1
|
Kadyan A, Juneja S, Pandey S. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents. J Phys Chem B 2019; 123:7578-7587. [DOI: 10.1021/acs.jpcb.9b04659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anu Kadyan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreya Juneja
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Berino RP, Báez GD, Ballerini GA, Llopart EE, Busti PA, Moro A, Delorenzi NJ. Interaction of vitamin D3 with beta-lactoglobulin at high vitamin/protein ratios: Characterization of size and surface charge of nanoparticles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Khokhar V, Guha A, Dhawan S, Trivedi S, Haridas V, Pandey S. Spectroscopic investigation of linear and branched tryptophan-containing peptides. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Beckford FA, Webb KR. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:158-171. [PMID: 28448954 DOI: 10.1016/j.saa.2017.04.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50)×104M-1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105M-1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27μM.
Collapse
Affiliation(s)
- Floyd A Beckford
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, United States.
| | - Kelsey R Webb
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, United States
| |
Collapse
|
5
|
Chakraborty B, Sengupta C, Pal U, Basu S. Acridone in a biological nanocavity: detailed spectroscopic and docking analyses of probing both the tryptophan residues of bovine serum albumin. NEW J CHEM 2017. [DOI: 10.1039/c7nj02454a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AD initially gets hooked to Trp 212 housed in domain IIA, inducing conformational changes in the protein and paving the way for the ligand to reach Trp 134 located in domain IB.
Collapse
Affiliation(s)
| | | | - Uttam Pal
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata
- India
| | - Samita Basu
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata
- India
- Homi Bhaba National Institute
| |
Collapse
|
6
|
Wang J, Zhang H, Zhang T, Zhang R, Liu R, Chen Y. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 2015; 77:59-67. [PMID: 25795390 DOI: 10.1016/j.ijbiomac.2015.02.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/23/2014] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
Cadmium contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via alterations in activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), but their molecular mechanisms remain unclear. We investigated the molecular mechanism of CAT and SOD response under Cd-induced oxidative stress in the liver of zebrafish. The enzyme activity changes observed in vitro were consistent with those seen in vivo, indicating the direct interaction of CAT and SOD with Cd contributes to their activity change in vivo. Further experiments utilizing multiple spectroscopic methods, isothermal titration calorimetry and a molecular docking study were performed to explore the mechanism of molecular interaction of CAT and SOD with Cd. Different interaction patterns were found that resulted in misfolding and changed the enzyme activities. Taken together, we suggest the misfolding of CAT and SOD contributes to their activity change under Cd-induced oxidative stress in vivo.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Hao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Tong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Rui Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Rutao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
7
|
Zhou S, Wang D, Zhang C, Zhao Y, Zhao M, Wu Y. A novel interaction mode between acrylamide and its specific antibody. J Immunoassay Immunochem 2014; 36:295-311. [PMID: 25215894 DOI: 10.1080/15321819.2014.947432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the discovery of high-level acrylamide (Acr) contamination in food, extensive international studies have focused on its toxicity and detection. By using a novel antigen synthetic strategy, we have successfully obtained a specific antibody towards acrylamide (Acr-Ab). Herein, the Acr-Ab and its interactions with Acr were characterized. Enzyme-linked immunosorbent assay (ELISA) and dynamic light scattering (DLS) investigations revealed that the conformational structure of Acr-Ab was sensitive to buffers. It showed a satisfied immunoreactivity in phosphate buffered saline (PBS), but denatured in water. In natural state, Acr-Ab had a trend of getting aggregation through their complementarity determining regions (CDRs). Adding Acr leaded to their disassembling. While mixed with Acr, Acr-Ab exhibits not only a fast, high-specific, and reversible non covalent binding (by surface plasmon resonance, SPR), but also a covalent alkylation with Acr through cysteine and histidine residues on its surface, as demonstrated by high-performance liquid chromatography (HPLC). Neither of the two reactions involves conformational change in secondary or tertiary structures as shown in circular dichroism spectra (CD). These special properties of Acr-Ab and the entirely new interaction mode with Acr will extend our knowledge of Acr related biosystem and facilitate the development of new detection strategies for Acr.
Collapse
Affiliation(s)
- Shuang Zhou
- a Beijing National Laboratory for Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering, Peking University , Beijing , China
| | | | | | | | | | | |
Collapse
|
8
|
Medina-Navarro R, Corona-Candelas I, Barajas-González S, Díaz-Flores M, Durán-Reyes G. Albumin antioxidant response to stress in diabetic nephropathy progression. PLoS One 2014; 9:e106490. [PMID: 25187963 PMCID: PMC4154714 DOI: 10.1371/journal.pone.0106490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background A new component of the protein antioxidant capacity, designated Response Surplus (RS), was recently described. A major feature of this component is the close relationship between protein antioxidant capacity and molecular structure. Oxidative stress is associated with renal dysfunction in patients with renal failure, and plasma albumin is the target of massive oxidation in nephrotic syndrome and diabetic nephropathy. The aim of the present study was to explore the albumin redox state and the RS component of human albumin isolated from diabetic patients with progressive renal damage. Methods/Principal Findings Serum aliquots were collected and albumin isolated from 125 diabetic patients divided into 5 groups according to their estimated glomerular filtration rate (GFR). In addition to clinical and biochemical variables, the albumin redox state, including antioxidant capacity, thiol group content, and RS component, were evaluated. The albumin antioxidant capacity and thiol group content were reciprocally related to the RS component in association with GFR reduction. The GFR decline and RS component were significantly negatively correlated (R = –0.83, p<0.0001). Age, creatinine, thiol groups, and antioxidant capacity were also significantly related to the GFR decline (R = –0.47, p<0.001; R = –0.68, p<0.0001; R = 0.44, p<0.001; and R = 0.72, p<0.0001). Conclusion/Significance The response of human albumin to stress in relation to the progression of diabetic renal disease was evaluated. The findings confirm that the albumin molecular structure is closely related to its redox state, and is a key factor in the progression of diabetes nephropathy.
Collapse
Affiliation(s)
- Rafael Medina-Navarro
- Department of Experimental Metabolism, Center for Biomedical Research of Michoacán (CIBIMI-IMSS), Morelia, Michoacán, México
- * E-mail:
| | - Itzia Corona-Candelas
- Department of Nephrology, General Regional Hospital N° 1, IMSS, Morelia, Michoacán, Mexico
| | - Saúl Barajas-González
- Department of Nephrology, General Regional Hospital N° 1, IMSS, Morelia, Michoacán, Mexico
| | - Margarita Díaz-Flores
- Biochemistry Medical Research Unit, National Medical Center, IMSS, México City, México
| | - Genoveva Durán-Reyes
- Biochemistry Medical Research Unit, National Medical Center, IMSS, México City, México
| |
Collapse
|
9
|
Meadows CW, Ou R, Klinman JP. Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis. J Phys Chem B 2014; 118:6049-61. [PMID: 24892947 PMCID: PMC4056859 DOI: 10.1021/jp500825x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature 1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn(2+) and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan's dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context of spatially distinct differences in enthalpic barriers for protein conformational sampling that may be related to catalysis.
Collapse
Affiliation(s)
- Corey W Meadows
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and the §California Institute for Quantitative Biosciences, University of California, Berkeley , Berkeley, California 94720, United States
| | | | | |
Collapse
|
10
|
Swartz DJ, Weber J, Urbatsch IL. P-glycoprotein is fully active after multiple tryptophan substitutions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1159-68. [PMID: 23261390 DOI: 10.1016/j.bbamem.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 01/24/2023]
Abstract
P-glycoprotein (Pgp) is an important contributor to multidrug resistance of cancer. Pgp contains eleven native tryptophans (Trps) that are highly conserved among orthologs. We replaced each Trp by a conservative substitution to determine which Trps are important for function. Individual Trp mutants W44R, W208Y, W132Y, W704Y and W851Y, situated at the membrane surface, revealed significantly reduced Pgp induced drug resistance against one or more fungicides and/or reduced mating efficiencies in Saccharomyces cerevisiae. W158F and W799F, located in the intracellular coupling helices, abolished mating but retained resistance against most drugs. In contrast, W228F and W311Y, located within the membrane, W694L, at the cytoplasmic membrane interface, and W1104Y in NBD2 retained high levels of drug resistance and mating efficiencies similar to wild-type Pgp. Those were combined into pair (W228F/W311Y and W694L/W1104Y) and quadruple (W228F/W311Y/W694L/W1104Y) mutants that were fully active in yeast, and could be purified to homogeneity. Purified pair and quad mutants exhibited drug-stimulated ATPase activity with binding affinities very similar to wild-type Pgp. The combined mutations reduced Trp fluorescence by 35%, but drug induced fluorescence quenching was unchanged from wild-type Pgp suggesting that several membrane-bound Trps are sensitive to drug binding. Overall, we conclude that Trps at the membrane surface are critical for maintaining the integrity of the drug binding sites, while Trps in the coupling helices are important for proper interdomain communication. We also demonstrate that functional single Trp mutants can be combined to form a fully active Pgp that maintains drug polyspecificity, while significantly reducing intrinsic fluorescence.
Collapse
Affiliation(s)
- Douglas J Swartz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | |
Collapse
|
11
|
Blum DJ, Ko YH, Pedersen PL. Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP. Biochemistry 2012; 51:1532-46. [DOI: 10.1021/bi201595v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Blum
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Young H. Ko
- Cancer Cure Med, LLC, 300 Redland Court, Suite 212, Owings Mills, Maryland
21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
12
|
Ojha B, Das G. The Interaction of 5-(Alkoxy)naphthalen-1-amine with Bovine Serum Albumin and Its Effect on the Conformation of Protein. J Phys Chem B 2010; 114:3979-86. [DOI: 10.1021/jp907576r] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Bimlesh Ojha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam - 781 039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam - 781 039, India
| |
Collapse
|
13
|
Weber J, Wilke-Mounts S, Nadanaciva S, Senior AE. Quantitative determination of direct binding of b subunit to F1 in Escherichia coli F1F0-ATP synthase. J Biol Chem 2004; 279:11253-8. [PMID: 14722065 DOI: 10.1074/jbc.m312576200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stator in F(1)F(0)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(0) and to the alpha(3)beta(3) hexagon of F(1). To quantitatively characterize binding of b subunit to the F(1) alpha(3)beta(3) hexagon, we developed fluorimetric assays in which wild-type F(1), or F(1) enzymes containing introduced Trp residues, were titrated with a soluble portion of the b subunit (b(ST34-156)). With five different F(1) enzymes, K(d)(b(ST34-156)) ranged from 91 to 157 nm. Binding was strongly Mg(2+)-dependent; in EDTA buffer, K(d)(b(ST34-156)) was increased to 1.25 microm. The addition of the cytoplasmic portion of the b subunit increases the affinity of binding of delta subunit to delta-depleted F(1). The apparent K(d)(b(ST34-156)) for this effect was increased from 150 nm in Mg(2+) buffer to 1.36 microm in EDTA buffer. This work demonstrates quantitatively how binding of the cytoplasmic portion of the b subunit directly to F(1) contributes to stator resistance and emphasizes the importance of Mg(2+) in stator interactions.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Joachim Weber
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
15
|
Weber J, Wilke-Mounts S, Senior AE. Quantitative determination of binding affinity of delta-subunit in Escherichia coli F1-ATPase: effects of mutation, Mg2+, and pH on Kd. J Biol Chem 2002; 277:18390-6. [PMID: 11864990 DOI: 10.1074/jbc.m201047200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the stator function in ATP synthase, a fluorimetric assay has been devised for quantitative determination of binding affinity of delta-subunit to Escherichia coli F(1)-ATPase. The signal used is that of the natural tryptophan at residue delta28, which is enhanced by 50% upon binding of delta-subunit to alpha(3)beta(3)gammaepsilon complex. K(d) for delta binding is 1.4 nm, which is energetically equivalent (50.2 kJ/mol) to that required to resist the rotor strain. Only one site for delta binding was detected. The deltaW28L mutation increased K(d) to 4.6 nm, equivalent to a loss of 2.9 kJ/mol binding energy. While this was insufficient to cause detectable functional impairment, it did facilitate preparation of delta-depleted F(1). The alphaG29D mutation reduced K(d) to 26 nm, equivalent to a loss of 7.2 kJ/mol binding energy. This mutation did cause serious functional impairment, referable to interruption of binding of delta to F(1). Results with the two mutants illuminate how finely balanced is the stator resistance function. delta' fragment, consisting of residues delta1-134, bound with the same K(d) as intact delta, showing that, at least in absence of F(o) subunits, the C-terminal domain of delta contributes zero binding energy. Mg(2+) ions had a strong effect on increasing delta binding affinity, supporting the possibility of bridging metal ion involvement in stator function. High pH environment greatly reduced delta binding affinity, suggesting the involvement of protonatable side-chains in the binding site.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
16
|
Weber J, Bijol V, Wilke-Mounts S, Senior AE. Cysteine-reactive fluorescence probes of catalytic sites of ATP synthase. Arch Biochem Biophys 2002; 397:1-10. [PMID: 11747304 DOI: 10.1006/abbi.2001.2617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We searched for new fluorescent probes of catalytic-site nucleotide binding in F(1)F(0)-ATP synthase by introducing Cys mutations at positions in or close to catalytic sites and then reacting Cys-mutant F(1) with thiol-reactive fluorescent probes. Four suitable mutant/probe combinations were identified. beta F410C labeled by 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide (ABD-F) gave very large signal changes in response to nucleotide, allowing facile measurement of fluorescence and nucleotide-binding parameters, not only in F(1) but also in F(1)F(0). The results are consistent with the presence of three asymmetric catalytic sites of widely different affinities, with similar properties in both enzymes, and revealed a unique probe environment at the high-affinity site 1. beta Y331C F(1) labeled by ABD-F gave a large signal which monitored catalytic site polarity changes that occur along the ATP hydrolysis pathway. Two other mutant/probe combinations with significant nucleotide-responsive signals were beta Y331C labeled by 5-((((2-iodoacetyl)amino)ethyl)amino)naphthaline-1-sulfonic acid and alpha F291C labeled by 2-4'-(iodoacetamido)anilino)naphthalene-6-sulfonic acid. The signal of the latter responds differentially to nucleoside diphosphate versus triphosphate bound in catalytic sites.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|