1
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
2
|
Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. J Mol Biol 2018; 430:4619-4635. [DOI: 10.1016/j.jmb.2018.06.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
|
3
|
Selig O, Cunha AV, van Eldijk MB, van Hest JCM, Jansen TLC, Bakker HJ, Rezus YLA. Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. J Phys Chem B 2018; 122:8243-8254. [PMID: 30067028 PMCID: PMC6143280 DOI: 10.1021/acs.jpcb.8b05221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue.
Collapse
Affiliation(s)
- Oleg Selig
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University
Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry Kranenveld, Eindhoven University of Technology, Building 14, 5600 MB Eindhoven, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Huib J. Bakker
- FOM
institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Weißheit S, Kahse M, Kämpf K, Tietze A, Vogel M, Winter R, Thiele CM. Elastin-like Peptide in Confinement: FT-IR and NMR T
1 Relaxation Data. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We employed FT-IR and NMR experiments to investigate the influence of a cell-mimicking crowding environment on the structure and dynamics of an elastin-like peptide (ELP) with the sequence GVG(VPGVG)3, which – due to a high number of hydrophobic amino acid side chains – exhibits an inverse temperature transition (ITT). As simplified crowding agent, we used 30 wt% Ficoll. The FT-IR data revealed the well-known broad ITT above ~25°C, as observed by the decrease of the relative population of random coil structures and the concomitant increase of type II β-turns. Interestingly, the addition of Ficoll leads to a destabilizing effect of type II β-turn structures. This is in contrast to the expected excluded-volume effect of the macromolecular crowder, but can be explained by weak interactions of the peptide with the polysaccharide chains of the crowding agent. Further, the crowding agent leads to the onset of a reversal of the folding transition at high temperatures. The full assignment of the ELP allowed for a residue-specific investigation of the dynamic behavior of ELP by NMR. Due to a strong change of microscopic viscosity between native/buffered conditions and crowded conditions, relaxation data remain inconclusive with respect to the observation of an ITT. Hence, no quantitative details in terms of internal conformational changes can be obtained. However, temperature dependent differences in the 13C relaxation behavior between core and terminal parts of the peptide indicate temperature induced changes in the internal dynamics with generally higher internal mobility at chain ends: This is in full agreement with FT-IR data. In harmony with the FT-IR analysis, macromolecular crowding does not lead to significant changes in the relaxation behavior.
Collapse
Affiliation(s)
- Susann Weißheit
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Marie Kahse
- Physical Chemistry I – Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , TU Dortmund University, Otto-Hahn-Str. 4a , 44227 Dortmund , Germany
| | - Kerstin Kämpf
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Alesia Tietze
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Michael Vogel
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , TU Dortmund University, Otto-Hahn-Str. 4a , 44227 Dortmund , Germany
| | - Christina Marie Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| |
Collapse
|
5
|
Tarakanova A, Huang W, Weiss AS, Kaplan DL, Buehler MJ. Computational smart polymer design based on elastin protein mutability. Biomaterials 2017; 127:49-60. [DOI: 10.1016/j.biomaterials.2017.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
|
6
|
Singh S, Demco DE, Rahimi K, Fechete R, Rodriguez-Cabello JC, Möller M. Aggregation behaviour of biohybrid microgels from elastin-like recombinamers. SOFT MATTER 2016; 12:6240-6252. [PMID: 27378252 DOI: 10.1039/c6sm00954a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Investigation of the aggregation behavior of biohybrid microgels, which can potentially be used as drug carriers, is an important topic, because aggregation not only causes loss of activity, but also toxicity and immunogenicity. To study this effect we synthesized microgels from elastin-like recombinamers (ELRs) using the miniemulsion technique. The existence of aggregation for such biohybrid microgels at different concentrations and temperatures was studied by different methods which include dynamic light scattering (DLS), (1)H high-resolution magic angle sample spinning (HRMAS) NMR spectroscopy, relaxometry and diffusometry. A hysteresis effect was detected in the process of aggregation by DLS as a function of temperature that strongly depends on ELR microgel concentration. The aggregation process was further quantitatively analyzed by the concentration dependence of the (1)H amino-acid residue chemical shifts and microgel diffusivity measured by NMR methods using the population balance kinetic aggregation model.
Collapse
Affiliation(s)
- Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Dan Eugen Demco
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany. and Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH-Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|
7
|
Goto M, Endo T. High-molecular-weight poly(Gly-Val-Gly-Val-Pro) synthesis through microwave irradiation. J Pept Sci 2016; 22:452-60. [PMID: 27352997 DOI: 10.1002/psc.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/06/2022]
Abstract
In this study, we synthesized a polypeptide from its pentapeptide unit using microwave irradiation. Effective methods for polypeptide synthesis from unit peptides have not been reported. Here, we used a key elastin peptide, H-GlyValGlyValPro-OH (GVGVP), as the monomer peptide. It is difficult to obtain poly(Gly-Val-Gly-Val-Pro) (poly(GVGVP)) from the pentapeptide unit of elastin, GVGVP, via polycondensation. Poly(GVGVP) prepared from genetically recombinant Escherichia coli is a well-known temperature-sensitive polypeptide, and this temperature sensitivity is known as the lower critical solution temperature. When microwave irradiation was performed in the presence of various additives, the pentapeptide (GVGVP) polycondensation reaction proceeded smoothly, resulting in a product with a high molecular weight in a relatively good yield. The reaction conditions, like microwave irradiation, coupling agents, and solvents, were optimized to increase the reaction efficiency. The product exhibited a molecular weight greater than Mr 7000. Further, the product could be synthesized on a gram scale. The synthesized polypeptide exhibited a temperature sensitivity that was similar to that of poly(GVGVP) prepared from genetically recombinant E. coli. Therefore, this technique offers a facile and quick approach to prepare polypeptides in large amounts. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mitsuaki Goto
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820-8555, Japan
| |
Collapse
|
8
|
Singh S, Demco DE, Rahimi K, Fechete R, Rodriguez‐Cabello JC, Möller M. Coacervation of Elastin‐Like Recombinamer Microgels. Macromol Rapid Commun 2015; 37:181-6. [DOI: 10.1002/marc.201500457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Smriti Singh
- DWI‐Leibniz‐Institute for Interactive Materials, e.V. RWTH‐Aachen University Forckenbeckstraße 50 D‐52074 Aachen Germany
| | - Dan Eugen Demco
- DWI‐Leibniz‐Institute for Interactive Materials, e.V. RWTH‐Aachen University Forckenbeckstraße 50 D‐52074 Aachen Germany
- Department of Physics and Chemistry Technical University of Cluj‐Napoca 25 G. Baritiu Str. RO‐400027 Cluj‐Napoca Romania
| | - Khosrow Rahimi
- DWI‐Leibniz‐Institute for Interactive Materials, e.V. RWTH‐Aachen University Forckenbeckstraße 50 D‐52074 Aachen Germany
| | - Radu Fechete
- Department of Physics and Chemistry Technical University of Cluj‐Napoca 25 G. Baritiu Str. RO‐400027 Cluj‐Napoca Romania
| | | | - Martin Möller
- DWI‐Leibniz‐Institute for Interactive Materials, e.V. RWTH‐Aachen University Forckenbeckstraße 50 D‐52074 Aachen Germany
| |
Collapse
|
9
|
Roberts S, Dzuricky M, Chilkoti A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett 2015; 589:2477-86. [PMID: 26325592 PMCID: PMC4599720 DOI: 10.1016/j.febslet.2015.08.029] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023]
Abstract
Elastin-like polypeptides (ELPs) are a class of stimuli-responsive biopolymers inspired by the intrinsically disordered domains of tropoelastin that are composed of repeats of the VPGXG pentapeptide motif, where X is a "guest residue". They undergo a reversible, thermally triggered lower critical solution temperature (LCST) phase transition, which has been utilized for a variety of applications including protein purification, affinity capture, immunoassays, and drug delivery. ELPs have been extensively studied as protein polymers and as biomaterials, but their relationship to other disordered proteins has heretofore not been established. The biophysical properties of ELPs that lend them their unique material behavior are similar to the properties of many intrinsically disordered proteins (IDP). Their low sequence complexity, phase behavior, and elastic properties make them an interesting "minimal" artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs. Motivated by this emerging realization of the similarities between ELPs and IDPs, this review discusses the biophysical properties of ELPs, their biomedical utility, and their relationship to other disordered polypeptide sequences.
Collapse
|
10
|
Huber MC, Schreiber A, von Olshausen P, Varga BR, Kretz O, Joch B, Barnert S, Schubert R, Eimer S, Kele P, Schiller SM. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. NATURE MATERIALS 2015; 14:125-32. [PMID: 25362355 DOI: 10.1038/nmat4118] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/22/2014] [Indexed: 05/24/2023]
Abstract
Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Collapse
Affiliation(s)
- Matthias C Huber
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany
| | - Andreas Schreiber
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Biology, University of Freiburg, Schänzlestrasse 1 D-79085 Freiburg, Germany
| | - Philipp von Olshausen
- 1] Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 102 D-79110 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Balázs R Varga
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2 H-1117 Budapest, Hungary
| | - Oliver Kretz
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Barbara Joch
- Institute for Neuroanatomy University of Freiburg, Albertstr. 17 D-79104 Freiburg, Germany
| | - Sabine Barnert
- 1] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [2] Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Hermann-Herder-Str. 9 D-79104 Freiburg, Germany
| | - Rolf Schubert
- 1] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [2] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany [3] Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Hermann-Herder-Str. 9 D-79104 Freiburg, Germany
| | - Stefan Eimer
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany
| | - Péter Kele
- Chemical Biology Research Group, Hungarian Academy of Sciences, CNS, IOC, Magyar tudósok krt. 2 H-1117 Budapest, Hungary
| | - Stefan M Schiller
- 1] Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31 D-79104 Freiburg, Germany [2] Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25 D-79104 Freiburg, Germany [3] Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19 D-79104 Freiburg, Germany [4] Faculty of Chemistry and Pharmacy, University of Freiburg, Fahnenbergplatz D-79104 Freiburg, Germany [5] Faculty of Biology, University of Freiburg, Schänzlestrasse 1 D-79085 Freiburg, Germany [6] BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18 D-79104 Freiburg, Germany [7] IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103 D-79110 Freiburg, Germany [8] Center for Biosystems Analysis (ZBSA), University of Freiburg, Habsburger Str. 49 D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Balaceanu A, Singh S, Demco DE, Möller M. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Lin Y, Xia X, Wang M, Wang Q, An B, Tao H, Xu Q, Omenetto F, Kaplan DL. Genetically programmable thermoresponsive plasmonic gold/silk-elastin protein core/shell nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4406-4414. [PMID: 24712906 PMCID: PMC4002124 DOI: 10.1021/la403559t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/23/2014] [Indexed: 05/29/2023]
Abstract
The design and development of future molecular photonic/electronic systems pose the challenge of integrating functional molecular building blocks in a controlled, tunable, and reproducible manner. The modular nature and fidelity of the biosynthesis method provides a unique chemistry approach to one-pot synthesis of environmental factor-responsive chimeric proteins capable of energy conversion between the desired forms. In this work, facile tuning of dynamic thermal response in plasmonic nanoparticles was facilitated by genetic engineering of the structure, size, and self-assembly of the shell silk-elastin-like protein polymers (SELPs). Recombinant DNA techniques were implemented to synthesize a new family of SELPs, S4E8Gs, with amino acid repeats of [(GVGVP)4(GGGVP)(GVGVP)3(GAGAGS)4] and tunable molecular weight. The temperature-reversible conformational switching between the hydrophilic random coils and the hydrophobic β-turns in the elastin blocks were programmed to between 50 and 60 °C by site-specific glycine mutation, as confirmed by variable-temperature proton NMR and circular dichroism (CD) spectroscopy, to trigger the nanoparticle aggregation. The dynamic self-aggregation/disaggregation of the Au-SELPs nanoparticles was regulated in size and pattern by the β-sheet-forming, thermally stable silk blocks, as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The thermally reversible, shell dimension dependent, interparticle plasmon coupling was investigated by both variable-temperature UV-vis spectroscopy and finite-difference time-domain (FDTD)-based simulations. Good agreement between the calculated and measured spectra sheds light on design and synthesis of responsive plasmonic nanostructures by independently tuning the refractive index and size of the SELPs through genetic engineering.
Collapse
Affiliation(s)
- Yinan Lin
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiaoxia Xia
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiaotong University, 800 Dong-chuan Road, Shanghai 200240, China
| | - Ming Wang
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Qianrui Wang
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Bo An
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Hu Tao
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fiorenzo Omenetto
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Bochicchio B, Laurita A, Heinz A, Schmelzer CEH, Pepe A. Investigating the role of (2S,4R)-4-hydroxyproline in elastin model peptides. Biomacromolecules 2013; 14:4278-88. [PMID: 24127724 DOI: 10.1021/bm4011529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modifications play a key role in defining the biological functions of proteins. Among them, the hydroxylation of proline producing the (2S,4R)-4-hydroxyproline (Hyp) is one of the most frequent modifications observed in vertebrates, being particularly abundant in the proteins of the extracellular matrix. In collagen, hydroxylation of proline plays a critical role, conferring the correct structure and mechanical strength to collagen fibers. In elastin, the exact role of this modification is not yet understood. Here we show that Hyp-containing elastin polypeptides have flexible molecular structures, analogously to proline-containing polypeptides. In turn, the self-assembly of the elastin peptides is significantly altered by the presence of Hyp, evidencing different supramolecular structures. Also the in vitro susceptibility to protease digestion is changed. These findings give a better insight into the elastic fiber formation and degradation processes in the extracellular matrix. Furthermore, our results could contribute in defining the subtle role of proline structural variants in the folding and self-assembly of elastin-inspired peptides, helping the rational design of elastin biomaterials.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Department of Science, University of Basilicata , Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | | | | | | | | |
Collapse
|
14
|
Kurzbach D, Hassouneh W, McDaniel JR, Jaumann EA, Chilkoti A, Hinderberger D. Hydration layer coupling and cooperativity in phase behavior of stimulus responsive peptide polymers. J Am Chem Soc 2013; 135:11299-308. [PMID: 23822733 PMCID: PMC4167343 DOI: 10.1021/ja4047872] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is shown that hydrophilic (backbone) and hydrophobic (side chain) hydration layers of elastin-like polypeptides (ELPs), a class of stimulus responsive peptide polymers that exhibit lower critical solution temperature (LCST) phase transition behavior, can exist in a coupled and decoupled state. The decoupled hydration state consists of hydrophobic and hydrophilic hydration layers that respond independently to temperature, while the coupled hydration state is characterized by a common, cooperative dehydration of both hydration layers. It is further shown that the primary sequence of an ELP can be tuned to exhibit either of the hydration layer coupling modes. Charged side chains lead to decoupling, while strongly hydrophobic side chains trigger stronger interaction between hydrophilic and hydrophobic hydration, leading to coupling of both layers. Further, for aprotic residues this coupling is fostered by decreasing bulkiness of hydrophobic side chains due to larger hydration numbers and water molecules mediating coupling between side chain and backbone hydration shells. For coupled hydration shells, the LCST phase transition characterized by spin probing continuous wave electron paramagnetic resonance spectroscopy is reminiscent of a first-order process even on nanoscopic length scales. In contrast, analogous synthetic polymers exhibit nanoscale phase transitions over a broad temperature range, indicating that their nanoscale phase behavior is not of first order. Hence, our results indicate that ELPs are the first identified class of polymers that exhibit a first-order inverse phase transition on nanoscopic length scales. These results may also provide insights into the role of hydration layers in governing the structure-function relationship of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Dennis Kurzbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wafa Hassouneh
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708-0281, USA
| | - Jonathan R. McDaniel
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708-0281, USA
| | - Eva A. Jaumann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708-0281, USA
| | - Dariush Hinderberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
15
|
Abstract
Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
16
|
Kopeček J, Yang J. “Intelligente” Biomaterialien durch Selbstorganisation von Hybridhydrogelen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Ohgo K, Niemczura WP, Seacat BC, Wise SG, Weiss AS, Kumashiro KK. Resolving nitrogen-15 and proton chemical shifts for mobile segments of elastin with two-dimensional NMR spectroscopy. J Biol Chem 2012; 287:18201-9. [PMID: 22474297 DOI: 10.1074/jbc.m111.285163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, one- and two-dimensional NMR experiments are applied to uniformly (15)N-enriched synthetic elastin, a recombinant human tropoelastin that has been cross-linked to form an elastic hydrogel. Hydrated elastin is characterized by large segments that undergo "liquid-like" motions that limit the efficiency of cross-polarization. The refocused insensitive nuclei enhanced by polarization transfer experiment is used to target these extensive, mobile regions of this protein. Numerous peaks are detected in the backbone amide region of the protein, and their chemical shifts indicate the completely unstructured, "random coil" model for elastin is unlikely. Instead, more evidence is gathered that supports a characteristic ensemble of conformations in this rubber-like protein.
Collapse
Affiliation(s)
- Kosuke Ohgo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cirulis JT, Keeley FW. Kinetics and Morphology of Self-Assembly of an Elastin-like Polypeptide Based on the Alternating Domain Arrangement of Human Tropoelastin. Biochemistry 2010; 49:5726-33. [DOI: 10.1021/bi100468v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judith T. Cirulis
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Fred W. Keeley
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| |
Collapse
|
19
|
Aseyev V, Tenhu H, Winnik FM. Non-ionic Thermoresponsive Polymers in Water. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_57] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Glaves R, Baer M, Schreiner E, Stoll R, Marx D. Conformational Dynamics of Minimal Elastin-Like Polypeptides: The Role of Proline Revealed by Molecular Dynamics and Nuclear Magnetic Resonance. Chemphyschem 2008; 9:2759-65. [DOI: 10.1002/cphc.200800474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Rodríguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Ribeiro A. Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2007; 18:269-86. [PMID: 17471765 DOI: 10.1163/156856207779996904] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elastin-like recombinant protein polymers are a new family of polymers which are captivating the attention of a broad audience ranging from nanotechnologists to biomaterials and more basic scientists. This is due to the extraordinary confluence of different properties shown by this kind of material that are not found together in other polymer systems. Elastin-like polymers are extraordinarily biocompatible, acutely smart and show uncommon self-assembling capabilities. Additionally, they are highly versatile, since these properties can be tuned and expanded in many different ways by substituting the amino acids of the dominating repeating peptide or by inserting, in the polymer architecture, (bio)functional domains extracted from other natural proteins or de novo designs. Recently, the potential shown by elastin-like polymers has, in addition, been boosted and amplified by the use of recombinant DNA technologies. By this means, complex molecular designs and extreme control over the amino-acid sequence can be attained. Nowadays, the degree of complexity and control shown by the elastin-like protein polymers is well beyond the reach of even the most advanced polymer chemistry technologies. This will open new possibilities in obtaining synthetic advanced bio- and nanomaterials. This review explores the present development of elastin-like protein polymers, with a particular emphasis for biomedical uses, along with some future directions that this field will likely explore in the near future.
Collapse
Affiliation(s)
- J Carlos Rodríguez-Cabello
- BIOFORGE group, Dpto. Física de la Materia Condensada, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
22
|
Pechar M, Brus J, Kostka L, Konák C, Urbanová M, Slouf M. Thermoresponsive self-assembly of short elastin-like polypentapeptides and their poly(ethylene glycol) derivatives. Macromol Biosci 2007; 7:56-69. [PMID: 17238231 DOI: 10.1002/mabi.200600196] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Short polypeptides with four pentad repeats, (VPGVG)(4) and (VPAVG)(4), were synthesised by manual fluorenylmethoxycarbonyl/tert-butyl (Fmoc/t-Bu) solid phase peptide synthesis using a convergent approach. In the next step, the peptides were coupled via their N-terminus with activated semi-telechelic poly(ethylene glycol) O-(N-Fmoc-2-aminoethyl)-O'-(2-carboxyethyl)undeca(ethylene glycol) (Fmoc-PEG-COOH) to yield monodisperse Fmoc-PEG-peptide diblock copolymer. Both the presence of the terminal hydrophobic Fmoc group and the hydrophilic PEG chain in the copolymers were shown to play a crucial role in their self-associative behaviour, leading to reversible formation of supramolecular thermoresponsive assemblies. The peptides and their PEG derivatives were characterised by HPLC, NMR and MALDI-TOF MS. The associative behaviour of the peptides and their PEG derivatives was studied by dynamic light scattering, MAS NMR and phase contrast microscopy. [image: see text]
Collapse
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, 162 06 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Kim W, Conticello VP. Protein Engineering Methods for Investigation of Structure-Function Relationships in Protein-Based Elastomeric Materials. POLYM REV 2007. [DOI: 10.1080/15583720601109586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Dyksterhuis LB, Baldock C, Lammie D, Wess TJ, Weiss AS. Domains 17–27 of tropoelastin contain key regions of contact for coacervation and contain an unusual turn-containing crosslinking domain. Matrix Biol 2007; 26:125-35. [PMID: 17129717 DOI: 10.1016/j.matbio.2006.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/19/2006] [Accepted: 10/11/2006] [Indexed: 11/27/2022]
Abstract
The central region of tropoelastin including domains 19-25 of human tropoelastin forms a hot-spot for contacts during the inter-molecular association of tropoelastin by coacervation [Wise, S.G., Mithieux, S.M., Raftery, M.J. and Weiss, A.S (2005). "Specificity in the coacervation of tropoelastin: solvent exposed lysines." Journal of Structural Biology 149: 273-81.]. We explored the physical properties of this central region using a sub-fragment bordered by domains 17-27 of human tropoelastin (SHEL 17-27) and identified the intra- and inter-molecular contacts it forms during coacervation. A homobifunctional amine reactive crosslinker (with a maximum reach of 11 A, corresponding to approximately 7 residues in an extended polypeptide chain) was used to capture these contacts and crosslinked regions were identified after protease cleavage and mass spectrometry (MS) with MS/MS verification. An intermolecular crosslink formed between the lysines at positions 353 of each strand of tropoelastin at the lowest of crosslinker concentrations and was observed in all samples tested, suggesting that this residue forms an important initial contact during coacervation. At higher crosslinker concentrations, residues K425 and K437 showed the highest levels of involvement in crosslinks. An intramolecular crosslink between these K425 and K437, separated by 11 residues, indicated that a structural bend must serve to bring these residues into close proximity. These studies were complemented by small angle X-ray scattering studies that confirmed a bend in this important subfragment of the tropoelastin molecule.
Collapse
Affiliation(s)
- L B Dyksterhuis
- School of Molecular and Microbial Biosciences, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
25
|
D'Souza AJM, Hart DS, Middaugh CR, Gehrke SH. Characterization of the Changes in Secondary Structure and Architecture of Elastin−Mimetic Triblock Polypeptides during Thermal Gelation. Macromolecules 2006. [DOI: 10.1021/ma060915j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajit Joseph M. D'Souza
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - David S. Hart
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - C. Russell Middaugh
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - Stevin H. Gehrke
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
26
|
Baer M, Schreiner E, Kohlmeyer A, Rousseau R, Marx D. Inverse Temperature Transition of a Biomimetic Elastin Model: Reactive Flux Analysis of Folding/Unfolding and Its Coupling to Solvent Dielectric Relaxation. J Phys Chem B 2006; 110:3576-87. [PMID: 16494413 DOI: 10.1021/jp054805a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inverse temperature transition (ITT) of a biomimetic model for elastin, capped GVG(VPGVG) in liquid water, is investigated by a comprehensive classical molecular dynamics study. The temperature dependence of the solvation structure and dynamics of the octapeptide are compared using three common force fields, CHARMM, GROMOS, and OPLS. While these force fields differ in quantitative detail, they all predict this octapeptide to undergo a "folding transition" to closed conformations upon heating and a subsequent "unfolding transition" to open conformations at still higher temperatures, thus reproducing the ITT scenario. The peptide kinetics is analyzed within the reactive flux formalism applied to the largest-amplitude mode extracted from principal component analysis, and the solvent's dielectric fluctuations are obtained from the total water dipole autocorrelations. Most importantly, preliminary evidence for an intimate coupling of peptide folding/unfolding dynamics, and thus the ITT, and dielectric relaxation of bulk water is given, possibly being consistent with a "slave mode" picture.
Collapse
Affiliation(s)
- Marcel Baer
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
27
|
Kurková D, Kříž J, Rodríguez-Cabello JC, Arias FJ. NMR study of the cooperative behavior of thermotropic model polypeptides. POLYM INT 2006. [DOI: 10.1002/pi.2117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Junger A, Kaufmann D, Scheibel T, Weberskirch R. Biosynthesis of an Elastin-Mimetic Polypeptide with Two Different Chemical Functional Groups within the Repetitive Elastin Fragment. Macromol Biosci 2005; 5:494-501. [PMID: 15948226 DOI: 10.1002/mabi.200400213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new protein engineering strategy was utilized to synthesize an elastin-mimetic polypeptide. The primary structure represents an elastic motif composed of thirty amino acids with one lysine and one glutamic acid per repeat unit EMM = (VPGVG VPGKG VGPVG VPGVG VPGEG VPGIG). The gene was constructed using a Seamless Cloning method by generating three DNA cassettes which all encoded the EMM repeat unit, but with different flanking restriction recognition sites. The DNA cassettes were assembled to yield a gene that could be directly cloned into the multiple cloning site of pBluescript II SK+. The resulting gene (EMM)(7) with approximately 650 base pairs in length was further cloned into the expression vector pET-28b. Protein biosynthesis in E. coli strain BLR(DE3) resulted in the 21.5 kDa repeating polypeptide His(6)-(EMM)(7) yielding up to 50 mg . L(-1) of cell culture. Secondary structure analysis by far UV circular dichroism revealed a minimum at 197 nm and a shoulder at 218 nm indicative for a random coil with some type II beta-turn conformation content. Lower critical solution temperature (LCST) behavior strongly depends on salt and polypeptide concentration. Importantly, first cross-linking experiments indicate successful hydrogel formation with a surface structure reminiscent to natural elastin as visualized by SEM micrographs.
Collapse
Affiliation(s)
- Andreas Junger
- TU München, Lehrstuhl für Makromolekulare Stoffe, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
29
|
Ohgo K, Ashida J, Kumashiro KK, Asakura T. Structural Determination of an Elastin-Mimetic Model Peptide, (Val-Pro-Gly-Val-Gly)6, Studied by 13C CP/MAS NMR Chemical Shifts, Two-Dimensional off Magic Angle Spinning Spin-Diffusion NMR, Rotational Echo Double Resonance, and Statistical Distribution of Torsion Angles from Protein Data Bank. Macromolecules 2005. [DOI: 10.1021/ma050052e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kosuke Ohgo
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, Varian Technologies Japan Ltd., Minato, Tokyo 108-0023, Japan, and Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822
| | - Jun Ashida
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, Varian Technologies Japan Ltd., Minato, Tokyo 108-0023, Japan, and Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822
| | - Kristin K. Kumashiro
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, Varian Technologies Japan Ltd., Minato, Tokyo 108-0023, Japan, and Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, Varian Technologies Japan Ltd., Minato, Tokyo 108-0023, Japan, and Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822
| |
Collapse
|
30
|
Schmidt P, Dybal J, Rodriguez-Cabello JC, Reboto V. Role of Water in Structural Changes of Poly(AVGVP) and Poly(GVGVP) Studied by FTIR and Raman Spectroscopy and ab Initio Calculations. Biomacromolecules 2005; 6:697-706. [PMID: 15762632 DOI: 10.1021/bm049461t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two elastin-like poly(pentapeptides), poly(AV1GV2P) and poly(G1V1G2V2P), have been studied in water and in solid state by ATR FTIR and Raman spectroscopy in combination with model ab initio calculations. In aqueous solutions below the transition temperature T(t), a part of the amide groups and of the methyl groups of both polypentapeptides interacts with neighboring water molecules, whereas the other part of amide groups mutually interacts forming a beta-sheetlike structure. Below T(t), poly(AV1GV2P) is dissolved more perfectly, and the water shells around the polymer chains are more closely structured. The suspension of poly(AV1GV2P) formed above T(t) is more compact and, on cooling, resists more to the reverse dissolution, whereas the suspension of poly(G1V1G2V2P) contains more water molecules bound to the carbonyl of amide groups and on backward cooling dissolves fairly reversibly. The measured poly(pentapeptides) tend to form beta-turns due to the conformational transition on the residue between P and V1.
Collapse
Affiliation(s)
- Pavel Schmidt
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
31
|
Morihara Y, Ogata SI, Kamitakahara M, Ohtsuki C, Tanihara M. Thermosensitive gel formation of novel polypeptides containing a collagen-derived Pro-Hyp-Gly sequence and an elastin-derived Val-Pro-Gly-Val-Gly sequence. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/pola.21097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Schreiner E, Nicolini C, Ludolph B, Ravindra R, Otte N, Kohlmeyer A, Rousseau R, Winter R, Marx D. Folding and unfolding of an elastinlike oligopeptide: "inverse temperature transition," reentrance, and hydrogen-bond dynamics. PHYSICAL REVIEW LETTERS 2004; 92:148101. [PMID: 15089575 DOI: 10.1103/physrevlett.92.148101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Indexed: 05/24/2023]
Abstract
The temperature-dependent behavior of a solvated oligopeptide, GVG(VPGVG), is investigated. Spectroscopic measurements, thermodynamic measurements, and molecular dynamics simulations find that this elastinlike octapeptide behaves as a two-state system that undergoes an "inverse temperature" folding transition and reentrant unfolding close to the boiling point of water. A molecular picture of these processes is presented, emphasizing changes in the dynamics of hydrogen bonding at the protein/water interface and peptide backbone librational entropy.
Collapse
Affiliation(s)
- Eduard Schreiner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rousseau R, Schreiner E, Kohlmeyer A, Marx D. Temperature-dependent conformational transitions and hydrogen-bond dynamics of the elastin-like octapeptide GVG(VPGVG): a molecular-dynamics study. Biophys J 2004; 86:1393-407. [PMID: 14990469 PMCID: PMC1303977 DOI: 10.1016/s0006-3495(04)74210-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/12/2003] [Indexed: 11/24/2022] Open
Abstract
A joint experimental/theoretical investigation of the elastin-like octapeptide GVG(VPGVG) was carried out. In this article a comprehensive molecular-dynamics study of the temperature-dependent folding and unfolding of the octapeptide is presented. The current study, as well as its experimental counterpart (see companion article in this issue) find that this peptide undergoes an inverse temperature transition (ITT), leading to a folding at approximately 40-60 degrees C. In addition, an unfolding transition is identified at unusually high temperatures approaching the normal boiling point of water. Due to the small size of the system, two broad temperature regimes are found: the ITT regime at approximately 10-60 degrees C and the unfolding regime at approximately T > 60 degrees C, where the peptide has a maximum probability of being folded at T approximately 60 degrees C. A detailed molecular picture involving a thermodynamic order parameter, or reaction coordinate, for this process is presented along with a time-correlation function analysis of the hydrogen-bond dynamics within the peptide as well as between the peptide and solvating water molecules. Correlation with experimental evidence and ramifications on the properties of elastin are discussed.
Collapse
Affiliation(s)
- Roger Rousseau
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
Elastin-like polymers are a new family of proteinaceous polymers. In these polymers converge a wide set of interesting properties that difficultly can be found together in other polymers. They are extremely biocompatible and show an acute smart and self-assembling behaviour. The increasing in complexity of the molecular design renders polymers showing combination of functionalities and complex performance. This is specially true nowadays where, taking into account their peptide nature, these polymers can be produced as recombinant proteins in genetically modified (micro)organisms. The absolute control and absence of randomness in the primary structure makes possible the realization of multifunctional polymers that can combine physical, chemical and biological functions in a desired fashion. It can be said that the molecular design is mainly limited by imagination and not by technique. This chapter is intended to show the molecular parameters that explain the smart behaviour finally observed and how the increase in complexity of the molecular designs leads to a richer behaviour of the polymer, as a way to show the enormous potential of this family in the development of advanced materials and systems for biomedicine and nanotechnology for the next decades.
Collapse
Affiliation(s)
- J Carlos Rodriguez-Cabello
- Department of Condensed Matter Physics (BIOFORGE Group). E.T.S.I.I., University of Valladolid, Paseo del Cauce s/n, 47011-Valladolid, Spain
| |
Collapse
|
35
|
Reguera J, Lagarón JM, Alonso M, Reboto V, Calvo B, Rodríguez-Cabello JC. Thermal Behavior and Kinetic Analysis of the Chain Unfolding and Refolding and of the Concomitant Nonpolar Solvation and Desolvation of Two Elastin-like Polymers. Macromolecules 2003. [DOI: 10.1021/ma034572q] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|