asymmetric proteolipid membrane (APLM). Outer leaflet lipopolysaccharides (LPS) that surround integral β-barrel outer membrane proteins (OMPs) are shared with other OMPs to form a supramolecular network in which the levels of OMPs approach those of LPS. Some of the most abundant OMPs in the Escherichia coli OM are trimeric porins. How porins and LPS are incorporated into the OM of growing bacteria is poorly understood. Here, we use live-cell imaging and microfluidics to investigate how LPS, labeled using click chemistry, and the porin OmpF, labeled using the bacteriocin colicin N, are incorporated into the E. coli OM. Diffraction-limited fluorescence microscopy shows OmpF and LPS to be uniformly distributed and immobile. However, clustering of both macromolecules becomes evident by superresolution microscopy, which is also the case for their biogenesis proteins, BamA and LptD, respectively. Notwithstanding these common organizational features, OmpF insertion into the OM is cell-cycle-dependent leading to binary partitioning and strong polar accumulation of old OmpF. Old LPS on the other hand is diluted ~50% at each division cycle by new LPS, resulting in only mild polar accumulation of preexisting LPS. We conclude that although LPS and OMPs are destined to form the APLM their insertion dynamics are fundamentally different, which has major implications for understanding how the OM is assembled.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Patrick G Inns
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Scott Ward
- Department of Mathematics, Imperial College London, London SW7 1AZ, United Kingdom
| | - Valentine Lagage
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jingyu Wang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Edward A K Cohen
- Department of Mathematics, Imperial College London, London SW7 1AZ, United Kingdom
| | - Gideon Mamou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
2
|
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, Szabó CL, Bodor A, Horváti K, Gyulai G, Bősze S, Mihály J, Jezsó B, Románszki L, Tóth J, Varga Z, Mándity I, Juhász T, Beke-Somfai T. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun 2024; 15:3424. [PMID: 38654023 PMCID: PMC11039730 DOI: 10.1038/s41467-024-47708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- This work was funded by the Momentum Program (LP2016-2 and LP2021-28) of the Hungarian Academy of Sciences, the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007), the BIONANO_GINOP-2.3.2-15-2016-00017 project, and the National Research, Development and Innovation Office, Hungary (TKP2021-EGA-31, 2020-1.1.2-PIACI-KFI-2020-00021, 2019-2.1.11-TÉT-2019-00091, KKP_22 Project n.o. 144180, K131594 for J.M., K124900, K137940 for A.B., K142904 for Sz.B., and K138318 to J.T.). Support from Eötvös Loránd Research Network, Grant Nos. SA-87/2021 and KEP-5/2021, are also acknowledged. A.W. and Z.V. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge support from ELTE Thematic Excellence Programme 2020, the Szint+ Program, National Challenges Subprogramme-TKP2020-NKA-06. CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, LM2023042 and European Regional Development Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974), is gratefully acknowledged for the financial support of the measurements at the CF Cryo-Electron Microscopy and Tomography.
Collapse
Affiliation(s)
- Kamal El Battioui
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Sohini Chakraborty
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Csenge Lilla Szabó
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Andrea Bodor
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Interfaces and Nanostructures, Budapest, H-1117, Hungary
| | - Szilvia Bősze
- HUN-REN ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - István Mándity
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, H-1092, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
3
|
Bryant SJ, Garvey CJ, Darwish TA, Georgii R, Bryant G. Molecular interactions with bilayer membrane stacks using neutron and X-ray diffraction. Adv Colloid Interface Sci 2024; 326:103134. [PMID: 38518550 DOI: 10.1016/j.cis.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Faculty of Science and Technology, University of Canberra, ACT 2617, Australia
| | - Robert Georgii
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia.
| |
Collapse
|
4
|
Vaiwala R, Ayappa KG. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia coli. J Chem Theory Comput 2024; 20:1704-1716. [PMID: 37676287 DOI: 10.1021/acs.jctc.3c00471] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The outer lipopolysaccharide (LPS) membrane of Gram-negative bacteria forms the main barrier for transport of antimicrobial molecules into the bacterial cell. In this study we develop coarse-grained models for the outer membrane of Escherichia coli in the Martini-3 framework. The coarse-grained model force field was parametrized and validated using all-atom simulations of symmetric membranes of lipid A and rough LPS as well as a complete asymmetric membrane of LPS with the O-antigen. The bonded parameters were obtained using an iterative refinement procedure with target bonded distributions obtained from all-atom simulations. The membrane thickness, area of the LPS, and density distributions for the different regions as well as the water and ion densities in Martini-3 simulations show excellent agreement with the all-atom data. Additionally the solvent accessible surface area for individual molecules in water was found to be in good agreement. The binding of calcium ions with phosphate and carboxylate moieties of LPS is accurately captured in the Martini-3 model, indicative of the integrity of the highly negatively charged LPS molecules in the outer membranes of Gram-negative bacteria. The melting transition of the coarse-grained lipid A membrane model was found to occur between 300 and 310 K, and the model captured variations in area per LPS, order parameter, and membrane thickness across the melting transition. Our study reveals that the proposed Martini-3 models for LPS are able to capture the physicochemical balance of the complex sugar architecture of the outer membrane of Escherichia coli. The coarse-grained models developed in this study would be useful for determining membrane protein interactions and permeation of potential antimicrobials through bacterial membranes at mesoscopic spatial and temporal scales.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Jakubec M, Rylandsholm FG, Rainsford P, Silk M, Bril'kov M, Kristoffersen T, Juskewitz E, Ericson JU, Svendsen JSM. Goldilocks Dilemma: LPS Works Both as the Initial Target and a Barrier for the Antimicrobial Action of Cationic AMPs on E. coli. Biomolecules 2023; 13:1155. [PMID: 37509189 PMCID: PMC10377513 DOI: 10.3390/biom13071155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan).
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Fredrik G Rylandsholm
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Mitchell Silk
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Maxim Bril'kov
- Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Tone Kristoffersen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Johanna U Ericson
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - John Sigurd M Svendsen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
7
|
Dommer A, Wauer NA, Angle KJ, Davasam A, Rubio P, Luo M, Morris CK, Prather KA, Grassian VH, Amaro RE. Revealing the Impacts of Chemical Complexity on Submicrometer Sea Spray Aerosol Morphology. ACS CENTRAL SCIENCE 2023; 9:1088-1103. [PMID: 37396863 PMCID: PMC10311664 DOI: 10.1021/acscentsci.3c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 07/04/2023]
Abstract
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.
Collapse
|
8
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
9
|
Duque HM, Rodrigues G, Santos LS, Franco OL. The biological role of charge distribution in linear antimicrobial peptides. Expert Opin Drug Discov 2023; 18:287-302. [PMID: 36720196 DOI: 10.1080/17460441.2023.2173736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010, Campo Grande-MS, Brazil
| |
Collapse
|
10
|
Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane-A Molecular Simulation Approach. Int J Mol Sci 2023; 24:ijms24032005. [PMID: 36768325 PMCID: PMC9916935 DOI: 10.3390/ijms24032005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6-HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM.
Collapse
|
11
|
Stephan MS, Dunsing V, Pramanik S, Chiantia S, Barbirz S, Robinson T, Dimova R. Biomimetic asymmetric bacterial membranes incorporating lipopolysaccharides. Biophys J 2022:S0006-3495(22)03927-3. [PMID: 36523159 DOI: 10.1016/j.bpj.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gram-negative bacteria are equipped with a cell wall that contains a complex matrix of lipids, proteins, and glycans, which form a rigid layer protecting bacteria from the environment. Major components of this outer membrane are the high-molecular weight and amphiphilic lipopolysaccharides (LPSs). They form the extracellular part of a heterobilayer with phospholipids. Understanding LPS properties within the outer membrane is therefore important to develop new antimicrobial strategies. Model systems, such as giant unilamellar vesicles (GUVs), provide a suitable platform for exploring membrane properties and interactions. However, LPS molecules contain large polysaccharide parts that confer high water solubility, which makes LPS incorporation in artificial membranes difficult; this hindrance is exacerbated for LPS with long polysaccharide chains, i.e., the smooth LPS. Here, a novel emulsification step of the inverted emulsion method is introduced to incorporate LPS in the outer or the inner leaflet of GUVs, exclusively. We developed an approach to determine the LPS content on individual GUVs and quantify membrane asymmetry. The asymmetric membranes with outer leaflet LPS show incorporations of 1-16 mol % smooth LPS (corresponding to 16-79 wt %), while vesicles with inner leaflet LPS reach coverages of 2-7 mol % smooth LPS (28-60 wt %). Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity.
Collapse
Affiliation(s)
| | - Valentin Dunsing
- Aix-Marseille Université, CNRS, IBDM, Turing Center for Living Systems, Marseille, France; University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Stefanie Barbirz
- Department Humanmedizin, MSB Medical School Berlin, Berlin, Germany
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
12
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
13
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
14
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
15
|
Pogozheva ID, Armstrong GA, Kong L, Hartnagel TJ, Carpino CA, Gee SE, Picarello DM, Rubin AS, Lee J, Park S, Lomize AL, Im W. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J Chem Inf Model 2022; 62:1036-1051. [PMID: 35167752 DOI: 10.1021/acs.jcim.1c01514] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a comparative all-atom molecular dynamics simulation study of 18 biomembrane systems with lipid compositions corresponding to eukaryotic, bacterial, and archaebacterial membranes together with three single-component lipid bilayers. A total of 105 lipid types used in this study include diverse sterols and glycerol-based lipids with acyl chains of various lengths, unsaturation degrees, and branched or cyclic moieties. Our comparative analysis provides deeper insight into the influences of sterols and lipid unsaturation on the structural and mechanical properties of these biomembranes, including water permeation into the membrane hydrocarbon core. For sterol-containing membranes, sterol fraction is correlated with the membrane thickness, the area compressibility modulus, and lipid order but anticorrelated with the area per lipid and sterol tilt angles. Similarly, for all 18 biomembranes, lipid order is correlated with the membrane thickness and area compressibility modulus. Sterols and lipid unsaturation produce opposite effects on membrane thickness, but only sterols influence water permeation into the membrane. All membrane systems are accessible for public use in CHARMM-GUI Archive. They can be used as templates to expedite future modeling of realistic cell membranes with transmembrane and peripheral membrane proteins to study their structure, dynamics, molecular interactions, and function in a nativelike membrane environment.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Grant A Armstrong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lingyang Kong
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Timothy J Hartnagel
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Carly A Carpino
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Stephen E Gee
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Danielle M Picarello
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Amanda S Rubin
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jumin Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
16
|
Murtha AN, Kazi MI, Schargel RD, Cross T, Fihn C, Cattoir V, Carlson EE, Boll JM, Dörr T. High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathog 2022; 18:e1010307. [PMID: 35130322 PMCID: PMC8853513 DOI: 10.1371/journal.ppat.1010307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of β-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the β-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed. Treating an infection with an antibiotic often fails, resulting in a tremendous public health burden. One understudied likely reason for treatment failure is the development of “antibiotic tolerance”, the ability of bacteria to survive normally lethal exposure to an antibiotic. Here, we describe a molecular mechanism promoting tolerance. A bacterial stress sensor (PhoPQ) is activated in response to antibiotic (meropenem) treatment and consequently strengthens a bacterial protective “shell” to enhance survival. We also identify inhibitors of this mechanism, opening the door to developing compounds that help antibiotics work better against tolerant bacteria.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Misha I. Kazi
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Richard D. Schargel
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Trevor Cross
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Conrad Fihn
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Antimicrobial Resistance (Lab Enterococci), Rennes University Hospital, Rennes, France; Inserm Unit U1230, University of Rennes 1, Rennes, France
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Boll
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
- * E-mail: (JMB); (TD)
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail: (JMB); (TD)
| |
Collapse
|
17
|
Interest of Homodialkyl Neamine Derivatives against Resistant P. aeruginosa, E. coli, and β-Lactamases-Producing Bacteria-Effect of Alkyl Chain Length on the Interaction with LPS. Int J Mol Sci 2021; 22:ijms22168707. [PMID: 34445410 PMCID: PMC8396045 DOI: 10.3390/ijms22168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3′,6-dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3′,6-homodialkyl neamine derivatives carrying different alkyl chains (C7–C11) to interact with LPS and alter membrane permeability. 3′,6-Dinonyl neamine and its branched isomer, 3′,6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3′,6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3′,6-dinonyl- and 3′,6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.
Collapse
|
18
|
Nourbakhsh S, Yu L, Ha BY. Modeling the Protective Role of Bacterial Lipopolysaccharides against Membrane-Rupturing Peptides. J Phys Chem B 2021; 125:8839-8854. [PMID: 34319722 DOI: 10.1021/acs.jpcb.1c02330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharide (LPS) is a key surface component of Gram-negative bacteria, populating the outer layer of their outer membrane. A number of experimental studies highlight its protective role against harmful molecules such as antibiotics and antimicrobial peptides (AMPs). In this work, we present a theoretical model for describing the interaction between LPS and cationic antimicrobial peptides, which combines the following two key features. The polysaccharide part is viewed as forming a polymer brush, exerting an osmotic pressure on inclusions such as antimicrobial peptides. The charged groups on LPS (those in lipid A and the two Kdo groups in the inner core) form electrostatic binding sites for cationic AMPs or cations. Using the resulting model, we offer a quantitative picture of how the brush component enhances the protective role of LPS against magainin-like peptides, in the presence of divalent cations such as Mg2+. The LPS brush tends to diminish the interfacial binding of the peptides, at the lipid headgroup region, by about 30%. In the presence of 5 mM of Mg2+, the interfacial binding does not reach a threshold value for wild-type LPS, beyond which the LPS layer is ruptured, even though it does for LPS Re (the simplest form of LPS, lacking the brush part), as long as [AMP] ≤ 20 μM, where [AMP] is the concentration of AMPs. At a low concentration of Mg2+ (≈1 mM), however, a smaller [AMP] value (≳2 μM) is needed to reach the threshold coverage for wild-type LPS. Our results also suggest that the interfacial binding of peptides is insensitive to their possible weak interaction with the surrounding brush chains.
Collapse
Affiliation(s)
- Shokoofeh Nourbakhsh
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Liu Yu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Lee C, Dommer AC, Schiffer JM, Amaro RE, Grassian VH, Prather KA. Cation-Driven Lipopolysaccharide Morphological Changes Impact Heterogeneous Reactions of Nitric Acid with Sea Spray Aerosol Particles. J Phys Chem Lett 2021; 12:5023-5029. [PMID: 34024101 DOI: 10.1021/acs.jpclett.1c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipopolysaccharides (LPS) in sea spray aerosol (SSA) particles have recently been shown to undergo heterogeneous reactions with HNO3 in the atmosphere. Here, we integrate theory and experiment to further investigate how the most abundant sea salt cations, Na+, Mg2+, and Ca2+, impact HNO3 reactions with LPS-containing SSA particles. Aerosol reaction flow tube studies show that heterogeneous reactions of SSA particles with divalent cation (Mg2+ and Ca2+) and LPS signatures were less reactive with HNO3 than those dominated by monovalent cations (Na+). All-atom molecular dynamics simulations of model LPS aggregates suggest that divalent cations cross-link the oligosaccharide chains to increase molecular aggregation and rigidity, which changes the particle phase and morphology, decreases water diffusion, and consequently decreases the reactive uptake of HNO3. This study provides new insight into how complex chemical interactions between ocean-derived salts and biogenic organic species can impact the heterogeneous reactivity of SSA particles.
Collapse
Affiliation(s)
- Christopher Lee
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jamie M Schiffer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Kimberly A Prather
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Látrová K, Havlová N, Večeřová R, Pinkas D, Bogdanová K, Kolář M, Fišer R, Konopásek I, Do Pham DD, Rejman D, Mikušová G. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci Rep 2021; 11:10446. [PMID: 34001940 PMCID: PMC8129119 DOI: 10.1038/s41598-021-89883-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.
Collapse
Affiliation(s)
- Klára Látrová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Noemi Havlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Dominik Pinkas
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Kateřina Bogdanová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Ivo Konopásek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| | - Gabriela Mikušová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
21
|
Pieńko T, Czarnecki J, Równicki M, Wojciechowska M, Wierzba AJ, Gryko D, Bartosik D, Trylska J. Vitamin B 12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys J 2021; 120:725-737. [PMID: 33453274 DOI: 10.1016/j.bpj.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Short modified oligonucleotides that bind in a sequence-specific way to messenger RNA essential for bacterial growth could be useful to fight bacterial infections. One such promising oligonucleotide is peptide nucleic acid (PNA), a synthetic DNA analog with a peptide-like backbone. However, the limitation precluding the use of oligonucleotides, including PNA, is that bacteria do not import them from the environment. We have shown that vitamin B12, which most bacteria need to take up for growth, delivers PNAs to Escherichia coli cells when covalently linked with PNAs. Vitamin B12 enters E. coli via a TonB-dependent transport system and is recognized by the outer-membrane vitamin B12-specific BtuB receptor. We engineered the E. coli ΔbtuB mutant and found that transport of the vitamin B12-PNA conjugate requires BtuB. Thus, the conjugate follows the same route through the outer membrane as taken by free vitamin B12. From enhanced sampling all-atom molecular dynamics simulations, we determined the mechanism of conjugate permeation through BtuB. BtuB is a β-barrel occluded by its luminal domain. The potential of mean force shows that conjugate passage is unidirectional and its movement into the BtuB β-barrel is energetically favorable upon luminal domain unfolding. Inside BtuB, PNA extends making its permeation mechanically feasible. BtuB extracellular loops are actively involved in transport through an induced-fit mechanism. We prove that the vitamin B12 transport system can be hijacked to enable PNA delivery to E. coli cells.
Collapse
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland.
| | - Jakub Czarnecki
- Faculty of Biology, University of Warsaw, Warsaw, Poland; Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
22
|
Zhong Q, Roumeliotis TI, Kozik Z, Cepeda-Molero M, Fernández LÁ, Shenoy AR, Bakal C, Frankel G, Choudhary JS. Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx-dependent pyroptosis in intestinal epithelial cells. PLoS Biol 2020; 18:e3000986. [PMID: 33378358 PMCID: PMC7773185 DOI: 10.1371/journal.pbio.3000986] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Massiel Cepeda-Molero
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM-Cantoblanco, Madrid, Spain
| | - Avinash R. Shenoy
- Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chris Bakal
- Dynamical Cell Systems, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Jyoti S. Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
23
|
Out of Sight, Out of Mind: The Effect of the Equilibration Protocol on the Structural Ensembles of Charged Glycolipid Bilayers. Molecules 2020; 25:molecules25215120. [PMID: 33158044 PMCID: PMC7663769 DOI: 10.3390/molecules25215120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular dynamics (MD) simulations represent an essential tool in the toolbox of modern chemistry, enabling the prediction of experimental observables for a variety of chemical systems and processes and majorly impacting the study of biological membranes. However, the chemical diversity of complex lipids beyond phospholipids brings new challenges to well-established protocols used in MD simulations of soft matter and requires continuous assessment to ensure simulation reproducibility and minimize unphysical behavior. Lipopolysaccharides (LPS) are highly charged glycolipids whose aggregation in a lamellar arrangement requires the binding of numerous cations to oppositely charged groups deep inside the membrane. The delicate balance between the fully hydrated carbohydrate region and the smaller hydrophobic core makes LPS membranes very sensitive to the choice of equilibration protocol. In this work, we show that the protocol successfully used to equilibrate phospholipid bilayers when applied to complex lipopolysaccharide membranes occasionally leads to a small expansion of the simulation box very early in the equilibration phase. Although the use of a barostat algorithm controls the system dimension and particle distances according to the target pressure, fluctuation in the fleeting pressure occasionally enables a few water molecules to trickle into the hydrophobic region of the membrane, with spurious solvent buildup. We show that this effect stems from the initial steps of NPT equilibration, where initial pressure can be fairly high. This can be solved with the use of a stepwise-thermalization NVT/NPT protocol, as demonstrated for atomistic MD simulations of LPS/DPPE and lipid-A membranes in the presence of different salts using an extension of the GROMOS forcefield within the GROMACS software. This equilibration protocol should be standard procedure for the generation of consistent structural ensembles of charged glycolipids starting from atomic coordinates not previously pre-equilibrated. Although different ways to deal with this issue can be envisioned, we investigated one alternative that could be readily available in major MD engines with general users in mind.
Collapse
|
24
|
Schäfer K, Kolli HB, Killingmoe Christensen M, Bore SL, Diezemann G, Gauss J, Milano G, Lund R, Cascella M. Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles. Angew Chem Int Ed Engl 2020; 59:18591-18598. [PMID: 32543728 PMCID: PMC7589243 DOI: 10.1002/anie.202004522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The shape and size of self-assembled structures upon local organization of their molecular building blocks are hard to predict in the presence of long-range interactions. Combining small-angle X-ray/neutron scattering data, theoretical modelling, and computer simulations, sodium dodecyl sulfate (SDS), over a broad range of concentrations and ionic strengths, was investigated. Computer simulations indicate that micellar shape changes are associated with different binding of the counterions. By employing a toy model based on point charges on a surface, and comparing it to experiments and simulations, it is demonstrated that the observed morphological changes are caused by symmetry breaking of the irreducible building blocks, with the formation of transient surfactant dimers mediated by the counterions that promote the stabilization of cylindrical instead of spherical micelles. The present model is of general applicability and can be extended to all systems controlled by the presence of mobile charges.
Collapse
Affiliation(s)
- Ken Schäfer
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Hima Bindu Kolli
- Department of Physics and AstronomyThe University of SheffieldWestern BankSheffieldS10 2TNUK
| | - Mikkel Killingmoe Christensen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Gregor Diezemann
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Jürgen Gauss
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Giuseppe Milano
- Department of Organic Materials ScienceYamagata University4-3-16 JonanYonezawaYamagata-ken992-8510Japan
| | - Reidar Lund
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| |
Collapse
|
25
|
Structural and genetic characterization of the colitose-containing O-specific polysaccharide from the lipopolysaccharide of Herbaspirillum frisingense GSF30T. Int J Biol Macromol 2020; 161:891-897. [DOI: 10.1016/j.ijbiomac.2020.06.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
26
|
YejM Controls LpxC Levels by Regulating Protease Activity of the FtsH/YciM Complex of Escherichia coli. J Bacteriol 2020; 202:JB.00303-20. [PMID: 32540932 DOI: 10.1128/jb.00303-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
LpxC is a deacetylase that catalyzes the first committed step of lipid A biosynthesis in Escherichia coli LpxC competes for a common precursor, R-3-hydroxymyristoyl-UDP-GlcNAc, with FabZ, whose dehydratase activity catalyzes the first committed step of phospholipid biosynthesis. To maintain the optimum flow of the common precursor to these two competing pathways, the LpxC level is controlled by FtsH/YciM-mediated proteolysis. It is not known whether this complex or another protein senses the status of lipid A synthesis to control LpxC proteolysis. The work carried out in this study began with a novel mutation, yejM1163, which causes hypersensitivity to large antibiotics such as vancomycin and erythromycin. Isolates resistant to these antibiotics carried suppressor mutations in the ftsH and yciM genes. Western blot analysis showed a dramatically reduced LpxC level in the yejM1163 background, while the presence of ftsH or yciM suppressor mutations restored LpxC levels to different degrees. Based on these observations, it is proposed that YejM is a sensor of lipid A synthesis and controls LpxC levels by modulating the activity of the FtsH/YciM complex. The truncation of the periplasmic domain in the YejM1163 protein causes unregulated proteolysis of LpxC, thus diverting a greater pool of R-3-hydroxymyristoyl-UDP-GlcNAc toward phospholipid synthesis. This imbalance in lipid synthesis perturbs the outer membrane permeability barrier, causing hypersensitivity toward vancomycin and erythromycin. yejM1163 suppressor mutations in ftsH and yciM lower the proteolytic activity toward LpxC, thus restoring lipid homeostasis and the outer membrane permeability barrier.IMPORTANCE Lipid homeostasis is critical for proper envelope functions. The level of LpxC, which catalyzes the first committed step of lipopolysaccharide (LPS) synthesis, is controlled by an essential protease complex comprised of FtsH and YciM. Work carried out here suggests YejM, an essential envelope protein, plays a central role in sensing the state of LPS synthesis and controls LpxC levels by regulating the activity of FtsH/YciM. All four essential proteins are attractive targets of therapeutic development.
Collapse
|
27
|
Schäfer K, Kolli HB, Killingmoe Christensen M, Bore SL, Diezemann G, Gauss J, Milano G, Lund R, Cascella M. Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ken Schäfer
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Hima Bindu Kolli
- Department of Physics and Astronomy The University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Mikkel Killingmoe Christensen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Gregor Diezemann
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Jürgen Gauss
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Giuseppe Milano
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata-ken 992-8510 Japan
| | - Reidar Lund
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
28
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
29
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Brennan RE, Rice CV. Expanding the Spectrum of Antibiotics Capable of Killing Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa. ChemMedChem 2020; 15:1421-1428. [PMID: 32497366 PMCID: PMC7485129 DOI: 10.1002/cmdc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Infections from antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa are a serious threat because reduced antibiotic efficacy complicates treatment decisions and prolongs the disease state in many patients. To expand the arsenal of treatments against antimicrobial-resistant (AMR) pathogens, 600-Da branched polyethylenimine (BPEI) can overcome antibiotic resistance mechanisms and potentiate β-lactam antibiotics against Gram-positive bacteria. BPEI binds cell-wall teichoic acids and disables resistance factors from penicillin binding proteins PBP2a and PBP4. This study describes a new mechanism of action for BPEI potentiation of antibiotics generally regarded as agents effective against Gram-positive pathogens but not Gram-negative bacteria. 600-Da BPEI is able to reduce the barriers to drug influx and facilitate the uptake of a non-β-lactam co-drug, erythromycin, which targets the intracellular machinery. Also, BPEI can suppress production of the cytokine interleukin IL-8 by human epithelial keratinocytes. This enables BPEI to function as a broad-spectrum antibiotic potentiator, and expands the opportunities to improve drug design, antibiotic development, and therapeutic approaches against pathogenic bacteria, especially for wound care.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Erika L Moen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
30
|
Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLoS Comput Biol 2020; 16:e1008024. [PMID: 32609716 PMCID: PMC7360065 DOI: 10.1371/journal.pcbi.1008024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin B12 (or cobalamin) is an enzymatic cofactor essential both for mammals and bacteria. However, cobalamin can be synthesized only by few microorganisms so most bacteria need to take it up from the environment through the TonB-dependent transport system. The first stage of cobalamin import to E. coli cells occurs through the outer-membrane receptor called BtuB. Vitamin B12 binds with high affinity to the extracellular side of the BtuB protein. BtuB forms a β-barrel with inner luminal domain and extracellular loops. To mechanically allow for cobalamin passage, the luminal domain needs to partially unfold with the help of the inner-membrane TonB protein. However, the mechanism of cobalamin permeation is unknown. Using all-atom molecular dynamics, we simulated the transport of cobalamin through the BtuB receptor embedded in an asymmetric and heterogeneous E. coli outer-membrane. To enhance conformational sampling of the BtuB loops, we developed the Gaussian force-simulated annealing method (GF-SA) and coupled it with umbrella sampling. We found that cobalamin needs to rotate in order to permeate through BtuB. We showed that the mobility of BtuB extracellular loops is crucial for cobalamin binding and transport and resembles an induced-fit mechanism. Loop mobility depends not only on the position of cobalamin but also on the extension of luminal domain. We provided atomistic details of cobalamin transport through the BtuB receptor showing the essential role of the mobility of BtuB extracellular loops. A similar TonB-dependent transport system is used also by many other compounds, such as haem and siderophores, and importantly, can be hijacked by natural antibiotics. Our work could have implications for future delivery of antibiotics to bacteria using this transport system.
Collapse
|
31
|
Rice A, Rooney MT, Greenwood AI, Cotten ML, Wereszczynski J. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization. J Chem Theory Comput 2020; 16:1806-1815. [PMID: 32023054 DOI: 10.1021/acs.jctc.9b00868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The high proportion of lipopolysaccharide (LPS) molecules in the outer membrane of Gram-negative bacteria makes it a highly effective barrier to small molecules, antibiotic drugs, and other antimicrobial agents. Given this vital role in protecting bacteria from potentially hostile environments, simulations of LPS bilayers and outer membrane systems represent a critical tool for understanding the mechanisms of bacterial resistance and the development of new antibiotic compounds that circumvent these defenses. The basis of these simulations is parameterizations of LPS, which have been developed for all major molecular dynamics force fields. However, these parameterizations differ in both the protonation state of LPS and how LPS membranes behave in the presence of various ion species. To address these discrepancies and understand the effects of phosphate charge on bilayer properties, simulations were performed for multiple distinct LPS chemotypes with different ion parameterizations in both protonated or deprotonated lipid A states. These simulations show that bilayer properties, such as the area per lipid and inter-lipid hydrogen bonding, are highly influenced by the choice of phosphate group charges, cation type, and ion parameterization, with protonated LPS and monovalent cations with modified nonbonded parameters providing the best match to the experiments. Additionally, alchemical free energy simulations were performed to determine theoretical pKa values for LPS and subsequently validated by 31P solid-state nuclear magnetic resonance experiments. Results from these complementary computational and experimental studies demonstrate that the protonated state dominates at physiological pH, contrary to the deprotonated form modeled by many LPS force fields. Overall, these results highlight the sensitivity of LPS simulations to phosphate charge and ion parameters while offering recommendations for how existing models should be updated for consistency between force fields as well as to best match experiments.
Collapse
Affiliation(s)
- Amy Rice
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Mary T Rooney
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States.,Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
32
|
Aggregation of Lipid A Variants: A Hybrid Particle-Field Model. Biochim Biophys Acta Gen Subj 2020; 1865:129570. [PMID: 32105775 DOI: 10.1016/j.bbagen.2020.129570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Lipid A is one of the three components of bacterial lipopolysaccharides constituting the outer membrane of Gram-negative bacteria, and is recognized to have an important biological role in the inflammatory response of mammalians. Its biological activity is modulated by the number of acyl-chains that are present in the lipid and by the dielectric medium, i.e., the type of counter-ions, through electrostatic interactions. In this paper, we report on a coarse-grained model of chemical variants of Lipid A based on the hybrid particle-field/molecular dynamics approach (hPF-MD). In particular, we investigate the stability of Lipid A bilayers for two different hexa- and tetra-acylated structures. Comparing particle density profiles along bilayer cross-sections, we find good agreement between the hPF-MD model and reference all-atom simulation for both chemical variants of Lipid A. hPF-MD models of constituted bilayers composed by hexa-acylated Lipid A in water are stable within the simulation time. We further validate our model by verifying that the phase behavior of Lipid A/counterion/water mixtures is correctly reproduced. In particular, hPF-MD simulations predict the correct self-assembly of different lamellar and micellar phases from an initially random distribution of Lipid A molecules with counterions in water. Finally, it is possible to observe the spontaneous formation and stability of Lipid A vesicles by fusion of micellar aggregates.
Collapse
|
33
|
Ferreira RJ, Kasson PM. Antibiotic Uptake Across Gram-Negative Outer Membranes: Better Predictions Towards Better Antibiotics. ACS Infect Dis 2019; 5:2096-2104. [PMID: 31593635 DOI: 10.1021/acsinfecdis.9b00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crossing the Gram-negative bacterial membrane poses a major barrier to antibiotic development, as many small molecules that can biochemically inhibit key bacterial processes are rendered microbiologically ineffective by their poor cellular uptake. The outer membrane is the major permeability barrier for many drug-like molecules, and the chemical properties that enable efficient uptake into mammalian cells fail to predict bacterial uptake. We have developed a computational method for accurate prospective prediction of outer membrane uptake of drug-like molecules, which we combine with a new medium-throughput experimental assay of outer membrane vesicle swelling. Parallel molecular dynamics simulations of compound uptake through Escherichia coli (E. coli) OmpF are used to successfully and quantitatively predict experimental permeabilities measured via either outer membrane swelling or prior liposome-swelling measurements. These simulations are analyzed using an inhomogeneous solubility-diffusion model to yield predictions of permeability. For most polar molecules we test, outer membrane permeability also correlates well with whole-cell uptake. The ability to accurately predict and measure outer membrane uptake of a wide variety of small molecules will enable simpler determination of which molecular scaffolds and which derivatives are most promising prior to extensive chemical synthesis. It will also assist in formulating a more systematic understanding of the chemical determinants of outer membrane permeability.
Collapse
Affiliation(s)
- Ricardo J. Ferreira
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Peter M. Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
- Departments of Biomedical Engineering and Molecular Physiology and Biological Physics, University of Virginia, Box 800886, Charlottesville, Virginia 22908, United States
| |
Collapse
|
34
|
Redeker C, Briscoe WH. Interactions between Mutant Bacterial Lipopolysaccharide (LPS-Ra) Surface Layers: Surface Vesicles, Membrane Fusion, and Effect of Ca 2+and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15739-15750. [PMID: 31604373 DOI: 10.1021/acs.langmuir.9b02609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPS) are a major component of the protective outer membrane of Gram-negative bacteria. Understanding how the solution conditions may affect LPS-containing membranes is important to optimizing the design of antibacterial agents (ABAs) which exploit electrostatic and hydrophobic interactions to disrupt the bacteria membrane. Here, interactions between surface layers of LPS (Ra mutants) in aqueous media have been studied using a surface force apparatus (SFA), exploring the effects of temperature and divalent Ca2+ cations. Complementary dynamic light scattering (DLS) characterization suggests that vesicle-like aggregates of diameter ∼28-80 nm are formed by LPS-Ra in aqueous media. SFA results show that LPS-Ra vesicles adsorb weakly onto mica in pure water at room temperature (RT) and the surface layers are readily squeezed out as the two surfaces approach each other. However, upon addition of calcium (Ca2+) cations at near physiological concentration (2.5 mM) at RT, LPS multilayers or deformed LPS liposomes on mica are observed, presumably due to bridging between LPS phosphate groups and between LPS phosphates and negatively charged mica mediated by Ca2+, with a hard wall repulsion at surface separation D0 ∼ 30-40 nm. At 40 °C, which is above the LPS-Ra β-α acyl chain melting temperature (Tm = 36 °C), fusion events between the surface layers under compression could be observed, evident from δD ∼ 8-10 nm steps in the force-distance profiles attributed to LPS-bilayers being squeezed out due to enhanced fluidity of the LPS acyl-chain, with a final hard wall surface separation D0 ∼ 8-10 nm corresponding to the thickness of a single bilayer confined between the surfaces. These unprecedented SFA results reveal intricate structural responses of LPS surface layers to temperature and Ca2+, with implications to our fundamental understanding of the structures and interactions of bacterial membranes.
Collapse
Affiliation(s)
- Christian Redeker
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Wuge H Briscoe
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
35
|
Santos DES, Pontes FJS, Lins RD, Coutinho K, Soares TA. SuAVE: A Tool for Analyzing Curvature-Dependent Properties in Chemical Interfaces. J Chem Inf Model 2019; 60:473-484. [DOI: 10.1021/acs.jcim.9b00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Denys E. S. Santos
- Departmento Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil
| | - Frederico J. S. Pontes
- Departmento Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil
| | - Roberto D. Lins
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, 50740-465 Cidade Universitária, Recife, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, 05508-090 Cidade Universitária, São Paulo, Brazil
| | - Thereza A. Soares
- Departmento Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Cidade Universitária, Recife, Brazil
| |
Collapse
|
36
|
Chang H, Gnanasekaran K, Gianneschi NC, Geiger FM. Bacterial Model Membranes Deform (resp. Persist) upon Ni2+ Binding to Inner Core (resp. O-Antigen) of Lipopolysaccharides. J Phys Chem B 2019; 123:4258-4270. [DOI: 10.1021/acs.jpcb.9b02762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- HanByul Chang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|
37
|
Rodriguez-Loureiro I, Latza VM, Fragneto G, Schneck E. Conformation of Single and Interacting Lipopolysaccharide Surfaces Bearing O-Side Chains. Biophys J 2019; 114:1624-1635. [PMID: 29642032 DOI: 10.1016/j.bpj.2018.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 10/17/2022] Open
Abstract
The outer surfaces of Gram-negative bacteria are composed of lipopolysaccharide (LPS) molecules exposing oligo- and polysaccharides to the aqueous environment. This unique, structurally complex biological interface is of great scientific interest as it mediates the interaction of bacteria with antimicrobial agents as well as with neighboring bacteria in colonies and biofilms. Structural studies on LPS surfaces, however, have so far dealt almost exclusively with rough mutant LPS of reduced molecular complexity and limited biological relevance. Here, by using neutron reflectometry, we structurally characterize planar monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific O-side chains in the presence and absence of divalent cations and under controlled interaction conditions. The model used for the reflectivity analysis is self-consistent and based on the volume fraction profiles of all chemical components. The saccharide profiles are found to be bimodal, with dense inner oligosaccharides and more dilute, extended O-side chains. For interacting LPS monolayers, we establish the pressure-distance curve and determine the distance-dependent saccharide conformation.
Collapse
Affiliation(s)
| | - Victoria M Latza
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Giovanna Fragneto
- Large Scale Structures (LSS) Group, Institut Laue-Langevin, Grenoble, France
| | - Emanuel Schneck
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
38
|
Rice A, Wereszczynski J. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses. Biophys J 2019; 114:1389-1399. [PMID: 29590596 DOI: 10.1016/j.bpj.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharides (LPS) are a main constituent of the outer membrane of Gram-negative bacteria. Salmonella enterica, like many other bacterial species, are able to chemically modify the structure of their LPS molecules through the PhoPQ pathway as a defense mechanism against the host immune response. These modifications make the outer membrane more resistant to antimicrobial peptides (AMPs), large lipophilic drugs, and cation depletion, and are crucial for survival within a host organism. It is believed that these LPS modifications prevent the penetration of large molecules and AMPs through a strengthening of lateral interactions between neighboring LPS molecules. Here, we performed a series of long-timescale molecular dynamics simulations to study how each of three key S. enterica lipid A modifications affect bilayer properties, with a focus on membrane structural characteristics, lateral interactions, and the divalent cation bridging network. Our results discern the unique impact each modification has on strengthening the bacterial outer membrane through effects such as increased hydrogen bonding and tighter lipid packing. Additionally, one of the modifications studied shifts Ca2+ from the lipid A region, replacing it as a major cross-linking agent between adjacent lipids and potentially making bacteria less susceptible to AMPs that competitively displace cations from the membrane surface. These results further improve our understanding of outer membrane chemical properties and help elucidate how outer membrane modification systems, such as PhoPQ in S. enterica, are able to alter bacterial virulence.
Collapse
Affiliation(s)
- Amy Rice
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
39
|
Baltoumas FA, Hamodrakas SJ, Iconomidou VA. The gram‐negative outer membrane modeler: Automated building of lipopolysaccharide‐rich bacterial outer membranes in four force fields. J Comput Chem 2019; 40:1727-1734. [DOI: 10.1002/jcc.25823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Fotis A. Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| |
Collapse
|
40
|
Micciulla S, Gerelli Y, Schneck E. Structure and Conformation of Wild-Type Bacterial Lipopolysaccharide Layers at Air-Water Interfaces. Biophys J 2019; 116:1259-1269. [PMID: 30878200 DOI: 10.1016/j.bpj.2019.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is of great scientific interest because it mediates the action of antimicrobial agents. The membrane surface is composed of lipopolysaccharide (LPS) molecules with negatively charged oligosaccharide headgroups. To a certain fraction, LPSs additionally display linear polysaccharides termed O-side chains (OSCs). Structural studies on bacterial outer surfaces models, based on LPS monolayers at air-water interfaces, have so far dealt only with rough mutant LPSs lacking these OSCs. Here, we characterize monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific OSCs in the presence of defined concentrations of monovalent and divalent ions. Pressure-area isotherms yield insight into in-plane molecular interactions and monolayer elastic moduli. Structural investigations by x-ray and neutron reflectometry reveal the saccharide conformation and allow quantifying the area per molecule and the fraction of LPS molecules carrying OSCs. The OSC conformation is satisfactorily described by the self-consistent field theory for end-grafted polymer brushes. The monolayers exhibit a significant structural response to divalent cations, which goes beyond generic electrostatic screening.
Collapse
Affiliation(s)
- Samantha Micciulla
- Institut Laue-Langevin, Grenoble, France; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
41
|
Dupuy FG, Pagano I, Andenoro K, Peralta MF, Elhady Y, Heinrich F, Tristram-Nagle S. Selective Interaction of Colistin with Lipid Model Membranes. Biophys J 2019; 114:919-928. [PMID: 29490251 DOI: 10.1016/j.bpj.2017.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/24/2022] Open
Abstract
Although colistin's clinical use is limited due to its nephrotoxicity, colistin is considered to be an antibiotic of last resort because it is used to treat patients infected with multidrug-resistant bacteria. In an effort to provide molecular details about colistin's ability to kill Gram-negative (G(-)) but not Gram-positive (G(+)) bacteria, we investigated the biophysics of the interaction between colistin and lipid mixtures mimicking the cytoplasmic membrane of G(+), G(-) bacteria as well as eukaryotic cells. Two different models of the G(-) outer membrane (OM) were assayed: lipid A with two deoxy-manno-octulosonyl sugar residues, and Escherichia coli lipopolysaccharide mixed with dilaurylphosphatidylglycerol. We used circular dichroism and x-ray diffuse scattering at low and wide angle in stacked multilayered samples, and neutron reflectivity of single, tethered bilayers mixed with colistin. We found no differences in secondary structure when colistin was bound to G(-) versus G(+) membrane mimics, ruling out a protein conformational change as the cause of this difference. However, bending modulus KC perturbation was quite irregular for the G(-) inner membrane, where colistin produced a softening of the membranes at an intermediate lipid/peptide molar ratio but stiffening at lower and higher peptide concentrations, whereas in G(+) and eukaryotic mimics there was only a slight softening. Acyl chain order in G(-) was perturbed similarly to KC. In G(+), there was only a slight softening and disordering effect, whereas in OM mimics, there was a slight stiffening and ordering of both membranes with increasing colistin. X-ray and neutron reflectivity structural results reveal colistin partitions deepest to reach the hydrocarbon interior in G(-) membranes, but remains in the headgroup region in G(+), OM, and eukaryotic mimics. It is possible that domain formation is responsible for the erratic response of G(-) inner membranes to colistin and for its deeper penetration, which could increase membrane permeability.
Collapse
Affiliation(s)
- Fernando G Dupuy
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania; Instituto Superior de Investigaciones Biológicas (INSIBIO) CONICET-UNT and Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Isabella Pagano
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kathryn Andenoro
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Maria F Peralta
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania; Instituto de Investigación Médica M y M Ferreyra, CONICET-National University of Córdoba, Córdoba, Argentina
| | - Yasmene Elhady
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Khadka N, Aryal CM, Pan J. Lipopolysaccharide-Dependent Membrane Permeation and Lipid Clustering Caused by Cyclic Lipopeptide Colistin. ACS OMEGA 2018; 3:17828-17834. [PMID: 30613815 PMCID: PMC6312645 DOI: 10.1021/acsomega.8b02260] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
Polyanionic lipopolysaccharides (LPS) play an important role in regulating the permeability of the outer membrane (OM) of Gram-negative bacteria. Impairment of the LPS-enriched OM is essential in initiating the bactericidal activity of polymyxins. We are interested in how colistin (polymyxin E) affects the membrane permeability of LPS/phospholipid bilayers. Our vesicle leakage experiment showed that colistin binding enhanced bilayer permeability; the maximum increase in the bilayer permeability was positively correlated with the LPS fraction. Addition of magnesium ions abolished the effect of LPS in enhancing bilayer permeabilization. To describe the vesicle leakage behavior from a structural perspective, we performed liquid atomic force microscopy (AFM) measurements on planar lipid bilayers. We found that colistin caused the formation of nano- and macroclusters that protruded from the bilayer by ∼2 nm. Moreover, cluster development was promoted by increasing the fraction of LPS or colistin concentration but inhibited by magnesium ions. To explain our experimental data, we proposed a lipid clustering model where colistin binds to LPS to form large-scale complexes segregated from zwitterionic phospholipids. The discontinuity (and thickness mismatch) at the edge of LPS-colistin clusters will create a passage that allows solutes to permeate through. The proposed model is consistent with all data obtained from our leakage and AFM experiments. Our results of LPS-dependent membrane restructuring provided useful insights into the mechanism that could be used by polymyxins in impairing the permeability barrier of the OM of Gram-negative bacteria.
Collapse
|
43
|
Smeddle GM, Bruce Macdonald HE, Essex JW, Khalid S. Prediction of the Closed Conformation and Insights into the Mechanism of the Membrane Enzyme LpxR. Biophys J 2018; 115:1445-1456. [PMID: 30287112 PMCID: PMC6260217 DOI: 10.1016/j.bpj.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Covalent modification of outer membrane lipids of Gram-negative bacteria can impact the ability of the bacterium to develop resistance to antibiotics as well as modulating the immune response of the host. The enzyme LpxR from Salmonella typhimurium is known to deacylate lipopolysaccharide molecules of the outer membrane; however, the mechanism of action is unknown. Here, we employ molecular dynamics and Monte Carlo simulations to study the conformational dynamics and substrate binding of LpxR in representative outer membrane models as well as detergent micelles. We examine the roles of conserved residues and provide an understanding of how LpxR binds its substrate. Our simulations predict that the catalytic H122 must be Nε-protonated for a single water molecule to occupy the space between it and the scissile bond, with a free binding energy of -8.5 kcal mol-1. Furthermore, simulations of the protein within a micelle enable us to predict the structure of the putative "closed" protein. Our results highlight the need for including dynamics, a representative environment, and the consideration of multiple tautomeric and rotameric states of key residues in mechanistic studies; static structures alone do not tell the full story.
Collapse
Affiliation(s)
- Graham M Smeddle
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Jonathan W Essex
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
44
|
A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway. Structure 2018; 26:1151-1161.e4. [DOI: 10.1016/j.str.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
|
45
|
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility. Proc Natl Acad Sci U S A 2018; 115:E7587-E7594. [PMID: 30037998 DOI: 10.1073/pnas.1803975115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a robust, impermeable, asymmetric bilayer of outer lipopolysaccharides (LPSs) and inner phospholipids containing selective pore proteins which confer on it the properties of a molecular sieve. This structure severely limits the variety of antibiotic molecules effective against Gram-negative pathogens and, as antibiotic resistance has increased, so has the need to solve the OM permeability problem. Polymyxin B (PmB) represents those rare antibiotics which act directly on the OM and which offer a distinct starting point for new antibiotic development. Here we investigate PmB's interactions with in vitro OM models and show how the physical state of the lipid matrix of the OM is a critical factor in regulating the interaction with the antimicrobial peptide. Using neutron reflectometry and infrared spectroscopy, we reveal the structural and chemical changes induced by PmB on OM models of increasing complexity. In particular, only a tightly packed model reproduced the temperature-controlled disruption of the asymmetric lipid bilayer by PmB observed in vivo. By measuring the order of outer-leaflet LPS and inner-leaflet phospholipids, we show that PmB insertion is dependent on the phase transition of LPS from the gel to the liquid crystalline state. The demonstration of a lipid phase transition in the physiological temperature range also supports the hypothesis that bacteria grown at different temperatures adapt their LPS structures to maintain a homeoviscous OM.
Collapse
|
46
|
Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS, Hasunuma T, Kondo A. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:50. [PMID: 29492105 PMCID: PMC5828149 DOI: 10.1186/s13068-018-1050-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. RESULTS To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. CONCLUSIONS We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
- Present Address: Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
47
|
Michel JP, Wang YX, Kiesel I, Gerelli Y, Rosilio V. Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11028-11039. [PMID: 28921990 DOI: 10.1021/acs.langmuir.7b02864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is a complex and asymmetric bilayer that antimicrobial peptides must disrupt in order to provoke the cell lysis. The inner and external leaflets of the OM are mainly composed of phospholipids (PL), and lipopolysaccharide (LPS), respectively. Supported lipid bilayers are interesting model systems to mimic the lipid asymmetric scaffold of the OM and determine the quantitative and mechanistic effect of antimicrobial agents, using complementary physicochemical techniques. We report the formation of asymmetric PL/LPS bilayers using the Langmuir-Blodgett/Langmuir-Schaefer technique on two different surfaces (sapphire and mica) with synthetic phospholipids constituting the inner leaflet and bacteria-extracted mutant LPS making up the outer one. The combination of neutron reflectometry and atomic force microscopy techniques allowed the examination of the asymmetric scaffold structure along the normal to the interface and its surface morphology in buffer conditions. Our results allow discrimination of two structurally related peptides, one neutral and inactive, and the other cationic and active. The active cationic plasticin PTCDA1-KF disrupts the asymmetric OM at relevant concentrations through a carpeting scenario characterized by a dramatic removal of lipid molecules from the surface.
Collapse
Affiliation(s)
- J P Michel
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| | - Y X Wang
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| | - I Kiesel
- Institut Laue-Langevin , 71 avenue des Martyrs, 38000, Grenoble, France
| | - Y Gerelli
- Institut Laue-Langevin , 71 avenue des Martyrs, 38000, Grenoble, France
| | - V Rosilio
- Institut Galien Paris Sud, Univ Paris Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
- CNRS, UMR 8612, F-92296 Châtenay-Malabry, France
| |
Collapse
|
48
|
Santos DES, Pol-Fachin L, Lins RD, Soares TA. Polymyxin Binding to the Bacterial Outer Membrane Reveals Cation Displacement and Increasing Membrane Curvature in Susceptible but Not in Resistant Lipopolysaccharide Chemotypes. J Chem Inf Model 2017; 57:2181-2193. [DOI: 10.1021/acs.jcim.7b00271] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Denys E. S. Santos
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
| | - Laércio Pol-Fachin
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740-465 Recife, Brazil
| | - Roberto D. Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740-465 Recife, Brazil
| | - Thereza A. Soares
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
- Department
of Chemistry, Umeå Center for Microbial Research, Umeå University, 90.187 Umeå, Sweden
| |
Collapse
|
49
|
Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S. Full-Length OmpA: Structure, Function, and Membrane Interactions Predicted by Molecular Dynamics Simulations. Biophys J 2017; 111:1692-1702. [PMID: 27760356 PMCID: PMC5071624 DOI: 10.1016/j.bpj.2016.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/02/2022] Open
Abstract
OmpA is a multidomain protein found in the outer membranes of most Gram-negative bacteria. Despite a wealth of reported structural and biophysical studies, the structure-function relationships of this protein remain unclear. For example, it is still debated whether it functions as a pore, and the precise molecular role it plays in attachment to the peptidoglycan of the periplasm is unknown. The absence of a consensus view is partly due to the lack of a complete structure of the full-length protein. To address this issue, we performed molecular-dynamics simulations of the full-length model of the OmpA dimer proposed by Robinson and co-workers. The N-terminal domains were embedded in an asymmetric model of the outer membrane, with lipopolysaccharide molecules in the outer leaflet and phospholipids in the inner leaflet. Our results reveal a large dimerization interface within the membrane environment, ensuring that the dimer is stable over the course of the simulations. The linker is flexible, expanding and contracting to pull the globular C-terminal domain up toward the membrane or push it down toward the periplasm, suggesting a possible mechanism for providing mechanical stability to the cell. The external loops were more stabilized than was observed in previous studies due to the extensive dimerization interface and presence of lipopolysaccharide molecules in our outer-membrane model, which may have functional consequences in terms of OmpA adhesion to host cells. In addition, the pore-gating behavior of the protein was modulated compared with previous observations, suggesting a possible role for dimerization in channel regulation.
Collapse
Affiliation(s)
- Maite L Ortiz-Suarez
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Thomas J Piggot
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Syma Khalid
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
50
|
Kim S, Patel DS, Park S, Slusky J, Klauda JB, Widmalm G, Im W. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophys J 2017; 111:1750-1760. [PMID: 27760361 DOI: 10.1016/j.bpj.2016.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Lipid A is the lipid anchor of a lipopolysaccharide in the outer leaflet of the outer membrane of Gram-negative bacteria. In general, lipid A consists of two phosphorylated N-acetyl glucosamine and several acyl chains that are directly linked to the two sugars. Depending on the bacterial species and environments, the acyl chain number and length vary, and lipid A can be chemically modified with phosphoethanolamine, aminoarabinose, or glycine residues, which are key to bacterial pathogenesis. In this work, homogeneous lipid bilayers of 21 distinct lipid A types from 12 bacterial species are modeled and simulated to investigate the differences and similarities of their membrane properties. In addition, different neutralizing ion types (Ca2+, K+, and Na+) are considered to examine the ion's influence on the membrane properties. The trajectory analysis shows that (1) the area per lipid is mostly correlated to the acyl chain number, and the area per lipid increases as a function of the acyl chain number; (2) the hydrophobic thickness is mainly determined by the average acyl chain length with slight dependence on the acyl chain number, and the hydrophobic thickness generally increases with the average acyl chain length; (3) a good correlation is observed among the area per lipid, hydrophobic thickness, and acyl chain order; and (4) although the influence of neutralizing ion types on the area per lipid and hydrophobic thickness is minimal, Ca2+ stays longer on the membrane surface than K+ or Na+, consequently leading to lower lateral diffusion and a higher compressibility modulus, which agrees well with available experiments.
Collapse
Affiliation(s)
- Seonghoon Kim
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Soohyung Park
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Joanna Slusky
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland, College Park, Maryland
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|