1
|
Gibi C, Liu CH, Anandan S, Wu JJ. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023; 28:7916. [PMID: 38067644 PMCID: PMC10707923 DOI: 10.3390/molecules28237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Contaminants of Emerging Concern (CECs), a new category of contaminants currently in the limelight, are a major issue of global concern. The pervasive nature of CECs and their harmful effects, such as cancer, reproductive disorders, neurotoxicity, etc., make the situation alarming. The perilous nature of CECs lies in the fact that even very small concentrations of CECs can cause great impacts on living beings. They also have a nature of bioaccumulation. Thus, there is a great need to have efficient sensors for the detection of CECs to ensure a safe living environment. Electrochemical sensors are an efficient platform for CEC detection as they are highly selective, sensitive, stable, reproducible, and prompt, and can detect very low concentrations of the analyte. Major classes of CECs are pharmaceuticals, illicit drugs, personal care products, endocrine disruptors, newly registered pesticides, and disinfection by-products. This review focusses on CECs, including their sources and pathways, health effects caused by them, and electrochemical sensors as reported in the literature under each category for the detection of major CECs.
Collapse
Affiliation(s)
- Chinchu Gibi
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Trichy 620015, India;
| | - Jerry J. Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan; (C.G.); (C.-H.L.)
| |
Collapse
|
2
|
Dong H, Cuthbertson AA, Plewa MJ, Weisbrod CR, McKenna AM, Richardson SD. Unravelling High-Molecular-Weight DBP Toxicity Drivers in Chlorinated and Chloraminated Drinking Water: Effect-Directed Analysis of Molecular Weight Fractions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18788-18800. [PMID: 37418586 DOI: 10.1021/acs.est.3c00771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
As disinfection byproducts (DBPs) are ubiquitous sources of chemical exposure in disinfected drinking water, identifying unknown DBPs, especially unknown drivers of toxicity, is one of the major challenges in the safe supply of drinking water. While >700 low-molecular-weight DBPs have been identified, the molecular composition of high-molecular-weight DBPs remains poorly understood. Moreover, due to the absence of chemical standards for most DBPs, it is difficult to assess toxicity contributions for new DBPs identified. Based on effect-directed analysis, this study combined predictive cytotoxicity and quantitative genotoxicity analyses and Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR-MS) identification to resolve molecular weight fractions that induce toxicity in chloraminated and chlorinated drinking waters, along with the molecular composition of these DBP drivers. Fractionation using ultrafiltration membranes allowed the investigation of <1 kD, 1-3 kD, 3-5 kD, and >5 kD molecular weight fractions. Thiol reactivity based predictive cytotoxicity and single-cell gel electrophoresis based genotoxicity assays revealed that the <1 kD fraction for both chloraminated and chlorinated waters exhibited the highest levels of predictive cytotoxicity and direct genotoxicity. The <1 kD target fraction was used for subsequent molecular composition identification. Ultrahigh-resolution MS identified singly charged species (as evidenced by the 1 Da spacing in 13C isotopologues), including 3599 chlorine-containing DBPs in the <1 kD fraction with the empirical formulas CHOCl, CHOCl2, and CHOCl3, with a relative abundance order of CHOCl > CHOCl2 ≫ CHOCl3. Interestingly, more high-molecular-weight CHOCl1-3 DBPs were identified in the chloraminated vs chlorinated waters. This may be due to slower reactions of NH2Cl. Most of the DBPs formed in chloraminated waters were composed of high-molecular-weight Cl-DBPs (up to 1 kD) rather than known low-molecular-weight DBPs. Moreover, with the increase of chlorine number in the high-molecular-weight DBPs detected, the O/C ratio exhibited an increasing trend, while the modified aromaticity index (AImod) showed an opposite trend. In drinking water treatment processes, the removal of natural organic matter fractions with high O/C ratio and high AImod value should be strengthened to minimize the formation of known and unknown DBPs.
Collapse
Affiliation(s)
- Huiyu Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing 100085, People's Republic of China
| | - Amy A Cuthbertson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Fang C, Luan X, Ao F, Wang X, Ding S, Du Z, Liu S, Jia R, Chu W. Decomposition of Total Organic Halogen Formed during Chlorination: The Iceberg of Halogenated Disinfection Byproducts Was Previously Underestimated. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1433-1442. [PMID: 36626160 DOI: 10.1021/acs.est.2c03596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Total organic halogen (TOX) is widely used as a surrogate bulk parameter to measure the overall exposure of halogenated disinfection byproducts (DBPs) in drinking water. In this study, we surprisingly found that the level of TOX in chlorinated waters had been significantly underestimated under common analytical conditions. After the addition of quenching agent sodium thiosulfate, total organic chlorine and total organic bromine exhibited a two-phase decomposition pattern with increasing contact time, and a significant decomposition was observed for different types of quenching agents, quenching doses, and pH conditions. More importantly, the decomposed TOX closely correlated with the acute toxicity of quenched water against luminous bacteria, implying that the DBPs responsible for TOX decomposition could be of important toxicological significance. Based on nontarget analysis by using high-resolution mass spectrometry, molecular formulas for the decomposed TOX were determined. After re-examining the mass balance of TOX in the context of unintentional decomposition, it was found that both the level and percentage of unknown TOX in chlorinated waters were considerably higher than historically thought. Overall, this study brings new insights into the knowledge of TOX formed during chlorination, providing important clues on the identification of toxicity driver in drinking water.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feiyang Ao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shushen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Ye S, Tan X, Yang H, Xiong J, Zhu H, Song H, Chen G. Catalytic removal of attached tetrabromobisphenol A from microplastic surface by biochar activating oxidation and its impact on potential of disinfection by-products formation. WATER RESEARCH 2022; 225:119191. [PMID: 36215841 DOI: 10.1016/j.watres.2022.119191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
There are numerous studies concerning the impacts of widespread microplastic pollution on the ecological environment, and it shows synergistic effect of microplastics and co-exposed pollutants in risk enhancement. However, the control methods for removing harmful pollutants from microplastic surface to reduce their ecological toxicity has rarely been explored. In this paper, magnetic graphitized biochar as a catalyst is shown to achieve 97% removal of tetrabromobisphenol A (TBBPA) from microplastics by biochar mediated electron transfer. The changes in the surface and structure of microplastics caused by various aging processes affected the pollutant attachment and subsequent removal efficiency. After chlorination, the highest disinfection by-product (DBP) generation potential was observed by the group of microplastics attached with TBBPA. The oxidation system of biochar activating peroxodisulfate (PDS) can not only reduce the kinds of DBPs, but also greatly reduce the total amount of detected DBPs by 76%, as well as reducing the overall toxicity. This paper highlights an overlooked contribution of pollutant attachment to the potential risks of DBP generated from natural microplastics during chlorination process, and provides the underlying insights to guide the design of a biochar-based catalyst from wastes to achieve the removal of TBBPA from microplastics and reduce the risks and hazards of co-contamination.
Collapse
Affiliation(s)
- Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, PR China
| |
Collapse
|
5
|
Chen J, Dai C, Zhu Y, Gao Y, Chu W, Gao N, Wang Q. Degradation of sulfadiazine by UV/Oxone: roles of reactive oxidative species and the formation of disinfection byproducts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54407-54420. [PMID: 35301631 DOI: 10.1007/s11356-022-18764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Sulfadiazine (SDZ) is a typical persistent sulfonamide antibiotic, which has been widely detected in natural drinking water sources. The degradation of SDZ by UV/Oxone (potassium monopersulfate compound) was explored in this study. The results showed that Cl- can effectively activate PMS to promote rapid degradation of SDZ in the Oxone process by forming chlorine in the system. Radical quenching tests suggested that radical oxidation, including HO•, SO4•-, and reactive chlorine species (RCS), played an important role by UV/Oxone. It further verified that concentration and distribution of HO•, SO4•-, and RCS were pH-dependent; RCS act as a major contributor at pH 6.0 and pH 7.0 to degrade SDZ in this process. The SDZ degradation rate was firstly increased and then decreased by Cl- and HCO3- (0-10 mM); HA (0-10 mg L-1) exhibited insignificant influence on SDZ degradation. The degradation pathways of SDZ during UV/Oxone and formation pathways of five disinfection byproducts during subsequent chlorination were proposed. The possible DBP precursors formed by SO2 extrusion, hydroxylation, and chlorination of SDZ during UV/Oxone pre-oxidation.
Collapse
Affiliation(s)
- Juxiang Chen
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830017, China
| | - Caiqiong Dai
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830017, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yuqiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201600, China
| |
Collapse
|
6
|
Liu C, Shin YH, Wei X, Ersan MS, Wagner E, Plewa MJ, Amy G, Karanfil T. Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1244-1256. [PMID: 34962797 DOI: 10.1021/acs.est.1c04823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing occurrence of harmful algal blooms (HABs) in surface waters may increase the input of algal organic matter (AOM) in drinking water. The formation of halogenated disinfection byproducts (DBPs) during combined chlorination and chloramination of AOM and natural organic matter (NOM) in the presence of bromide and iodide and haloform formation during halogenation of model compounds were studied. Results indicated that haloform/halogen consumption ratios of halogens reacting with amino acids (representing proteins present in AOM) follow the order iodine > bromine > chlorine, with ratios for iodine generally 1-2 orders of magnitude greater than those for chlorine (0.19-2.83 vs 0.01-0.16%). This indicates that iodine is a better halogenating agent than chlorine and bromine. In contrast, chlorine or bromine shows higher ratios for phenols (representing the phenolic structure of humic substances present in NOM). Consistent with these observations, chloramination of AOM extracted from Microcystis aeruginosa in the presence of iodide produced 3 times greater iodinated trihalomethanes than those from Suwannee River NOM isolate. Cytotoxicity and genotoxicity of disinfected algal-impacted waters evaluated by Chinese hamster ovary cell bioassays both follow the order chloramination > prechlorination-chloramination > chlorination. This trend is in contrast to additive toxicity calculations based on the concentrations of measured DBPs since some toxic iodinated DBPs were not identified and quantified, suggesting the necessity of experimentally analyzing the toxicity of disinfected waters. During seasonal HAB events, disinfection practices warrant optimization for iodide-enriched waters to reduce the toxicity of finished waters.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - Young-Hwan Shin
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Bioenvironmental Engineering, Daewoo Institute of Construction Technology, Suwon-si, Gyeonggi-do 16297, South Korea
| | - Xiao Wei
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Elizabeth Wagner
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gary Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| |
Collapse
|
7
|
Allen JM, Plewa MJ, Wagner ED, Wei X, Bokenkamp K, Hur K, Jia A, Liberatore HK, Lee CFT, Shirkhani R, Krasner SW, Richardson SD. Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:392-402. [PMID: 34910457 DOI: 10.1021/acs.est.1c07998] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.
Collapse
Affiliation(s)
- Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Wei
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyu Hur
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ai Jia
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chih-Fen T Lee
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Raha Shirkhani
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Stuart W Krasner
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Fang C, Yang X, Ding S, Luan X, Xiao R, Du Z, Wang P, An W, Chu W. Characterization of Dissolved Organic Matter and Its Derived Disinfection Byproduct Formation along the Yangtze River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12326-12336. [PMID: 34297564 DOI: 10.1021/acs.est.1c02378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Yangtze River basin covers one-fifth of China's land area and serves as a water source for one-third of China's population. During long-distance water transport from upstream to downstream, various sources of dissolved organic matter (DOM) lead to considerable variation in DOM properties, significantly impacting water treatability and disinfection byproduct (DBP) formation after chlorination. Using size-exclusion chromatography and fluorescence spectroscopy, the spatial variation in DOM characteristics was comprehensively investigated on a basin scale. The formation of 36 DBPs and speciated total organic halogen in chlorinated samples was determined. Overall, the Yangtze River waters featured a high proportion of terrestrially derived humic substances that served as important precursors for trihalomethanes and haloacetic acids, which was responsible for the increase in total DBP formation along the Yangtze River. The downstream waters were characterized by high levels of microbially derived protein-like biopolymers, which significantly contributed to the formation of haloacetaldehydes and haloacetonitriles that dominated DBP-associated mammalian cell cytotoxicity. Moreover, the precursors of haloacetaldehydes and haloacetonitriles in downstream waters were highly hydrophilic, posing a challenge for water treatment. This study presents an extensive basin-scale study, providing insights into DOM variations along the Yangtze River, illustrating the impact of DOM properties on drinking water from a DBP perspective.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Xu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
9
|
Medlock Kakaley E, Cardon MC, Evans N, Iwanowicz LR, Allen JM, Wagner E, Bokenkamp K, Richardson SD, Plewa MJ, Bradley PM, Romanok KM, Kolpin DW, Conley JM, Gray LE, Hartig PC, Wilson VS. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144750. [PMID: 33736315 PMCID: PMC8085790 DOI: 10.1016/j.scitotenv.2020.144750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17β-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.
Collapse
Affiliation(s)
- Elizabeth Medlock Kakaley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America.
| | - Mary C Cardon
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Nicola Evans
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Rd, Kearneysville, WV 25430, United States of America
| | - Joshua M Allen
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Elizabeth Wagner
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Katherine Bokenkamp
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Susan D Richardson
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Michael J Plewa
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Paul M Bradley
- U.S. Geological Survey, South Carolina Water Science Center, 720 Gracern Rd, Columbia, SC 29210, United States of America
| | - Kristin M Romanok
- U.S. Geological Survey, Water Science Center, 3450 Princeton Pike, Lawrenceville, NJ 08648, United States of America
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S Clinton St Room 269, Iowa City, IA 52240, United States of America
| | - Justin M Conley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - L Earl Gray
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Phillip C Hartig
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Vickie S Wilson
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| |
Collapse
|
10
|
Kurajica L, Ujević Bošnjak M, Kinsela AS, Štiglić J, Waite TD, Capak K, Pavlić Z. Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144159. [PMID: 33360458 DOI: 10.1016/j.scitotenv.2020.144159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Field studies were conducted in a Croatian city supplied by two distinct groundwater sources (referred to as A and B) to investigate both the effects of changing water source on the water quality in the drinking water supply system, as well as to further understand discoloration events that occurred in city locations that switched water from source A to B. The water treatment processes at site A were found to alter organic matter (OM) characteristics, removing humic substances while enhancing protein-derived (tryptophan) content. Although the humic-like component predominated in raw waters, microbially/protein-derived components were found to increase throughout the distribution networks of both systems. Disinfection byproducts (DBPs) such as total trihalomethane (TTHM) and total haloacetic acid (THAA) were prevalent in water distribution system (WDS)-A, which correlated with elevated OM content as well as re-chlorination with hypochlorite (NaOCl). Our field study revealed that THMs were more readily formed than HAAs during ClO2 treatment. Unsurprisingly, chlorite concentrations were generally higher than chlorate concentrations during ClO2 treatment, whereas (secondary) NaOCl disinfection contributed to higher chlorate production. Principal component analysis indicated that variable pH values and humic-like OM could affect Mn, As and Al concentrations at the consumer's tap. Our results suggested that although Mn concentrations complied with regulations at WDS-B and were below 50 μg/L after disinfection, Mn was oxidized and formed particulate Mn oxides capable of causing discoloration events depending on prevailing network physico-chemical and hydraulic conditions. Aluminium also appears to be released during hydraulic disturbances from extensive deposits within the network. Thermodynamic calculations showed that Mn-oxidation was strongly dependent upon the ORP, and to lesser extent the pH value. Collectively, our results confirm that ensuring the provision of safe drinking waters to consumers requires an understanding of water quality across entire distribution networks in addition to any routine post-treatment monitoring.
Collapse
Affiliation(s)
- L Kurajica
- Croatian Institute of Public Health, Rockefeller street 7, 10000 Zagreb, Croatia
| | - M Ujević Bošnjak
- Croatian Institute of Public Health, Rockefeller street 7, 10000 Zagreb, Croatia.
| | - A S Kinsela
- Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - J Štiglić
- Croatian Institute of Public Health, Rockefeller street 7, 10000 Zagreb, Croatia
| | - T D Waite
- Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - K Capak
- Croatian Institute of Public Health, Rockefeller street 7, 10000 Zagreb, Croatia
| | - Z Pavlić
- Slavonski Brod Water Supply Company, Nikole Zrinskog 25, 35000 Slavonski Brod, Croatia
| |
Collapse
|
11
|
DeMarini DM, Warren SH, Smith WJ, Richardson SD, Liberatore HK. Inability of GSTT1 to activate iodinated halomethanes to mutagens in Salmonella. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:168-176. [PMID: 33484035 PMCID: PMC8051615 DOI: 10.1002/em.22423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 05/30/2023]
Abstract
Drinking water disinfection by-products (DBPs), including the ubiquitous trihalomethanes (THMs), are formed during the treatment of water with disinfectants (e.g., chlorine, chloramines) to produce and distribute potable water. Brominated THMs (Br-THMs) are activated to mutagens via glutathione S-transferase theta 1 (GSTT1); however, iodinated THMs (I-THMs) have never been evaluated for activation by GSTT1. Among the I-THMs, only triiodomethane (iodoform) has been tested previously for mutagenicity in Salmonella and was positive (in the absence of GSTT1) in three strains (TA98, TA100, and BA13), all of which have error-prone DNA repair (pKM101). We evaluated five I-THMs (chlorodiiodomethane, dichloroiodomethane, dibromoiodomethane, bromochloroiodomethane, and triiodomethane) for mutagenicity in Salmonella strain RSJ100, which expresses GSTT1, and its homologue TPT100, which does not; neither strain has pKM101. We also evaluated chlorodiiodo-, dichloroiodo-, and dibromoiodo-methanes in strain TA100 +/- rat liver S9 mix; TA100 has pKM101. None was mutagenic in any of the strains. The I-THMs were generally more cytotoxic than their brominated and chlorinated analogues but less cytotoxic than analogous trihalonitromethanes tested previously. All five I-THMs showed similar thresholds for cytotoxicity at ~2.5 μmoles/plate, possibly due to release of iodine, a well-known antimicrobial. Although none of these I-THMs was activated by GSTT1, iodoform appears to be the only I-THM that is mutagenic in Salmonella, only in strains deficient in nucleotide excision repair (uvrB) and having pKM101. Given that only iodoform is mutagenic among the I-THMs and is generally present at low concentrations in drinking water, the I-THMs likely play little role in the mutagenicity of drinking water.
Collapse
Affiliation(s)
- David M. DeMarini
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sarah H. Warren
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Hannah K. Liberatore
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Wang H, Ma D, Shi W, Yang Z, Cai Y, Gao B. Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:102. [PMID: 33457041 PMCID: PMC7797181 DOI: 10.1007/s11783-021-1389-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning offouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1-14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-021-1389-3 and is accessible for authorized users.
Collapse
Affiliation(s)
- Hao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Weiye Shi
- No.1 Institute of Geology and Mineral Resources of Shandong Province, Jinan, 250014 China
- Shandong Engineering Laboratory for High-Grade Fe Ores Exploration and Exploitation, Jinan, 250014 China
| | - Zhiyu Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Yun Cai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| |
Collapse
|
13
|
Zhou Z, Zhang X, Zhang T, Ma W, Fang X. UV-activated peroxymonosulfate for haloacetamides degradation: Kinetics and reaction pathways. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1842756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhen Zhou
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing Special Engineering Design and Research Institute, Beijing, China
| | | | - Tong Zhang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing Special Engineering Design and Research Institute, Beijing, China
| | - Wen Ma
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing Special Engineering Design and Research Institute, Beijing, China
| | - Xiaojun Fang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing Special Engineering Design and Research Institute, Beijing, China
| |
Collapse
|
14
|
Tao D, Wang R, Shi S, Yun L, Tong R, Peng Y, Guo W, Liu Y, Hu S. The identification of halogenated disinfection by-products in tap water using liquid chromatography-high resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139888. [PMID: 32563866 DOI: 10.1016/j.scitotenv.2020.139888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
In this paper, a comprehensive method for the identification of the unknown halogenated DBPs (X-DBPs, X = Cl, Br, and I) in the tap water of Wuhan, China via liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed. 123 X-DBPs were identified through the stepwise procedure, 94 of them were newly identified, and 3 of them were confirmed by standards. Most X-DBPs were aliphatic compounds and highly unsaturated and phenolic compounds, some X-DBPs contained multiple halogen atoms and rich in carboxyl groups, such as C2H2O2BrCl, C2H2O2Br2, and C2H2O2ClI. It was worth noting that the concentration of some X-DBPs had the same trend with time. Most Cl-DBPs remained stable and I-DBPs were detected occasionally by monitoring the change of concentration of these X-DPBs with the time during three consecutive months. The results demonstrate that the proposed method could provide valuable molecular formula and structure information on unknown multiple halogenated DBPs, or be used for the identification of other multiple halogenated organic compounds in different media.
Collapse
Affiliation(s)
- Danyang Tao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rong Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Si Shi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Lifen Yun
- BGI Genomics BGI-Shenzhen, Shenzhen 518083, PR China
| | - Rui Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yanfeng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
15
|
Liu Z, Xu B, Lin YL, Zhang TY, Ye T, Hu CY, Lu YS, Cao TC, Tang YL, Gao NY. Mechanistic study on chlorine/nitrogen transformation and disinfection by-product generation in a UV-activated mixed chlorine/chloramines system. WATER RESEARCH 2020; 184:116116. [PMID: 32750585 DOI: 10.1016/j.watres.2020.116116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The conversion mechanisms of chlorine species (including free chlorine, monochloramine (NH2Cl), dichloramine, and total chlorine), nitrogen species (including ammonium (NH4+), nitrate (NO3-), and nitrite (NO2-)) as well as the formation of disinfection by-products (DBPs) in a UV-activated mixed chlorine/chloramines system in water were investigated in this work. The consumption rates of free chlorine and NH2Cl were significantly promoted in a HOCl/NH2Cl coexisting system, especially in the presence of UV irradiation. Moreover, the transformation forms of nitrogen in both ultrapure and HA-containing waters were considerably affected by UV irradiation and the mass ratio of free chlorine to NH2Cl. NO3- and NO2- can be easily produced under UV irradiation, and the removal efficiency of total nitrogen with UV was obvious higher than that without UV when the initial ratio of HOCl/NH2Cl was less than 1. The roles of different radicals in the degradation of free chlorine, NH2Cl and NH4+ were also considered in such a UV-activated mixed chlorine/chloramines system. The results indicated that OH• was important to the consumption of free chlorine and NH2Cl, and showed negligible influence on the consumption of NH4+. Besides, the changes of DOC and UV254 in HA-containing water in UV-activated mixed chlorine/chloramines system indicated that the removal efficiency of DOC (24%) was much lower than that of UV254 (94%). The formation of DBPs in a mixed chlorine/chloramines system was also evaluated. The yields of DBPs decreased significantly as the mass ratio of HOCl/NH2Cl varied from 1 : 0 to 0 : 1. Moreover, compared to the conditions without UV irradiation, higher DBPs yields and DBP-associated calculated toxicity were observed during the UV-activated mixed chlorine/chloramine process.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tao Ye
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195, United States
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Yong-Shan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
16
|
Tian D, Moe B, Huang G, Jiang P, Ling ZC, Li XF. Cytotoxicity of Halogenated Tyrosyl Compounds, an Emerging Class of Disinfection Byproducts. Chem Res Toxicol 2020; 33:1028-1035. [PMID: 32200635 DOI: 10.1021/acs.chemrestox.0c00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Halogenated amino acids and peptides are an emerging class of disinfection byproducts (DBPs), having been detected in drinking water and in washed food products. However, the toxicological significance of these emerging DBPs remains unclear. In this study, the cytotoxicity of eight halogenated tyrosyl compounds was investigated in Chinese hamster ovary (CHO) cells using real-time cell analysis (RTCA). Dihalogenated tyrosyl compounds are more cytotoxic than their monohalogenated analogues. The cytotoxicity of the dihalogenated compounds is associated with their ability to induce intracellular reactive oxygen species (ROS), suggesting that oxidative stress is an important toxicity pathway of these compounds. Pearson correlation analysis of the cytotoxicity (IC50 values) of these compounds with eight physicochemical parameters showed strong associations with their lipophilicity (logP) and reactivity (polarizability, ELUMO). Finally, cytotoxicity testing of the concentrated extracts of a chloraminated mixture of eight dipeptides with bromide or iodide showed the cytotoxicity of these mixtures in the order: iodinated peptides > brominated peptides ≥ chlorinated peptides. These results demonstrate that halogenated peptide DBPs are toxicologically relevant, and further research is needed to understand the implications of long-term exposure for human health.
Collapse
Affiliation(s)
- Dayong Tian
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.,College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.,Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, CanadaT2N 4N1
| | - Guang Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Ping Jiang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Zong-Chao Ling
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, CanadaT2N 4N1
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
17
|
Liu Z, Lin YL, Xu B, Hu CY, Zhang TY, Cao TC, Pan Y, Gao NY. Degradation of diiodoacetamide in water by UV/chlorination: Kinetics, efficiency, influence factors and toxicity evaluation. CHEMOSPHERE 2020; 240:124761. [PMID: 31546190 DOI: 10.1016/j.chemosphere.2019.124761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The formation and control of haloacetamides (HAcAms) in drinking water have raised high attention due to their high genotoxicity and cytotoxicity, especially the most cytotoxic one, diiodoacetamide (DIAcAm). In this study, the degradation of DIAcAm by UV/chlorination was investigated in terms of degradation kinetics, efficiency, influencing factors, oxidation products and toxicity evaluation. Results revealed that the degradation of DIAcAm by UV/chlorine process followed pseudo-first-order kinetics, and the rate constant between DIAcAm and OH radicals was determined as 2.8 × 109 M-1 s-1. The contribution of Cl to DIAcAm degradation by UV/chlorine oxidation was negligible. Increasing chlorine dosage and decreasing pH significantly promoted the DIAcAm degradation during UV/chlorine oxidation, but the presence of bicarbonate (HCO3-) and natural organic matter (NOM) inhibited it. The mass balance analysis of iodine species was also evaluated during UV/chlorine oxidation of DIAcAm. In this process, with DIAcAm decreasing from 16.0 to 0.8 μM-I in 20 min, IO3-, I- and HOI/I2 increased from 0 to 6.3, 6.1 and 0.5 μM-I, respectively. The increase of CHO cell viability during DIAcAm degradation indicated that the toxicity of DIAcAm could be decreased by chlorination, UV irradiation and UV/chlorine oxidation treatments, in which UV/chlorine oxidation was more effective on toxicity reduction than chlorination and UV irradiation alone.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
18
|
Atwood ST, Lunn RM, Garner SC, Jahnke GD. New Perspectives for Cancer Hazard Evaluation by the Report on Carcinogens: A Case Study Using Read-Across Methods in the Evaluation of Haloacetic Acids Found as Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:125003. [PMID: 31854200 PMCID: PMC6957284 DOI: 10.1289/ehp5672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Due to the large number of chemicals not yet tested for carcinogenicity but to which people are exposed, the limited number of human and animal cancer studies conducted each year, and the frequent need for a timely response, mechanistic data are playing an increasingly important role in carcinogen hazard identification. OBJECTIVES To provide a targeted approach to identify relevant mechanistic data in our cancer evaluation of haloacetic acids (HAAs), we used several approaches including systematic review, the 10 key characteristics of carcinogens (KCs), and read-across methods. Our objective in this commentary is to discuss the strengths, limitations, and challenges of these approaches in a cancer hazard assessment. METHODS A cancer hazard assessment for 13 HAAs found as water disinfection by-products was conducted. Literature searches for mechanistic studies focused on the KCs and individual HAAs. Studies were screened for relevance and categorized by KCs and other relevant data, including chemical properties, toxicokinetics, and biological effects other than KCs. Mechanistic data were organized using the KCs, and strength of evidence was evaluated; this information informed potential modes of action (MOAs) and read-across-like approaches. Three read-across options were considered: evaluating HAAs as a class, as subclass(es), or as individual HAAs (analog approach). DISCUSSION Because of data limitations and uncertainties, listing as a class or subclass(es) was ruled out, and an analog approach was used. Two brominated HAAs were identified as target (untested) chemicals based on their metabolism and similarity to source (tested) chemicals. In addition, four HAAs with animal cancer data had sufficient evidence for potential listing in the Report on Carcinogens (RoC). This is the first time that the KCs and other relevant data, in combination with read-across principles, were used to support a recommendation to list chemicals in the RoC that did not have animal cancer data. https://doi.org/10.1289/EHP5672.
Collapse
Affiliation(s)
- Stanley T Atwood
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Ruth M Lunn
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| | - Sanford C Garner
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Gloria D Jahnke
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Ding S, Deng Y, Li H, Fang C, Gao N, Chu W. Coagulation of Iodide-Containing Resorcinol Solution or Natural Waters with Ferric Chloride Can Produce Iodinated Coagulation Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12407-12415. [PMID: 31553594 DOI: 10.1021/acs.est.9b03671] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iodinated disinfection byproducts (I-DBPs) are of particular concern in drinking water due to the more cytotoxic and genotoxic properties than their chlorinated and brominated analogs. Formation of I-DBP primarily results from the oxidation of iodide-containing waters with various oxidants and the chlor(am)ination of iodinated organic compounds in drinking water. This study first reports that ferric chloride (FeCl3) can lead to the formation of iodinated coagulation byproducts (I-CBPs) from iodide-containing resorcinol solution or natural waters. The unwanted I-CBP formation involved the oxidation of iodide by ferric ions to generate various reactive iodine species, which further oxidize organic compounds. Although the oxidation rate of iodide by FeCl3 was several orders of magnitude slower than that by chlorine or chloramine, most of the converted iodide under the ferric/iodide system was transformed into iodine and iodinated organic compounds rather than iodate. Formation of four aliphatic I-CBPs was observed, and four aromatic I-CBPs were identified by gas chromatography mass-spectrometry and theoretical calculation. Coagulation of iodide-containing waters with FeCl3 also produced I-CBPs ranging from 12.5 ± 0.8 to 32.5 ± 0.2 μg/L as I. These findings call for careful consideration of the formation of I-CBPs from coagulation of iodide-containing waters with ferric salts.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Yang Deng
- Department of Earth and Environmental Studies , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Hongwei Li
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| |
Collapse
|
20
|
Procházka E, Melvin SD, Escher BI, Plewa MJ, Leusch FD. Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:117006. [PMID: 31755747 PMCID: PMC6927499 DOI: 10.1289/ehp4945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.
Collapse
Affiliation(s)
- Erik Procházka
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
21
|
Zeng Z, Fang X, Miao W, Liu Y, Maiyalagan T, Mao S. Electrochemically Sensing of Trichloroacetic Acid with Iron(II) Phthalocyanine and Zn-Based Metal Organic Framework Nanocomposites. ACS Sens 2019; 4:1934-1941. [PMID: 31268302 DOI: 10.1021/acssensors.9b00894] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid and accurate determination of disinfection byproducts (DBPs) has become an emerging need for environmental monitoring and has yet to be realized in electrochemical sensors with metal organic framework (MOF)-based materials. In this study, a highly sensitive electrochemical sensor for trichloroacetic acid (TCAA) detection based on iron(II) phthalocyanine (PcFe) and a Zn-based metal organic framework (ZIF-8) composite is fabricated. As an electrode material, ZIF-8 possesses a large surface area and porous structure, which exhibits high absorbability; meanwhile, PcFe (II), as the sensing element, undergoes a reduction process from PcFe (II) to PcFe (I) during the sensing process. In the presence of TCAA, PcFe (I) is reoxidized by TCAA, which shifts the reaction equilibrium and accelerates the electron transfer on the electrode interface. By analyzing the reduction current of PcFe (II), the quantitative detection of TCAA is realized. The sensor shows a limit of detection (LOD) of 1.89 nM, which is superior to other reported TCAA sensors, as well as a high sensitivity (826 μΑ/μM). Moreover, the good selectivity and stability of this sensing platform demonstrate its capability and promise in determination of trace DBPs. The reported sensor provides a new strategy for electrochemical detection of DBPs and could expand the applications of MOFs in emerging technologies for monitoring contaminants.
Collapse
Affiliation(s)
- Zhongrun Zeng
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xian Fang
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Wei Miao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Ying Liu
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Thandavarayan Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Shun Mao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
22
|
Vachon J, Pagé-Larivière F, Sirard MA, Rodriguez MJ, Levallois P, Campagna C. Availability, Quality, and Relevance of Toxicogenomics Data for Human Health Risk Assessment: A Scoping Review of the Literature on Trihalomethanes. Toxicol Sci 2018; 163:364-373. [PMID: 29514332 DOI: 10.1093/toxsci/kfy050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Human health risk assessment (HHRA) must be adapted to the challenges of the 21st century, and the use of toxicogenomics data in HHRA is among the changes that regulatory agencies worldwide are trying to implement. However, the use of toxicogenomics data in HHRA is still limited. The purpose of this study was to explore the availability, quality, and relevance to HHRA of toxicogenomics publications as potential barriers to their use in HHRA. We conducted a scoping review of available toxicogenomics literature, using trihalomethanes as a case study. Four bibliographic databases (including the Comparative Toxicogenomics Database) were assessed. An evaluation table was developed to characterize quality and relevance of studies included on the basis of criteria proposed in the literature. Studies were selected and analyzed by 2 independent reviewers. Only 9 studies, published between 1997 and 2015, were included in the analysis. Based on the selected criteria, critical methodological details were often missing; in fact, only 3 out of 9 studies were considered to be of adequate quality for HHRA. No studies met >3 (out of 7) criteria of relevance to HHRA (eg, adequate number of doses and sample size). This first scoping review of toxicogenomics publications on trihalomethanes shows that low availability, quality, and relevance to HHRA of toxicogenomics publications presents potential barriers to their use in HHRA. Improved reporting of methodological details and study design is needed in the future so that toxicogenomics studies can be appropriately assessed regarding their quality and value for HHRA.
Collapse
Affiliation(s)
- Julien Vachon
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
| | - Florence Pagé-Larivière
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada G1V 0A6
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Québec, Québec, Canada G1V 0A6
| | - Marc-André Sirard
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada G1V 0A6
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Québec, Québec, Canada G1V 0A6
| | - Manuel J Rodriguez
- École Supérieure d'Aménagement du Territoire et de Développement Régional, Université Laval, Québec, Québec, Canada G1V 0A6
- Chaire de Recherche CRSNG en Eau Potable, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Patrick Levallois
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Québec, Québec, Canada G1S 4L8
| | - Céline Campagna
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| |
Collapse
|
23
|
Massalha N, Dong S, Plewa MJ, Borisover M, Nguyen TH. Spectroscopic Indicators for Cytotoxicity of Chlorinated and Ozonated Effluents from Wastewater Stabilization Ponds and Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3167-3174. [PMID: 29359929 DOI: 10.1021/acs.est.7b05510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated chronic mammalian cell cytotoxicity of wastewaters from four sources and their optical spectroscopic properties with or without chlorination or ozonation. Samples from effluents of activated sludge, nitrification tower, facultative waste stabilization pond, and maturation waste stabilization pond were either chlorinated or ozonated. The wastewater samples were analyzed for fluorescence excitation emission matrix, specific fluorescence index (SFI), and specific UV absorbance at 254 nm (SUVA). Before and after disinfection the wastewater samples were quantitatively analyzed for in vitro mammalian cell cytotoxicity. We found that the organic extracts from the ozonated samples induced lower cytotoxicity responses than those from the chlorinated or the nondisinfected samples. To develop correlations between SFI, SUVA, and cytotoxicity, we analyzed 21 independent samples. Significant linear correlations found among these samples suggest that under the tested conditions, cytotoxicity was preferentially influenced by the fluorescence and SUVA of their composite organic agents. These two spectroscopic parameters may be used as indicators for the potential cytotoxicity of nondisinfected, ozonated, or chlorinated municipal wastewaters.
Collapse
Affiliation(s)
| | | | | | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences , The Volcani Center , A.R.O., P.O. Box 15159 , RishonLeZion 7505101 , Israel
| | | |
Collapse
|
24
|
Wang W, Qian Y, Li J, Aljuhani N, Siraki AG, Le XC, Li XF. Characterization of Mechanisms of Glutathione Conjugation with Halobenzoquinones in Solution and HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2898-2908. [PMID: 29420883 DOI: 10.1021/acs.est.7b05945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Halobenzoquinones (HBQs) are a class of emerging disinfection byproducts. Chronic exposure to chlorinated drinking water is potentially associated with an increased risk of human bladder cancer. HBQ-induced cytotoxicity involves depletion of cellular glutathione (GSH), but the underlying mechanism remains unclear. Here we used ultrahigh performance liquid chromatography-high resolution mass spectrometry and electron paramagnetic resonance spectroscopy to study interactions between HBQs and GSH and found that HBQs can directly react with GSH, forming various glutathionyl conjugates (HBQ-SG) in both aqueous solution and HepG2 cells. We found that the formation of HBQ-SG varies with the initial molar ratio of GSH to HBQ in reaction mixtures. Higher molar ratios of GSH to HBQ facilitate the conjugation of more GSH molecules to an HBQ molecule. We deduced the reaction mechanism between GSH and HBQs, which involves redox cycling-induced formation of halosemiquinone (HSQ) free radicals and glutathione disulfide, Michael addition, as well as nucleophilic substitution. The proposed reaction rates are in the following order: formation of HSQ radicals > substitution of bromine by GSH > Michael addition of GSH on the benzoquinone ring > substitution of chlorine by GSH > substitution of the methyl group by GSH. The conjugates identified in HBQ-treated HepG2 cells were the same as those found in aqueous solution containing a 5:1 ratio of GSH:HBQs.
Collapse
Affiliation(s)
- Wei Wang
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Yichao Qian
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Naif Aljuhani
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
- Department of Chemistry, Faculty of Science , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| |
Collapse
|
25
|
Reducing DBPs formation in chlorination of Br-containing Diclofenac via Fe-Cu-MCM-41/O3 peroxidation: Efficiency, characterization DBPs precursors and mechanism. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Disinfection Byproducts in Drinking Water and Evaluation of Potential Health Risks of Long-Term Exposure in Nigeria. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017; 2017:7535797. [PMID: 28900447 PMCID: PMC5576402 DOI: 10.1155/2017/7535797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 01/29/2023]
Abstract
Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950 μg/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10-2 mg/kg-day), while the ingestion in children (3.99 × 10-2 mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level.
Collapse
|
27
|
Dong S, Lu J, Plewa MJ, Nguyen TH. Comparative Mammalian Cell Cytotoxicity of Wastewaters for Agricultural Reuse after Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11752-11759. [PMID: 27689387 DOI: 10.1021/acs.est.6b04796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reusing wastewater in agriculture is becoming increasingly common, which necessitates disinfection to ensure reuse safety. However, disinfectants can react with wastewater constituents to form disinfection byproducts (DBPs), many of which are toxic and restrict the goal of safe reuse. Our objective was to benchmark the induction of mammalian cell cytotoxicity after ozonation against chlorination for three types of real wastewaters: municipal secondary effluent and two sources of minimally treated swine farm wastewaters. A new method to evaluate samples of suspected high cytotoxicity was devised. For the secondary effluent, ozonation reduced the cytotoxicity by as much as 10 times; chlorination lowered the cytotoxicity only when followed by dechlorination. The swine farm wastewaters were up to 2000 times more cytotoxic than the secondary effluent, and the highest reduction in cytotoxicity was 17 times as achieved by ozonation. These results indicate that secondary effluent is preferred over swine wastewaters for agricultural reuse regardless of the tested disinfectants. Ozonation consistently reduced the cytotoxicity of both the full strength and the organic extracts of all tested wastewaters more than chlorination. The only significant correlation was observed in the secondary wastewater between total haloacetonitriles and cytotoxicity. While the association of reduced toxicity with the modification or reduction of specific compound(s) is unclear, regulated DBPs may not be the primary forcing agents.
Collapse
Affiliation(s)
- Shengkun Dong
- Department of Civil and Environmental Engineering, §Department of Crop Sciences, ‡Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- College of Environmental Science and Engineering, ⊥Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300350, P. R. China
| | - Jinfeng Lu
- Department of Civil and Environmental Engineering, §Department of Crop Sciences, ‡Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- College of Environmental Science and Engineering, ⊥Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300350, P. R. China
| | - Michael J Plewa
- Department of Civil and Environmental Engineering, §Department of Crop Sciences, ‡Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- College of Environmental Science and Engineering, ⊥Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300350, P. R. China
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, §Department of Crop Sciences, ‡Safe Global Water Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- College of Environmental Science and Engineering, ⊥Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300350, P. R. China
| |
Collapse
|
28
|
Krasner SW, Lee TCF, Westerhoff P, Fischer N, Hanigan D, Karanfil T, Beita-Sandí W, Taylor-Edmonds L, Andrews RC. Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9583-91. [PMID: 27467860 DOI: 10.1021/acs.est.6b02508] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.
Collapse
Affiliation(s)
- Stuart W Krasner
- Metropolitan Water District of Southern California, Water Quality, La Verne, California 91750, United States
| | - Tiffany Chih Fen Lee
- Metropolitan Water District of Southern California, Water Quality, La Verne, California 91750, United States
| | - Paul Westerhoff
- Arizona State University , School of Sustainable Engineering and the Built Environment, Tempe, Arizona 85259-3005, United States
| | - Natalia Fischer
- Arizona State University , School of Sustainable Engineering and the Built Environment, Tempe, Arizona 85259-3005, United States
| | - David Hanigan
- University of Nevada , Department of Civil and Environmental Engineering, Reno, Nevada 89557-0258, United States
| | - Tanju Karanfil
- Clemson University , Department of Environmental Engineering and Earth Sciences, Anderson, South Carolina 29625, United States
| | - Wilson Beita-Sandí
- Clemson University , Department of Environmental Engineering and Earth Sciences, Anderson, South Carolina 29625, United States
- University of Costa Rica , Research Center of Environmental Pollution (CICA), San José, Costa Rica 2060, and
| | - Liz Taylor-Edmonds
- University of Toronto , Department of Civil Engineering, Toronto, Ontario Canada , M5S 1A4
| | - Robert C Andrews
- University of Toronto , Department of Civil Engineering, Toronto, Ontario Canada , M5S 1A4
| |
Collapse
|
29
|
Yan M, Li M, Han X. Behaviour of I/Br/Cl-THMs and their projected toxicities under simulated cooking conditions: Effects of heating, table salt and residual chlorine. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:105-112. [PMID: 27107240 DOI: 10.1016/j.jhazmat.2016.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/22/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
This study examined the effects of heating, residual chlorine and concentration of table salt on the generation of iodine-, bromine- and chlorine-containing trihalomethanes (THMs) under simulated cooking conditions. In the case of addition of either KI- or KIO3-fortified salt, total I-THM concentrations increased with increasing iodine concentration, while total Cl/Br-THM concentrations decreased. CHCl2I, CHBrClI, CHBrI2, CHBr2I and CHI3 were formed in the presence of KI salt, while only CHCl2I was formed in the presence of KIO3 salt. CHCl2I was unstable under cooking conditions, and >90% of this DBP was removed during heating, which in some cases increased the concentrations of the other I-THMs. The calculated cytotoxicity increased with addition of KI- or KIO3-fortified salt due to the generation of I-THMs, whose impact on the cytotoxicity at room temperature was equal to or five times higher, respectively, than the cytotoxicity of the simultaneously formed Cl/Br-THMs for the cases of salts. Heating decreased the cytotoxicity, except for the case of addition of KI salt, in which the calculated cytotoxicity of I-THMs increased above 150% as the temperature was increased up to 100°C. The reported results may have important implications for epidemiologic exposure assessments and, ultimately, for public health protection.
Collapse
Affiliation(s)
- Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Mingyang Li
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xuze Han
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|