1
|
Dindar Z, Anbaraki A, Hosseini SS, Harati Z, Bahrami A, Balalaie S, Ghobeh M, Mahdavi M, Seyedarabi A. The Use of Natural Volatile Compounds on the Fibrillation Domain of Amyloid Beta (GSNKGAIIGLM)─Towards Promising Agents to Combat Alzheimer's Disease. ACS Chem Neurosci 2025; 16:1086-1102. [PMID: 40059298 DOI: 10.1021/acschemneuro.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Alzheimer's disease (AD), which is caused by the accumulation of amyloid-beta, is a major medical concern today. Controlling these aggregates is critical to drug development, but delivering them effectively into the bloodstream poses significant challenges. In this context, aromatherapy has been proposed as an innovative and promising approach for AD disease. The volatile compounds cinnamaldehyde, phenylethyl alcohol, α-asarone, and β-caryophyllene have neuroprotective effects that can be effective in the treatment of neurodegenerative diseases like AD. The amyloid-beta (Aβ) fragment (25-35), which retains the properties of the full-length Aβ is used as a suitable model to evaluate the potential toxicity associated with AD. This study investigated the effects of the four mentioned volatile compounds at four different concentrations on the fibrillation process of the Aβ (25-35) peptide. Structural changes in the peptide have been analyzed using various techniques such as fluorescence probing, far-UV circular dichroism spectroscopy (CD), and atomic force microscopy (AFM). Fluorescence probing results showed that these compounds can effectively prevent the formation of amyloid fibrils by forming chemical bonds with the intermediate species. CD spectroscopy results indicated a decrease in β-sheet content of fibrils and confirmed the effect of pH on structural changes. AFM analysis revealed that volatile compounds effectively prevented the formation of amyloid fibrils at different concentrations and changed the average size of intermediates and oligomeric species. These findings show a promising future for AD patients and emphasize the importance of natural compounds in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zahra Dindar
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| | - Afrooz Anbaraki
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| | - Seyyed Sina Hosseini
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416 Tehran, Iran
| | - Zohreh Harati
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| | - Aida Bahrami
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416 Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, P.O. Box 1477893855 Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384 Tehran, Iran
| |
Collapse
|
2
|
Sallaberry CA, Voss BJ, Stone WB, Estrada F, Bhatia A, Soto JD, Griffin CW, Vander Zanden CM. Curcumin Reduces Amyloid Beta Oligomer Interactions with Anionic Membranes. ACS Chem Neurosci 2023; 14:4026-4038. [PMID: 37906715 DOI: 10.1021/acschemneuro.3c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Many neurodegenerative diseases involve amyloidogenic proteins forming surface-bound aggregates on anionic membranes, and the peptide amyloid β (Aβ) in Alzheimer's disease is one prominent example of this. Curcumin is a small polyphenolic molecule that provides an interesting opportunity to understand the fundamental mechanisms of membrane-mediated aggregation because it embeds into membranes to alter their structure while also altering Aβ aggregation in an aqueous environment. The purpose of this work was to understand interactions among curcumin, β-sheet-rich Aβ fibrillar oligomers (FO), and a model anionic membrane. From a combination of liquid surface X-ray scattering experiments and molecular dynamics simulations, we found that curcumin embedded into an anionic 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane to rest between the lipid headgroups and the tails, causing disorder and membrane thinning. FO accumulation on the membrane was reduced by ∼66% in the presence of curcumin, likely influenced by membrane thinning. Simulation results suggested curcumin clusters near exposed phenylalanine residues on a membrane-embedded FO structure. Altogether, curcumin inhibited FO interactions with a DMPG membrane, likely through a combination of altered membrane structure and interactions with the FO surface. This work elucidates the mechanism of curcumin as a small molecule that inhibits amyloidogenesis through a combination of both membrane and protein interactions.
Collapse
Affiliation(s)
- Chad A Sallaberry
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Barbie J Voss
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - William B Stone
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Fabiola Estrada
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Advita Bhatia
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - J Daniel Soto
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Charles W Griffin
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
3
|
Mocanu CS, Niculaua M, Zbancioc G, Mangalagiu V, Drochioiu G. Novel Design of Neuropeptide-Based Drugs with β-Sheet Breaking Potential in Amyloid-Beta Cascade: Molecular and Structural Deciphers. Int J Mol Sci 2022; 23:ijms23052857. [PMID: 35269999 PMCID: PMC8911100 DOI: 10.3390/ijms23052857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Our work discusses the investigation of 75 peptide-based drugs with the potential ability to break the β-sheet structures of amyloid-beta peptides from senile plaques. Hence, this study offers a unique insight into the design of neuropeptide-based drugs with β-sheet breaker potential in the amyloid-beta cascade for Alzheimer’s disease (AD). We started with five peptides (15QKLVFF20, 16KLVFF20, 17LVFF20, 16KLVF19 and 15QKLV18), to which 14 different organic acids were attached at the N-terminal. It was necessary to evaluate the physiochemical features of these sequences due to the biological correlation with our proposal. Hence, the preliminary analysis of different pharmacological features provided the necessary data to select the peptides with the best biocompatibility for administration purposes. Our approaches demonstrated that the peptides 17LVFF20, NA-17LVFF20, 16KLVF19 and NA-16KLVF19 (NA-nicotinic acid) have the ability to interfere with fibril formation and hence improve the neuro and cognitive functions. Moreover, the peptide conjugate NA-16KLVF19 possesses attractive pharmacological properties, demonstrated by in silico and in vitro studies. Tandem mass spectrometry showed no fragmentation for the spectra of 16KLVF19. Such important results suggest that under the action of protease, the peptide cleavage does not occur at all. Additionally, circular dichroism confirmed docking simulations and showed that NA-16KLVF19 may improve the β-sheet breaker mechanism, and thus the entanglement process of amyloid-beta peptides can be more effective.
Collapse
Affiliation(s)
- Cosmin Stefan Mocanu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (C.S.M.); (G.Z.)
| | - Marius Niculaua
- Research Centre for Oenology Iași, Romanian Academy Iași Branch, 8 Carol I, 700505 Iasi, Romania;
| | - Gheorghita Zbancioc
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (C.S.M.); (G.Z.)
| | - Violeta Mangalagiu
- Department of Exact and Natural Sciences–CERNESIM Center, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania;
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Str., 720229 Suceava, Romania
| | - Gabi Drochioiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (C.S.M.); (G.Z.)
- Correspondence:
| |
Collapse
|
4
|
Howitz WJ, Wierzbicki M, Cabanela RW, Saliba C, Motavalli A, Tran N, Nowick JS. Interpenetrating Cubes in the X-ray Crystallographic Structure of a Peptide Derived from Medin 19-36. J Am Chem Soc 2020; 142:15870-15875. [PMID: 32816461 DOI: 10.1021/jacs.0c06143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloidogenic peptides and proteins are rich sources of supramolecular assemblies. Sequences derived from well-known amyloids, including Aβ, human islet amyloid polypeptide, and tau have been found to assemble as fibrils, nanosheets, ribbons, and nanotubes. The supramolecular assembly of medin, a 50-amino acid peptide that forms fibrillary deposits in aging human vasculature, has not been heavily investigated. In this work, we present an X-ray crystallographic structure of a cyclic β-sheet peptide derived from the 19-36 region of medin that assembles to form interpenetrating cubes. The edge of each cube is composed of a single peptide, and each vertex is occupied by a divalent metal ion. This structure may be considered a metal-organic framework (MOF) containing a large peptide ligand. This work demonstrates that peptides containing Glu or Asp that are preorganized to adopt β-hairpin structures can serve as ligands and assemble with metal ions to form MOFs.
Collapse
Affiliation(s)
- William J Howitz
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Michał Wierzbicki
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rudy William Cabanela
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Cindy Saliba
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Ariana Motavalli
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Ngoctran Tran
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Deike S, Rothemund S, Voigt B, Samantray S, Strodel B, Binder WH. β-Turn mimetic synthetic peptides as amyloid-β aggregation inhibitors. Bioorg Chem 2020; 101:104012. [PMID: 32683138 DOI: 10.1016/j.bioorg.2020.104012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Aggregation of amyloid peptides results in severe neurodegenerative diseases. While the fibril structures of Aβ40 and Aβ42 have been described recently, resolution of the aggregation pathway and evaluation of potent inhibitors still remains elusive, in particular in view of the hairpin-region of Aβ40. We here report the preparation of beta-turn mimetic conjugates containing synthetic turn mimetic structures in the turn region of Aβ40 and Aβ16-35, replacing 2 amino acids in the turn-region G25 - K28. The structure of the turn mimic induces both, acceleration of fibrillation and the complete inhibition of fibrillation, confirming the importance of the turn region on the aggregation. Replacing position G25-S26 provided the best inhibition effect for both beta-turn mimetics, the bicyclic BTD 1 and the aromatic TAA 2, while positions N27-K28 and V24-G25 showed only weaker or no inhibitory effects. When comparing different turn mimetics at the same position (G25-S26), conjugate 1a bearing the BTD turn showed the best inhibition of Aβ40 aggregation, while 5-amino-valeric acid 4a showed the weakest effect. Thus there is a pronounced impact on fibrillation with the chemical nature of the embedded beta-turn-mimic: the conformationally constrained turns 1 and 2 lead to a significantly reduced fibrillation, even inhibiting fibrillation of native Aβ40 when added in amounts down to 1/10, whereas the more flexible beta-turn-mimics 4-amino-benzoic acid 3a and 5-amino-valeric acid 4a lead to enhanced fibrillation. Toxicity-testing of the most successful conjugate showed only minor toxicity in cell-viability assays using the N2a cell line. Structural downsizing lead to the short fragment BTD/peptide Aβ16-35 as inhibitor of the aggregation of Aβ40, opening large potential for further small peptide based inhibitors.
Collapse
Affiliation(s)
- Stefanie Deike
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Sven Rothemund
- Core Unit Peptid-Technologien, University Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Bruno Voigt
- Department of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimannstrasse 7 4, 06120 Halle, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang H Binder
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany.
| |
Collapse
|
6
|
Vander Zanden CM, Wampler L, Bowers I, Watkins EB, Majewski J, Chi EY. Fibrillar and Nonfibrillar Amyloid Beta Structures Drive Two Modes of Membrane-Mediated Toxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16024-16036. [PMID: 31509701 PMCID: PMC7385729 DOI: 10.1021/acs.langmuir.9b02484] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In Alzheimer's disease, the amyloid-beta peptide (Aβ) is implicated in neuronal toxicity via interactions with the cell membrane. Monomeric Aβ (Aβm) is intrinsically disordered, but it can adopt a range of aggregated conformations with varying toxicities from short fibrillar oligomers (FO), to globular nonfibrillar oligomers (NFO), and full-length amyloid fibrils. NFO is considered to be the most toxic, followed by fibrils, and finally Aβm. To elucidate molecular-level membrane interactions that contribute to their different toxicities, we used liquid surface X-ray scattering and Langmuir trough insertion assays to compare Aβm, FO, and NFO surface activities and interactions with anionic DMPG lipid monolayers at the air/water interface. All Aβ species were highly surface active and rapidly adopted β-sheet rich structures upon adsorption to the air/water interface. Likewise, all Aβ species had affinity for the anionic membrane. Aβm rapidly converted to β-sheet rich assemblies upon binding the membrane, and these aggregated structures of Aβm and FO disrupted hexagonally packed lipid domains and resulted in membrane thinning and instability. In contrast, NFO perturbed membrane structure by extracting lipids from the air/water interface and causing macroscale membrane deformations. Altogether, our results support two models for membrane-mediated Aβ toxicity: fibril-induced reorganization of lipid packing and NFO-induced membrane destabilization and lipid extraction. This work provides a structural understanding of Aβ neurotoxicity via membrane interactions and aids the effort in understanding early events in Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemistry and Biochemistry , University of Colorado Colorado Springs , Colorado Springs , Colorado 80918 , United States
| | - Lois Wampler
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Isabella Bowers
- Department of Engineering and Technology , Southeast Missouri State University , Cape Girardeau , Missouri 63701 , United States
| | - Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jaroslaw Majewski
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Division of Molecular and Cellular Biosciences , National Science Foundation , Alexandria , Virginia 22314 , United States
- Theoretical Biology and Biophysics , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Eva Y Chi
- Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
7
|
Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. Methods Mol Biol 2018; 1777:3-21. [PMID: 29744826 DOI: 10.1007/978-1-4939-7811-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.
Collapse
|
8
|
Wang ST, Lin Y, Spencer RK, Thomas MR, Nguyen AI, Amdursky N, Pashuck ET, Skaalure SC, Song CY, Parmar PA, Morgan RM, Ercius P, Aloni S, Zuckermann RN, Stevens MM. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils. ACS NANO 2017; 11:8579-8589. [PMID: 28771324 PMCID: PMC5618150 DOI: 10.1021/acsnano.7b02325] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. We anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yiyang Lin
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Ryan K. Spencer
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Michael R. Thomas
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Andy I. Nguyen
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Nadav Amdursky
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - E. Thomas Pashuck
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Stacey C. Skaalure
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Cheng Yu Song
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Paresh A. Parmar
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Rhodri M. Morgan
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Peter Ercius
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Shaul Aloni
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Molly M. Stevens
- Department
of Materials and Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- E-mail:
| |
Collapse
|
9
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1162] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
10
|
Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017; 140:176-192. [PMID: 28751216 DOI: 10.1016/j.biochi.2017.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia.
| | - Filips Oleskovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) & Oslo University Hospital (OUS), Norway; LIED, University of Lübeck Uzl, Germany; Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Henrik Biverstål
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Lee J, Choe IR, Kim NK, Kim WJ, Jang HS, Lee YS, Nam KT. Water-Floating Giant Nanosheets from Helical Peptide Pentamers. ACS NANO 2016; 10:8263-8270. [PMID: 27583783 DOI: 10.1021/acsnano.6b00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the important challenges in the development of protein-mimetic materials is understanding the sequence-specific assembly behavior and dynamic folding change. Conventional strategies for constructing two-dimensional (2D) nanostructures from peptides have been limited to using β-sheet forming sequences as building blocks due to their natural tendency to form sheet-like aggregations. We have identified a peptide sequence (YFCFY) that can form dimers via a disulfide bridge, fold into a helix, and assemble into macroscopic flat sheets at the air/water interface. Due to the large driving force for 2D assembly and high elastic modulus of the resulting sheet, the peptide assembly induces flattening of the initially round water droplet. Additionally, we found that stabilization of the helix by dimerization is a key determinant for maintaining macroscopic flatness over a few tens of centimeters even with a uniform thickness of <10 nm. Furthermore, the ability to transfer the sheets from a water droplet to another substrate allows for multiple stacking of 2D peptide nanostructures, suggesting possible applications in biomimetic catalysis, biosensors, and 2D related electronic devices.
Collapse
Affiliation(s)
| | | | - Nak-Kyoon Kim
- Korea Advanced Analysis Center, Korea Institute of Science and Technology (KIST) , Seoul, 136-791, Korea
| | - Won-Je Kim
- Korea Advanced Analysis Center, Korea Institute of Science and Technology (KIST) , Seoul, 136-791, Korea
| | | | | | | |
Collapse
|
12
|
Sharma B, Paul S. Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16–22 Peptides. J Phys Chem B 2016; 120:9019-33. [DOI: 10.1021/acs.jpcb.6b03892] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bhanita Sharma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
13
|
Wei J, Antzutkin ON, Filippov AV, Iuga D, Lam PY, Barrow MP, Dupree R, Brown SP, O'Connor PB. Amyloid Hydrogen Bonding Polymorphism Evaluated by (15)N{(17)O}REAPDOR Solid-State NMR and Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Biochemistry 2016; 55:2065-8. [PMID: 26983928 DOI: 10.1021/acs.biochem.5b01095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer's Aβ peptides, Ac-Aβ(16-22)-NH2 and Aβ(11-25), selectively labeled with (17)O and (15)N at specific amino acid residues were investigated. The total amount of peptides labeled with (17)O as measured by FTICR-MS enabled the interpretation of dephasing observed in (15)N{(17)O}REAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific >C═(17)O···H-(15)N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks.
Collapse
Affiliation(s)
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology , SE-971 87, Luleå, Sweden
| | - Andrei V Filippov
- Chemistry of Interfaces, Luleå University of Technology , SE-971 87, Luleå, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Habenstein B, Loquet A. Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem 2016; 210:14-26. [DOI: 10.1016/j.bpc.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
|
15
|
Bag S, Sett A, DasGupta S, Dasgupta S. Hydropathy: the controlling factor behind the inhibition of Aβ fibrillation by graphene oxide. RSC Adv 2016. [DOI: 10.1039/c6ra23570k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibrillation of Aβ25–35 peptide is inhibited in presence of graphene oxide.
Collapse
Affiliation(s)
- Sudipta Bag
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Ayantika Sett
- Department of Chemical Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Sunando DasGupta
- Department of Chemical Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Dasgupta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
16
|
Zeng H, Wu X. Alzheimer's disease drug development based on Computer-Aided Drug Design. Eur J Med Chem 2015; 121:851-863. [PMID: 26415837 DOI: 10.1016/j.ejmech.2015.08.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/01/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the excessive deposition of amyloids in the brain. The pathological features mainly include the extracellular amyloid plaques and intracellular neurofibrillary tangles, which are the production of amyloid precursor protein (APP) processed by the α-, β- and γ-secretases. Based on the amyloid cascade hypotheses of AD, a large number of amyloid-β agents and secretase inhibitors against AD have been recently developed by using computational methods. This review article describes pathophysiology of AD and the structure of the Aβ plaques, β- and γ-secretases, and discusses the recent advances in the development of the amyloid agents for AD therapy and diagnosis by using Computer-Aided Drug Design approach.
Collapse
Affiliation(s)
- Huahui Zeng
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xiangxiang Wu
- Science & Technology Department, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
17
|
Colvin MT, Silvers R, Frohm B, Su Y, Linse S, Griffin RG. High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 2015; 137:7509-18. [PMID: 26001057 PMCID: PMC4623963 DOI: 10.1021/jacs.5b03997] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The presence of amyloid plaques composed
of amyloid beta (Aβ)
fibrils is a hallmark of Alzheimer’s disease (AD). The Aβ
peptide is present as several length variants with two common alloforms
consisting of 40 and 42 amino acids, denoted Aβ1–40 and Aβ1–42, respectively. While there have
been numerous reports that structurally characterize fibrils of Aβ1–40, very little is known about the structure of amyloid
fibrils of Aβ1–42, which are considered the
more toxic alloform involved in AD. We have prepared isotopically 13C/15N labeled AβM01–42 fibrils in vitro from recombinant protein and examined their 13C–13C and 13C–15N magic angle spinning (MAS) NMR spectra. In contrast to several
other studies of Aβ fibrils, we observe spectra with excellent
resolution and a single set of chemical shifts, suggesting the presence
of a single fibril morphology. We report the initial structural characterization
of AβM01–42 fibrils utilizing 13C and 15N shift assignments of 38 of the 43 residues,
including the backbone and side chains, obtained through a series
of cross-polarization based 2D and 3D 13C–13C, 13C–15N MAS NMR experiments for rigid
residues along with J-based 2D TOBSY experiments for dynamic residues.
We find that the first ∼5 residues are dynamic and most efficiently
detected in a J-based TOBSY spectrum. In contrast, residues 16–42
are easily observed in cross-polarization experiments and most likely
form the amyloid core. Calculation of ψ and φ dihedral
angles from the chemical shift assignments indicate that 4 β-strands
are present in the fibril’s secondary structure.
Collapse
Affiliation(s)
- Michael T Colvin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Birgitta Frohm
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Yongchao Su
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Robert G Griffin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Su Y, Andreas L, Griffin RG. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection. Annu Rev Biochem 2015; 84:465-97. [PMID: 25839340 DOI: 10.1146/annurev-biochem-060614-034206] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | | | | |
Collapse
|
19
|
Liu-Smith F, Poe C, Farmer PJ, Meyskens FL. Amyloids, melanins and oxidative stress in melanomagenesis. Exp Dermatol 2014; 24:171-4. [PMID: 25271672 DOI: 10.1111/exd.12559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/26/2022]
Abstract
Melanoma has traditionally been viewed as an ultraviolet (UV) radiation-induced malignancy. While UV is a common inducing factor, other endogenous stresses such as metal ion accumulation or the melanin pigment itself may provide alternative pathways to melanoma progression. Eumelanosomes within melanoma often exhibit disrupted membranes and fragmented pigment which may be due to alterations in their amyloid-based striated matrix. The melanosomal amyloid can itself be toxic, especially in combination with reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by endogenous NADPH oxidase (NOX) and nitric oxide synthase (NOS) enzymes, a toxic mix that may initiate melanomagenesis. Further understanding of the loss of the melanosomal organization, the behaviour of the exposed melanin and the induction of ROS/RNS in melanomas may provide critical insights into this deadly disease.
Collapse
Affiliation(s)
- Feng Liu-Smith
- Department of Epidemiology, University of California School of Medicine, Irvine, CA, USA; Department of Medicine, University of California School of Medicine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA, USA
| | | | | | | |
Collapse
|
20
|
Andreasen M, Skeby KK, Zhang S, Nielsen EH, Klausen LH, Frahm H, Christiansen G, Skrydstrup T, Dong M, Schiøtt B, Otzen D. The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibrillation Propensity and Fibril Morphology. Biochemistry 2014; 53:6968-80. [DOI: 10.1021/bi500674u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Andreasen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Katrine Kirkeby Skeby
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus, Denmark
| | - Shuai Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
| | - Erik Holm Nielsen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus, Denmark
| | - Lasse Hyldgaard Klausen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
| | - Heidi Frahm
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Gunna Christiansen
- Department
of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus, Denmark
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus, Denmark
| | - Daniel Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
- Center
for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO) at the Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
21
|
Zhou ZL, Ho Y, Liu HL, Elumalai P, Chen WH. Computer-aided discovery of novel non-peptide inhibitors against amyloid-beta (Aβ) peptide aggregation for treating Alzheimer's disease. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.910600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Wagoner VA, Cheon M, Chang I, Hall CK. Impact of sequence on the molecular assembly of short amyloid peptides. Proteins 2014; 82:1469-83. [PMID: 24449257 DOI: 10.1002/prot.24515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 11/08/2022]
Abstract
The goal of this work is to understand how the sequence of a protein affects the likelihood that it will form an amyloid fibril and the kinetics along the fibrillization pathway. The focus is on very short fragments of amyloid proteins since these play a role in the fibrillization of the parent protein and can form fibrils themselves. Discontinuous molecular dynamics simulations using the PRIME20 force field were performed of the aggregation of 48-peptide systems containing SNQNNF (PrP (170-175)), SSTSAA (RNaseA(15-20)), MVGGVV (Aβ(35-40)), GGVVIA (Aβ(37-42)), and MVGGVVIA (Aβ(35-42)). In our simulations SNQQNF, SSTTSAA, and MVGGVV form large numbers of fibrillar structures spontaneously (as in experiment). GGVVIA forms β-sheets that do not stack into fibrils (unlike experiment). The combination sequence MVGGVVIA forms less fibrils than MVGGVV, hindered by the presence of the hydrophobic residues at the C-terminal. Analysis of the simulation kinetics and energetics reveals why MVGGVV forms fibrils and GGVVIA does not, and why adding I and A to MVGGVVIA reduces fibrillization and enhances amorphous aggregation into oligomeric structures. The latter helps explain why Aβ(1-42) assembles into more complex oligomers than Aβ(1-40), a consequence of which is that it is more strongly associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Victoria A Wagoner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | | | | | | |
Collapse
|
23
|
|
24
|
Morgan DM, Lynn DG, Lakdawala AS, Snyder JP, Liotta DC. Amyloid Structure: Models and Theoretical Considerations in Fibrous Aggregates. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200200072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
GhattyVenkataKrishna PK, Uberbacher EC, Cheng X. Effect of the amyloid β hairpin's structure on the handedness of helices formed by its aggregates. FEBS Lett 2013; 587:2649-55. [PMID: 23845280 DOI: 10.1016/j.febslet.2013.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 11/16/2022]
Abstract
Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generate the incorrect right-handed helices. This result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.
Collapse
|
26
|
Comellas G, Rienstra CM. Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils. Annu Rev Biophys 2013; 42:515-36. [DOI: 10.1146/annurev-biophys-083012-130356] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Chad M. Rienstra
- Center for Biophysics and Computational Biology,
- Department of Chemistry, and
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; ,
| |
Collapse
|
27
|
Amylin uncovered: a review on the polypeptide responsible for type II diabetes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826706. [PMID: 23607096 PMCID: PMC3626316 DOI: 10.1155/2013/826706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022]
Abstract
Amylin is primarily responsible for classifying type II diabetes as an amyloid (protein misfolding) disease as it has great potential to aggregate into toxic nanoparticles, thereby resulting in loss of pancreatic β-cells. Although type II diabetes is on the increase each year, possibly due to bad eating habits of modern society, research on the culprit for this disease is still in its early days. In addition, unlike the culprit for Alzheimer's disease, amyloid β-peptide, amylin has failed to receive attention worthy of being featured in an abundance of review articles. Thus, the aim of this paper is to shine the spotlight on amylin in an attempt to put it onto the top of researchers' to-do list since the secondary complications of type II diabetes have far-reaching and severe consequences on public health both in developing and fully developed countries alike. This paper will cover characteristics of the amylin aggregates, mechanisms of toxicity, and a particular focus on inhibitors of toxicity and techniques used to assess these inhibitors.
Collapse
|
28
|
Lam AR, Rodriguez JJ, Rojas A, Scheraga HA, Mukamel S. Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. J Phys Chem A 2013; 117:342-50. [PMID: 23214934 DOI: 10.1021/jp3101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of plaque deposits in the human brain. The main component of these plaques consists of highly ordered structures called amyloid fibrils, formed by the amyloid β-peptide (Aβ). The mechanism connecting Aβ and AD is yet undetermined. In a previous study, a coarse-grained united-residue model and molecular dynamics simulations were used to model the growth mechanism of Aβ amyloid fibrils. On the basis of these simulations, a dock/lock mechanism was proposed, in which Aβ fibrils grow by adding monomers at either end of an amyloid fibril template. To examine the structures in the early time-scale formation and growth of amyloid fibrils, simulated two-dimensional ultraviolet spectroscopy is used. These early structures are monitored in the far ultraviolet regime (λ = 190-250 nm) in which the computed signals originate from the backbone nπ* and ππ* transitions. These signals show distinct cross-peak patterns that can be used, in combination with molecular dynamics, to monitor local dynamics and conformational changes in the secondary structure of Aβ-peptides. The protein geometry-correlated chiral xxxy signal and the non-chiral combined signal xyxy-xyyx were found to be sensitive to, and in agreement with, a dock/lock pathway.
Collapse
Affiliation(s)
- A R Lam
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-2025, USA.
| | | | | | | | | |
Collapse
|
29
|
Saha A, Mondal G, Biswas A, Chakraborty I, Jana B, Ghosh S. In vitro reconstitution of a cell-like environment using liposomes for amyloid beta peptide aggregation and its propagation. Chem Commun (Camb) 2013; 49:6119-21. [DOI: 10.1039/c3cc41287c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R. Hydrogen Bonding in Alzheimer’s Amyloid-β Fibrils Probed by15N{17O} REAPDOR Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R. Hydrogen Bonding in Alzheimer’s Amyloid-β Fibrils Probed by15N{17O} REAPDOR Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2012; 51:10289-92. [DOI: 10.1002/anie.201203595] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Indexed: 02/06/2023]
|
32
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
33
|
Lin YS, Bowman GR, Beauchamp KA, Pande VS. Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophys J 2012; 102:315-24. [PMID: 22339868 DOI: 10.1016/j.bpj.2011.12.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022] Open
Abstract
The aggregation of amyloid beta (Aβ) peptides plays an important role in the development of Alzheimer's disease. Despite extensive effort, it has been difficult to characterize the secondary and tertiary structure of the Aβ monomer, the starting point for aggregation, due to its hydrophobicity and high aggregation propensity. Here, we employ extensive molecular dynamics simulations with atomistic protein and water models to determine structural ensembles for Aβ(42), Aβ(40), and Aβ(42)-E22K (the Italian mutant) monomers in solution. Sampling of a total of >700 microseconds in all-atom detail with explicit solvent enables us to observe the effects of peptide length and a pathogenic mutation on the disordered Aβ monomer structural ensemble. Aβ(42) and Aβ(40) have crudely similar characteristics but reducing the peptide length from 42 to 40 residues reduces β-hairpin formation near the C-terminus. The pathogenic Italian E22K mutation induces helix formation in the region of residues 20-24. This structural alteration may increase helix-helix interactions between monomers, resulting in altered mechanism and kinetics of Aβ oligomerization.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Department of Chemistry, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
34
|
Steckmann T, Awan Z, Gerstman BS, Chapagain PP. Kinetics of peptide secondary structure conversion during amyloid β-protein fibrillogenesis. J Theor Biol 2012; 301:95-102. [DOI: 10.1016/j.jtbi.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Wang C, Yang A, Li X, Li D, Zhang M, Du H, Li C, Guo Y, Mao X, Dong M, Besenbacher F, Yang Y, Wang C. Observation of molecular inhibition and binding structures of amyloid peptides. NANOSCALE 2012; 4:1895-909. [PMID: 22334382 DOI: 10.1039/c2nr11508e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unveiling interactions between labeling molecules and amyloid fibrils is essential to develop new detection methods for studying amyloid structures under various conditions. This review endeavours to reflect the progress in studying interactions between molecular inhibitors and amyloid peptides using a series of experimental approaches, such as X-ray diffraction, nuclear magnetic resonance, scanning probe microscopy, and electron microscopy. The revealed binding mechanisms of anti-amyloid drugs and target proteins could benefit the rational design of drugs for prevention or treatment of amyloidal diseases.
Collapse
Affiliation(s)
- Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Benseny-Cases N, Klementieva O, Cladera J. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides. Subcell Biochem 2012; 65:53-74. [PMID: 23224999 DOI: 10.1007/978-94-007-5416-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The amyloid beta Ab(1-40) and Ab(1-42) peptides are the main components of the fibrillar plaques characteristically found in the brains affected by Alzheimer's disease. Fibril formation has been thoroughly studied in vitro using synthetic amyloid peptides and has been described to be a nucleation dependent polymerization process. During this process, defined by a slow nucleation phase followed by a rapid exponential elongation reaction, a whole range of aggregated species (low and high molecular weight aggregates) precede fibril formation. Toxic species related to the onset and development of Alzheimer's disease are thought to be found among these prefibrillar aggregates. Two main procedures are used to experimentally monitor fibril formation kinetics: through the measurement of the light scattered by the different peptide aggregates and using the fluorescent dye thioflavin T, which fluorescence increases when specifically interacting with amyloid fibrils. Reproducibility may, however, be difficult to achieve when measuring and characterizing fibril formation kinetics. This fact is mainly due to the difficulty in experimentally handling amyloid peptides, which is directly related to the difficulty of having them in a monomeric form at the beginning of the polymerization process. This has to do mainly with the type of solvent used for the preparation of the peptide stock solutions (water, DMSO, TFE, HFIP) and the control of determinant physicochemical parameters such as pH. Moreover, kinetic progression turns out to be highly dependent on the type of peptide counter-ion used, which will basically determine the duration of the nucleation phase and the rate at which high molecular weight oligomers are formed. Centrifugation and filtration procedures used in the preparation of the peptide stock solutions will also greatly influence the duration of the fibril formation process. In this chapter, a survey of the alluded experimental procedures is provided and a general frame is proposed for the interpretation of the fibril formation kinetics, intended to integrate the results from the different experimental approaches. The significance of the different aggregated species in terms of cell toxicity will be discussed. Special emphasis will be given to the influence of pH on the structural and toxic characteristics of amyloid aggregates, an aspect that may be particularly relevant in some specific physiological conditions.
Collapse
Affiliation(s)
- Núria Benseny-Cases
- Polygone Scientifique Louis Néel, ESRF, 6 rue Jules Horowitz, 38000, Grenoble, France,
| | | | | |
Collapse
|
37
|
Davies HA, Madine J, Middleton DA. Solid-state NMR reveals differences in the packing arrangements of peptide aggregates derived from the aortic amyloid polypeptide medin. J Pept Sci 2011; 18:65-72. [PMID: 22102261 DOI: 10.1002/psc.1418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/15/2011] [Accepted: 08/25/2011] [Indexed: 11/11/2022]
Abstract
Several polypeptides aggregate into insoluble amyloid fibrils associated with pathologies such as Alzheimer's disease, Parkinson's disease and type 2 diabetes. Understanding the structural and sequential motifs that drive fibrillisation may assist in the discovery and refinement of effective therapies. Here we investigate the effects of three predicted amyloidogenic regions on the structure of aggregates formed by medin, a poorly characterised polypeptide associated with aortic medial amyloidosis. Solid-state NMR is used to compare the dynamics and sheet packing arrangement of the C-terminal region encompassing residues F(43) GSV within full-length medin (Med(1-50) ) and two shorter peptide fragments, Med(30-50) and Med(42-49) , lacking specific sequences predicted to be amyloidogenic.(.) Results show that all three peptides have different aggregate morphologies, and Med(30-50) and Med(1-50) have different sheet packing arrangements and dynamics to Med(42-49) . These results imply that at least two of the three predicted amyloidogenic regions are required for the formation and elongation of medin fibres observed in the disease state.
Collapse
Affiliation(s)
- Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | | |
Collapse
|
38
|
Maltsev AV, Bystryak S, Galzitskaya OV. The role of β-amyloid peptide in neurodegenerative diseases. Ageing Res Rev 2011; 10:440-52. [PMID: 21406255 DOI: 10.1016/j.arr.2011.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 12/27/2022]
Abstract
Studies of neurodegenerative disorders (NDDs) are drawing more attention of researchers worldwide due to the high incidence of Alzheimer's disease (AD). The pathophysiology of such disorders is, in part, characterized by the transition of a wild-type peptide from its native conformation into a very stable pathological isoform. Subsequently, these abnormal proteins form aggregates of amyloid fibrils that continuously increase in size. Changes in the metabolic processes of neurons (e.g. oxidative stress, hyperphosphorylation of the tau protein, and resulting secondary changes in the cell metabolism) ultimately lead to cell death. We hypothesize that extracellular deposition of β-amyloid peptide fibrils and neurofibrillary tangles represents the body's adaptation mechanism, aimed at preservation of autonomic functioning; while the cognitive decline is severe, the rest of the organ systems remain unaffected and continue to function. This hypothesis is supported by the fact that destruction of pathological plaques, fibrils, and tangles and the use of vaccines targeting β-amyloid result in undesirable side effects. To gain a better understanding of the pathophysiology of Alzheimer's disease and to develop novel therapies, continued studies of the sporadic form of disease and the mechanisms triggering conformational changes in β-amyloid peptide fragments are essential. This review is focused on studies investigating the formation of amyloid fibrils and their role in the pathogenesis of neurodegenerative diseases. In addition, we discuss a related disorder--amyloidosis--where formation of fibrils, tangles, and plaques leads to neuronal death which may occur as a result of a failed adaptation process. Further in-depth investigation and comprehensive analysis of alterations in the metabolism of APP, β-amyloid, and tau protein, which have a pathological effect on cell membrane, alter phosphate exchange, and impair other key metabolic functions of the cell long before the characteristic amyloid deposition takes place, is warranted. A better understanding of intraneuronal processes is crucial in identifying specific inhibitors of pathologic neuronal processes and, consequently, will allow for targeted therapy, thus maximizing efficacy of selected therapeutic regimens.
Collapse
Affiliation(s)
- A V Maltsev
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care, Moscow, Russia.
| | | | | |
Collapse
|
39
|
Wagoner VA, Cheon M, Chang I, Hall CK. Computer simulation study of amyloid fibril formation by palindromic sequences in prion peptides. Proteins 2011; 79:2132-45. [PMID: 21557317 DOI: 10.1002/prot.23034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 11/11/2022]
Abstract
We simulate the aggregation of large systems containing palindromic peptides from the Syrian hamster prion protein SHaPrP 113-120 (AGAAAAGA) and the mouse prion protein MoPrP 111-120 (VAGAAAAGAV) and eight sequence variations: GAAAAAAG, (AG)(4) , A8, GAAAGAAA, A10, V10, GAVAAAAVAG, and VAVAAAAVAV The first two peptides are thought to act as the Velcro that holds the parent prion proteins together in amyloid structures and can form fibrils themselves. Kinetic events along the fibrillization pathway influence the types of structures that occur and variations in the sequence affect aggregation kinetics and fibrillar structure. Discontinuous molecular dynamics simulations using the PRIME20 force field are performed on systems containing 48 peptides starting from a random coil configuration. Depending on the sequence, fibrillar structures form spontaneously over a range of temperatures, below which amorphous aggregates form and above which no aggregation occurs. AGAAAAGA forms well organized fibrillar structures whereas VAGAAAAGAV forms less well organized structures that are partially fibrillar and partially amorphous. The degree of order in the fibrillar structure stems in part from the types of kinetic events leading up to its formation, with AGAAAAGA forming less amorphous structures early in the simulation than VAGAAAAGAV. The ability to form fibrils increases as the chain length and the length of the stretch of hydrophobic residues increase. However as the hydrophobicity of the sequence increases, the ability to form well-ordered structures decreases. Thus, longer hydrophobic sequences form slightly disordered aggregates that are partially fibrillar and partially amorphous. Subtle changes in sequence result in slightly different fibril structures.
Collapse
Affiliation(s)
- Victoria A Wagoner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | |
Collapse
|
40
|
Komatsu H, Feingold-Link E, Sharp KA, Rastogi T, Axelsen PH. Intrinsic linear heterogeneity of amyloid β protein fibrils revealed by higher resolution mass-per-length determinations. J Biol Chem 2010; 285:41843-51. [PMID: 20940298 PMCID: PMC3009912 DOI: 10.1074/jbc.m110.165068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/01/2010] [Indexed: 11/06/2022] Open
Abstract
Amyloid β proteins spontaneously form fibrils in vitro that vary in their thermodynamic stability and in morphological characteristics such as length, width, shape, longitudinal twist, and the number of component filaments. It is vitally important to determine which variant best represents the type of fibril that accumulates in Alzheimer disease. In the present study, the nature of morphological variation was examined by dark-field and transmission electron microscopy in a preparation of seeded amyloid β protein fibrils that formed at relatively low protein concentrations and exhibited remarkably high thermodynamic stability. The number of filaments comprising these fibrils changed frequently from two to six along their length, and these changes only became apparent when mass-per-length (MPL) determinations are made with sufficient resolution. The MPL results could be reproduced by a simple stochastic model with a single adjustable parameter. The presence of more than two primary filaments could not be discerned by transmission electron microscopy, and they had no apparent relationship to the longitudinal twist of the fibrils. However, the pitch of the twist was strongly affected by the pH of the negative stain. We conclude that highly stable amyloid fibrils may form in which a surprising amount of intrinsic linear heterogeneity may be obscured by MPL measurements of insufficient resolution, and by the negative stains used for imaging fibrils by electron microscopy.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Axelsen
- From the Departments of Pharmacology
- Biochemistry and Biophysics, and
- Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
41
|
Bruce NJ, Chen D, Dastidar SG, Marks GE, Schein CH, Bryce RA. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides. Peptides 2010; 31:2100-8. [PMID: 20691234 DOI: 10.1016/j.peptides.2010.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 01/21/2023]
Abstract
Accumulation and aggregation of the 42-residue amyloid-β (Aβ) protein fragment, which originates from the cleavage of amyloid precursor protein by β and γ secretase, correlates with the pathology of Alzheimer's disease (AD). Possible therapies for AD include peptides based on the Aβ sequence, and recently identified small molecular weight compounds designed to mimic these, that interfere with the aggregation of Aβ and prevent its toxic effects on neuronal cells in culture. Here, we use molecular dynamics simulations to compare the mode of interaction of an active (LPFFD) and inactive (LHFFD) β-sheet breaker peptide with an Aβ fibril structure from solid-state NMR studies. We found that LHFFD had a weaker interaction with the fibril than the active peptide, LPFFD, from geometric and energetic considerations, as estimated by the MM/PBSA approach. Cluster analysis and computational alanine scanning identified important ligand-fibril contacts, including a possible difference in the effect of histidine on ligand-fibril π-stacking interactions, and the role of the proline residue in establishing contacts that compete with those essential for maintenance of the inter-monomer β-sheet structure of the fibril. Our results show that molecular dynamics simulations can be a useful way to classify the stability of docking sites. These mechanistic insights into the ability of LPFFD to reverse aggregation of toxic Aβ will guide the redesign of lead compounds, and aid in developing realistic therapies for AD and other diseases of protein aggregation.
Collapse
Affiliation(s)
- Neil J Bruce
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Caporini MA, Bajaj VS, Veshtort M, Fitzpatrick A, MacPhee CE, Vendruscolo M, Dobson CM, Griffin RG. Accurate determination of interstrand distances and alignment in amyloid fibrils by magic angle spinning NMR. J Phys Chem B 2010; 114:13555-61. [PMID: 20925357 PMCID: PMC2959142 DOI: 10.1021/jp106675h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils are structurally ordered aggregates of proteins whose formation is associated with many neurodegenerative and other diseases. For that reason, their high-resolution structures are of considerable interest and have been studied using a wide range of techniques, notably electron microscopy, X-ray diffraction, and magic angle spinning (MAS) NMR. Because of the excellent resolution in the spectra, MAS NMR is uniquely capable of delivering site-specific, atomic resolution information about all levels of amyloid structure: (1) the monomer, which packs into several (2) protofilaments that in turn associate to form a (3) fibril. Building upon our high-resolution structure of the monomer of an amyloid-forming peptide from transthyretin (TTR(105-115)), we introduce single 1-(13)C labeled amino acids at seven different sites in the peptide and measure intermolecular carbonyl-carbonyl distances with an accuracy of ~0.11 A. Our results conclusively establish a parallel, in register, topology for the packing of this peptide into a β-sheet and provide constraints essential for the determination of an atomic resolution structure of the fibril. Furthermore, the approach we employ, based on a combination of a double-quantum filtered variant of the DRAWS recoupling sequence and multispin numerical simulations in SPINEVOLUTION, is general and should be applicable to a wide range of systems.
Collapse
Affiliation(s)
- Marc A Caporini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Amyloid-beta fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Biophys J 2010; 98:2299-308. [PMID: 20483339 DOI: 10.1016/j.bpj.2010.01.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/22/2022] Open
Abstract
The amphipathicity of the natively unstructured amyloid-beta (Abeta40) peptide may play an important role in its aggregation into beta-sheet rich fibrils, which is linked to the pathogenesis of Alzheimer's disease. Using the air/subphase interface as a model interface, we characterized Abeta's surface activity and its conformation, assembly, and morphology at the interface. Abeta readily adsorbed to the air/subphase interface to form a 20 A thick film and showed a critical micelle concentration of approximately 120 nM. Abeta adsorbed at the air/subphase exhibited in-plane ordering that gave rise to Bragg peaks in grazing-incidence x-ray diffraction measurements. Analysis of the peaks showed that the air/subphase interface induced Abeta to fold into a beta-sheet conformation and to self-assemble into approximately 100 A-sized ordered clusters. The formation of these clusters at the air/subphase interface was not affected by pH, salts, or the presence of sucrose or urea, which are known to stabilize or denature native proteins, suggesting that interface-driven Abeta misfolding and assembly are strongly favored. Furthermore, Abeta at the interface seeded the growth of fibrils in the bulk with a distinct morphology compared to those formed by homogeneous nucleation. Our results indicate that interface-induced Abeta misfolding may serve as a heterogeneous, nucleation-controlled aggregation mechanism for Abeta fibrillogenesis in vivo.
Collapse
|
44
|
Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 2010; 110:4820-38. [PMID: 20402519 PMCID: PMC2920034 DOI: 10.1021/cr900377t] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Ruth Nussinov
- To whom correspondence should be addressed. Tel.: (301) 846-5579. Fax: (301) 846-5598. E-mail:
| |
Collapse
|
45
|
Wallace JA, Shen JK. Probing the strand orientation and registry alignment in the propagation of amyloid fibrils. Biochemistry 2010; 49:5290-8. [PMID: 20491446 DOI: 10.1021/bi100137y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed knowledge of the structure and growth mechanism of amyloid fibrils is important for understanding the disease process. Recently, solid-state NMR and other spectroscopic data have revealed the equilibrium organization of the tertiary structure of fibrils formed by various segments of beta-amyloid peptides. A three-step "dock-and-lock" mechanism for fibril growth has been proposed on the basis of the kinetic data. Here we use all-atom replica-exchange molecular dynamics simulations in generalized-Born implicit solvent to probe the mechanism of tertiary structure propagation in fibrils of Abeta(16-22) modeled as an oligomer consisting of two beta-sheets each having four strands. The data show that following association with the oligomer, but before being fully locked onto the existing beta-sheet, the added monomer predominantly samples states with the antiparallel strand orientation, but both in- and one-residue shifted backbone hydrogen bond alignments. The in-register state, which is the experimentally observed equilibrium alignment, is marginally more stable than the registry-shifted one. These results suggest that, following the fast docking step, the added monomer dynamically slides in the backbone registry, and stabilization of the preferential alignment must occur in the second locking step as the monomer becomes fully integrated with the fibril. We also delineate the electrostatic and hydrophobic effects in directing the registry alignment during monomer addition. Surprisingly, the in-register alignment provides both increased cross-strand electrostatic attraction and hydrophobic surface burial. Finally, our data support the notion that side chain hydrophobic burial is a major driving force for beta-sheet assembly.
Collapse
Affiliation(s)
- Jason A Wallace
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
46
|
Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodríguez-Llansola F. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B 2010; 114:940-51. [PMID: 20039666 DOI: 10.1021/jp906107p] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures were used to simulate circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally (in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.
Collapse
Affiliation(s)
- I W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | | | | | | | | | | |
Collapse
|
47
|
Multi-parametric classification of Alzheimer's disease and mild cognitive impairment: The impact of quantitative magnetization transfer MR imaging. Neuroimage 2009; 48:657-67. [PMID: 19607926 DOI: 10.1016/j.neuroimage.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/21/2022] Open
|
48
|
Jun S, Gillespie JR, Shin BK, Saxena S. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils. Biochemistry 2009; 48:10724-32. [PMID: 19824649 DOI: 10.1021/bi9012935] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.
Collapse
Affiliation(s)
- Sangmi Jun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | | | | |
Collapse
|
49
|
Castelletto V, Hamley IW, Harris PJF, Olsson U, Spencer N. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. I. Morphological investigation. J Phys Chem B 2009; 113:9978-87. [PMID: 19555054 DOI: 10.1021/jp902860a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solvent-induced transition between self-assembled structures formed by the peptide AAKLVFF is studied via electron microscopy, light scattering, and spectroscopic techniques. The peptide is based on a core fragment of the amyloid beta-peptide, KLVFF, extended by two alanine residues. AAKLVFF exhibits distinct structures of twisted fibrils in water or nanotubes in methanol. For intermediate water/methanol compositions, these structures are disrupted and replaced by wide filamentous tapes that appear to be lateral aggregates of thin protofilaments. The orientation of the beta-strands in the twisted tapes or nanotubes can be deduced from X-ray diffraction on aligned stalks, as well as FT-IR experiments in transmission compared to attenuated total reflection. Strands are aligned perpendicular to the axis of the twisted fibrils or the nanotubes. The results are interpreted in light of recent results on the effect of competitive hydrogen bonding upon self-assembly in soft materials in water/methanol mixtures.
Collapse
Affiliation(s)
- V Castelletto
- Department of Chemistry, The University of Reading, Reading RG6 6AD, UK.
| | | | | | | | | |
Collapse
|
50
|
Weiss A, Abramowski D, Bibel M, Bodner R, Chopra V, DiFiglia M, Fox J, Kegel K, Klein C, Grueninger S, Hersch S, Housman D, Régulier E, Rosas HD, Stefani M, Zeitlin S, Bilbe G, Paganetti P. Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington's disease. Anal Biochem 2009; 395:8-15. [PMID: 19664996 DOI: 10.1016/j.ab.2009.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/20/2009] [Accepted: 08/03/2009] [Indexed: 11/28/2022]
Abstract
The genetic mutation causing Huntington's disease is a polyglutamine expansion in the huntingtin protein where more than 37 glutamines cause disease by formation of toxic intracellular fragments, aggregates, and cell death. Despite a clear pathogenic role for mutant huntingtin, understanding huntingtin expression during the presymptomatic phase of the disease or during disease progression has remained obscure. Central to clarifying the role in the pathomechanism of disease is the ability to easily and accurately measure mutant huntingtin in accessible human tissue samples as well as cell and animal models. Here we describe a highly sensitive time-resolved Förster resonance energy transfer (FRET) assay for quantification of soluble mutant huntingtin in brain, plasma, and cerebrospinal fluid. Surprisingly, in mice, soluble huntingtin levels decrease during disease progression, inversely correlating with brain aggregate load. Mutant huntingtin is easily detected in human brain and blood-derived fractions, providing a utility to assess mutant huntingtin expression during disease course as well as a pharmacodynamic marker for disease-modifying therapeutics targeting expression, cleavage, or degradation of mutant huntingtin. The design of the homogeneous one-step method for huntingtin detection is such that it can be easily applied to measure other proteins of interest.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|