1
|
Yang H, Liu X, Meigooni M, Zhang L, Ren J, Chen Q, Losego M, Tajkhorshid E, Moore JS, Schroeder CM. Amino Acid Sequence Controls Enhanced Electron Transport in Heme-Binding Peptide Monolayers. ACS CENTRAL SCIENCE 2025; 11:612-621. [PMID: 40290146 PMCID: PMC12022913 DOI: 10.1021/acscentsci.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025]
Abstract
Metal-binding proteins have the exceptional ability to facilitate long-range electron transport in nature. Despite recent progress, the sequence-structure-function relationships governing electron transport in heme-binding peptides and protein assemblies are not yet fully understood. In this work, the electronic properties of a series of heme-binding peptides inspired by cytochrome bc 1 are studied using a combination of molecular electronics experiments, molecular modeling, and simulation. Self-assembled monolayers (SAMs) are prepared using sequence-defined heme-binding peptides capable of forming helical secondary structures. Following monolayer formation, the structural properties and chemical composition of assembled peptides are determined using atomic force microscopy and X-ray photoelectron spectroscopy, and the electronic properties (current density-voltage response) are characterized using a soft contact liquid metal electrode method based on eutectic gallium-indium alloys (EGaIn). Our results show a substantial 1000-fold increase in current density across SAM junctions upon addition of heme compared to identical peptide sequences in the absence of heme, while maintaining a constant junction thickness. These findings show that amino acid composition and sequence directly control enhancements in electron transport in heme-binding peptides. Overall, this study demonstrates the potential of using sequence-defined synthetic peptides inspired by nature as functional bioelectronic materials.
Collapse
Affiliation(s)
- Hao Yang
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiaolin Liu
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Moeen Meigooni
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Li Zhang
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jitong Ren
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Qian Chen
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Chan
Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Mark Losego
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Emad Tajkhorshid
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Cook AB, Gonzalez BD, van Hest JCM. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Biomacromolecules 2024; 25:425-435. [PMID: 38064593 PMCID: PMC10777345 DOI: 10.1021/acs.biomac.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.
Collapse
Affiliation(s)
- Alexander B Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bruno Delgado Gonzalez
- Departamento
de Química Orgánica, Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Jan C M van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
- Biomedical
Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
3
|
Halaszynski NI, Saven JG, Pochan DJ, Kloxin CJ. Thermoresponsive Coiled-Coil Peptide-Polymer Grafts. Bioconjug Chem 2023; 34:2001-2006. [PMID: 37874177 DOI: 10.1021/acs.bioconjchem.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Alkyl halide side groups are selectively incorporated into monodispersed, computationally designed coiled-coil-forming peptide nanoparticles. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) is polymerized from the coiled-coil periphery using photoinitiated atom transfer radical polymerization (photoATRP) to synthesize well-defined, thermoresponsive star copolymer architectures. This facile synthetic route is readily extended to other monomers for a range of new complex star-polymer macromolecules.
Collapse
Affiliation(s)
- Nicole I Halaszynski
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, 201 P.S. duPont Hall, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Ensembles of synthetic polymers engineered to mimic protein mixtures. Nature 2023:10.1038/d41586-023-00311-x. [PMID: 36890312 DOI: 10.1038/d41586-023-00311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
5
|
Ruan Z, Li S, Grigoropoulos A, Amiri H, Hilburg SL, Chen H, Jayapurna I, Jiang T, Gu Z, Alexander-Katz A, Bustamante C, Huang H, Xu T. Population-based heteropolymer design to mimic protein mixtures. Nature 2023; 615:251-258. [PMID: 36890370 PMCID: PMC10468399 DOI: 10.1038/s41586-022-05675-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2022] [Indexed: 03/10/2023]
Abstract
Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined1. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed2-4. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters5,6; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively. Here, we extracted the chemical characteristics and sequential arrangement along a protein chain at the segmental level from natural protein libraries and used the information to design heteropolymer ensembles as mixtures of disordered, partially folded and folded proteins. For each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids including assisting protein folding during translation, preserving the viability of fetal bovine serum without refrigeration, enhancing the thermal stability of proteins and behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability. This framework provides valuable guiding principles to synthetically realize protein properties, engineer bio/abiotic hybrid materials and, ultimately, realize matter-to-life transformations.
Collapse
Affiliation(s)
- Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Shuni Li
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
| | - Alexandra Grigoropoulos
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Hossein Amiri
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
| | - Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haotian Chen
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Ivan Jayapurna
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Tao Jiang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Chemistry, Xiamen University and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, China
| | - Zhaoyi Gu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carlos Bustamante
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Haiyan Huang
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Song SJ, Choi JS. Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14010143. [PMID: 35057039 PMCID: PMC8779831 DOI: 10.3390/pharmaceutics14010143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/03/2023] Open
Abstract
Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)3, RH-(GFLG)3). The self-assembled RH-(GFLG)3 globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)3 nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with d-form peptides (LD (LRH-D(GFLG)3), DL (DRH-L(GFLG)3), and DD (DRH-D(GFLG)3). The RH-(GFLG)3 nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)3 nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)3 peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.
Collapse
Affiliation(s)
- Su Jeong Song
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-(42)-821-5489
| |
Collapse
|
7
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
8
|
Taylor PA, Jayaraman A. Molecular Modeling and Simulations of Peptide–Polymer Conjugates. Annu Rev Chem Biomol Eng 2020; 11:257-276. [DOI: 10.1146/annurev-chembioeng-092319-083243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide–polymer conjugates are a class of soft materials composed of covalently linked blocks of protein/polypeptides and synthetic/natural polymers. These materials are practically useful in biological applications, such as drug delivery, DNA/gene delivery, and antimicrobial coatings, as well as nonbiological applications, such as electronics, separations, optics, and sensing. Given their broad applicability, there is motivation to understand the molecular and macroscale structure, dynamics, and thermodynamic behavior exhibited by such materials. We focus on the past and ongoing molecular simulation studies aimed at obtaining such fundamental understanding and predicting molecular design rules for the target function. We describe briefly the experimental work in this field that validates or motivates these computational studies. We also describe the various models (e.g., atomistic, coarse-grained, or hybrid) and simulation methods (e.g., stochastic versus deterministic, enhanced sampling) that have been used and the types of questions that have been answered using these computational approaches.
Collapse
Affiliation(s)
- Phillip A. Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
9
|
Abstract
Bioactive core–shell nanoparticles (CSNPs) offer the unique ability for protein/enzyme functionality in non-native environments. For many decades, researchers have sought to develop synthetic materials which mimic the efficiency and catalytic power of bioactive macromolecules such as enzymes and proteins. This research studies a self-assembly method in which functionalized, polymer-core/protein-shell nanoparticles are prepared in mild conditions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were utilized to analyze the size and distribution of the CSNPs. The methods outlined in this research demonstrate a mild, green chemistry synthesis route for CSNPs which are highly tunable and allow for enzyme/protein functionality in non-native conditions.
Collapse
|
10
|
Kim GC, Ahn JH, Oh JH, Nam S, Hyun S, Yu J, Lee Y. Photoswitching of Cell Penetration of Amphipathic Peptides by Control of α-Helical Conformation. Biomacromolecules 2018; 19:2863-2869. [DOI: 10.1021/acs.biomac.8b00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018; 19:1539-1551. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalent coupling of hydrophobic polymers to the exterior of hydrophilic proteins would mediate unique macroscopic assembly of bioconjugates to generate amphiphilic superstructures as novel nanoreactors or biocompatible drug delivery systems. The main objective of this study was to develop a novel strategy for the synthesis of protein-polymer giant amphiphiles by the combination of copper-mediated living radical polymerization and azide-alkyne cycloaddition reaction (CuAAC). Azide-functionalized succinimidyl ester was first synthesized for the facile introduction of azide groups to proteins such as albumin from bovine serum (BSA) and laccase from Trametes versicolor. Alkyne-terminal polymers with varied hydrophobicity were synthesized by using commercial copper wire as the activators from a trimethylsilyl protected alkyne-functionalized initiator in DMSO under ambient temperature. The conjugation of alkyne-functionalized polymers to the azide-functionalized laccase could be conducted even without additional copper catalyst, which indicated a successful self-catalyzed CuAAC reaction. The synthesized amphiphiles were found to aggregate into spherical nanoparticles in water and showed strong relevance to the hydrophobicity of coupled polymers. The giant amphiphiles showed decreased enzyme activity yet better stability during storage after chemical modification and self-assembly. These findings will deepen our understanding on protein folding, macroscopic self-assembly, and support potential applications in bionanoreactor, enzyme immobilization, and water purification.
Collapse
|
12
|
Panganiban B, Qiao B, Jiang T, DelRe C, Obadia MM, Nguyen TD, Smith AAA, Hall A, Sit I, Crosby MG, Dennis PB, Drockenmuller E, Olvera de la Cruz M, Xu T. Random heteropolymers preserve protein function in foreign environments. Science 2018; 359:1239-1243. [DOI: 10.1126/science.aao0335] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
|
13
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
14
|
Ang J, Ma D, Jung BT, Keten S, Xu T. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation. Biomacromolecules 2017; 18:3572-3580. [DOI: 10.1021/acs.biomac.7b00917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- JooChuan Ang
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Dan Ma
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benson T. Jung
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Sinan Keten
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ting Xu
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Material
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Ma D, DeBenedictis EP, Lund R, Keten S. Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes. NANOSCALE 2016; 8:19334-19342. [PMID: 27841426 DOI: 10.1039/c6nr07125b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.
Collapse
Affiliation(s)
- Dan Ma
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA. and Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
16
|
Alalwiat A, Grieshaber SE, Paik BA, Kiick KL, Jia X, Wesdemiotis C. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks. Analyst 2016; 140:7550-64. [PMID: 26460278 DOI: 10.1039/c5an01600b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are increasingly used in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ahlam Alalwiat
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| | - Sarah E Grieshaber
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|
17
|
Prada YA, Guzmán F, Rondón P, Escobar P, Ortíz C, Sierra DA, Torres R, Mejía-Ospino E. A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob Proteins 2016; 8:134-40. [DOI: 10.1007/s12602-016-9219-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
|
19
|
Hamed E, Ma D, Keten S. Effect of Polymer Conjugation Site on Stability and Self-Assembly of Coiled Coils. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0172-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Hamed E, Ma D, Keten S. Multiple PEG Chains Attached onto the Surface of a Helix Bundle: Conformations and Implications. ACS Biomater Sci Eng 2015. [DOI: 10.1021/ab500088b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elham Hamed
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dan Ma
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Civil and Environmental
Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Fu IW, Markegard CB, Nguyen HD. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:315-24. [PMID: 25488898 DOI: 10.1021/la503399x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peptide amphiphiles are known to form a variety of distinctive self-assembled nanostructures (including cylindrical nanofibers in hydrogels) dependent upon the solvent conditions. Using a novel coarse-grained model, large-scale molecular dynamics simulations are performed on a system of 800 peptide amphiphiles (sequence, palmitoyl-Val3Ala3Glu3) to elucidate kinetic mechanisms of molecular assembly as a function of the solvent conditions. The assembly process is found to occur via a multistep process with transient intermediates that ultimately leads to the stabilized nanostructures including open networks of β-sheets, cylindrical nanofibers, and elongated micelles. Different kinetic mechanisms are compared in terms of peptide secondary structures, solvent-accessible surface area, radius of gyration, relative shape anisotropy, intra/intermolecular interactions, and aggregate size dynamics to provide insightful information for the design of functional biomaterials.
Collapse
Affiliation(s)
- Iris W Fu
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | | | | |
Collapse
|
22
|
Chu BK, Fu IW, Markegard CB, Choi SE, Nguyen HD. A Tail of Two Peptide Amphiphiles: Effect of Conjugation with Hydrophobic Polymer on Folding of Peptide Sequences. Biomacromolecules 2014; 15:3313-20. [DOI: 10.1021/bm500733h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian K. Chu
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Iris W. Fu
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Cade B. Markegard
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Seong E. Choi
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Hung D. Nguyen
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
23
|
Woo SY, Lee H. Molecular dynamics studies of PEGylated α-helical coiled coils and their self-assembled micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8848-8855. [PMID: 25000284 DOI: 10.1021/la501973w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We performed coarse-grained (CG) molecular dynamics simulations of trimeric α-helical coiled coils grafted with poly(ethylene glycol) (PEG) of different sizes and conjugate positions and the self-assembled micelle of amphiphilic trimers. The CG model for the trimeric coiled coil is verified by comparing the α-helical structure and interhelical distance with those calculated from all-atom simulations. In CG simulations of PEGylated trimers, the end-to-end distances and radii of gyration of PEGs grafted to the sides of peptides become shorter than those of free PEGs in water, which agrees with experiments. This shorter size of the grafted PEGs is also confirmed by calculating the thickness of the PEG layer, which is less than the size of the mushroom. These indicate the adsorption of PEG chains onto coiled coils since hydrophobic residues in the exterior sites of coiled coils tend to be less exposed to water and thus interact with PEGs, leading to the compact conformation of adsorbed PEGs. Simulations of the self-assembly of amphiphilic trimers show that the randomly distributed trimers self-assemble to micelles. The outer radius and hydrodynamic radius of the micelle, which were calculated respectively from radial densities and diffusion coefficients, are ∼7 nm, in agreement with the experimental value of ∼7.5 nm, while the aggregation number of amphiphilic molecules per micelle is lower than the experimentally proposed value. These simulations predict the experimentally measured size of PEGs grafted to the trimeric coiled coils and their self-assembled amphiphilic micelles and suggest that the aggregation number of the micelle may be lower, which needs to be confirmed by experiments.
Collapse
Affiliation(s)
- Sun Young Woo
- Department of Chemical Engineering, Dankook University , Yongin 448-701, South Korea
| | | |
Collapse
|
24
|
Fu IW, Markegard CB, Chu BK, Nguyen HD. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7745-7754. [PMID: 24915982 DOI: 10.1021/la5012988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using a novel coarse-grained model, large-scale molecular dynamics simulations were performed to examine self-assembly of 800 peptide amphiphiles (sequence palmitoyl-V3A3E3). Under suitable physiological conditions, these molecules readily assemble into nanofibers leading to hydrogel construction as observed in experiments. Our simulations capture this spontaneous self-assembly process, including formation of secondary structure, to identify morphological transitions of distinctive nanostructures. As the hydrophobic interaction is increased, progression from open networks of secondary structures toward closed cylindrical nanostructures containing either β-sheets or random coils are observed. Moreover, temperature effects are also determined to play an important role in regulating formation of secondary structures within those nanostructures. These understandings of the molecular interactions involved and the role of environmental factors on hydrogel formation provide useful insight for development of innovative smart biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Iris W Fu
- Department of Chemical Engineering and Materials Science, University of California-Irvine , Irvine, California 92697, United States
| | | | | | | |
Collapse
|
25
|
Paira TK, Saha A, Banerjee S, Das T, Das P, Jana NR, Mandal TK. Fluorescent amphiphilic PEG-peptide-PEG triblock conjugate micelles for cell imaging. Macromol Biosci 2014; 14:929-35. [PMID: 24687698 DOI: 10.1002/mabi.201400083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 12/18/2022]
Abstract
A fluorescent amphiphilic poly(ethylene glycol)-peptide-fluorophore-peptide-poly(ethylene glycol) (PEG-Pep-F-Pep-PEG) triblock conjugate with a hydrophobic fluorophore moiety at the centre of the chain is synthesized by "grafting to" technique based on Schiff-base coupling chemistry. The conjugate is characterized by nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence spectroscopy techniques. The aqueous solution of the triblock conjugate emits blue light and exhibits a fluorescence emission band at 430 nm. The amphiphilic conjugate molecules undergo self-assembly into micelles (D ≈ 15-20 nm) in aqueous solution as confirmed from transmission electron microscopy (TEM) and dynamic light scattering (DLS). The critical aggregation concentration is determined by pyrene fluorescence assay and is found to be 0.051 mg mL(-1) . The highly stable and low toxic fluorescent PEG-Pep-F-Pep-PEG conjugate micelles are used for imaging of HeLa cells.
Collapse
Affiliation(s)
- Tapas K Paira
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications. Polymers (Basel) 2014. [DOI: 10.3390/polym6030776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
27
|
Affiliation(s)
- Jenny Malmström
- Polymer Electronics Research Centre; School of Chemical Sciences; University of Auckland; Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; Victoria University of Wellington; P.O. Box 600 Wellington 6140 New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre; School of Chemical Sciences; University of Auckland; Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; Victoria University of Wellington; P.O. Box 600 Wellington 6140 New Zealand
| |
Collapse
|
28
|
Chimonides GF, Sohdi AA, Khaleghi MR, Hurley CR, Adams DJ, Topham PD. Facile synthesis of polymer-peptide conjugates via direct amino acid coupling chemistry. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gwen F. Chimonides
- Chemical Engineering and Applied Chemistry; Aston University; Aston Triangle Birmingham B4 7ET United Kingdom
| | - Arun A. Sohdi
- Chemical Engineering and Applied Chemistry; Aston University; Aston Triangle Birmingham B4 7ET United Kingdom
| | - Mohammad R. Khaleghi
- Chemical Engineering and Applied Chemistry; Aston University; Aston Triangle Birmingham B4 7ET United Kingdom
| | - Claire R. Hurley
- Sheffield Surface Analysis Centre, Kroto Research Institute; The University of Sheffield; Sheffield S3 7HQ United Kingdom
| | - Dave J. Adams
- Department of Chemistry; University of Liverpool; Crown Street Liverpool L69 7ZD United Kingdom
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry; Aston University; Aston Triangle Birmingham B4 7ET United Kingdom
| |
Collapse
|
29
|
Shu JY, Panganiban B, Xu T. Peptide-Polymer Conjugates: From Fundamental Science to Application. Annu Rev Phys Chem 2013; 64:631-57. [DOI: 10.1146/annurev-physchem-040412-110108] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Ting Xu
- Department of Materials Science and Engineering and
- Department of Chemistry, University of California, Berkeley, California 94720-1760;
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
30
|
Lund R, Shu J, Xu T. A Small-Angle X-ray Scattering Study of α-helical Bundle-Forming Peptide–Polymer Conjugates in Solution: Chain Conformations. Macromolecules 2013. [DOI: 10.1021/ma301310h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Reidar Lund
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
- Material Science Division, Lawrence Berkeley
National Lab (LBNL), Berkeley, California 94720, United States
| | - Jessica Shu
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
| | - Ting Xu
- Department of Material Sciences & Engineering, University of California, 225 Hearst Memorial Mining Building, Berkeley, California 94720-1760, United States
- Material Science Division, Lawrence Berkeley
National Lab (LBNL), Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1760,
United States
| |
Collapse
|
31
|
Fabregat G, Ballano G, Casanovas J, Laurent AD, Armelin E, del Valle LJ, Cativiela C, Jacquemin D, Alemán C. Design of hybrid conjugates based on chemical similarity. RSC Adv 2013. [DOI: 10.1039/c3ra42191k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Dong H, Dube N, Shu JY, Seo JW, Mahakian LM, Ferrara KW, Xu T. Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. ACS NANO 2012; 6:5320-9. [PMID: 22545944 PMCID: PMC3531550 DOI: 10.1021/nn301142r] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Generating stable, multifunctional organic nanocarriers will have a significant impact on drug formulation. However, it remains a significant challenge to generate organic nanocarriers with a long circulation half-life, effective tumor penetration, and efficient clearance of metabolites. We have advanced this goal by designing a new family of amphiphiles based on coiled-coil 3-helix bundle forming peptide-poly(ethylene glycol) conjugates. The amphiphiles self-assemble into monodisperse micellar nanoparticles, 15 nm in diameter. Using the 3-helix micelles, a drug loading of ∼8 wt % was obtained using doxorubicin and the micelles showed minimal cargo leakage after 12 h of incubation with serum proteins at 37 °C. In vivo pharmacokinetics studies using positron emission tomography showed a circulation half-life of 29.5 h and minimal accumulation in the liver and spleen. The demonstrated strategy, by incorporating unique protein tertiary structure in the headgroup of an amphiphile, opens new avenues to generate organic nanoparticles with tunable stability, ligand clustering, and controlled disassembly to meet current demands in nanomedicine.
Collapse
Affiliation(s)
- He Dong
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Nikhil Dube
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Jessica Y. Shu
- Department of Materials Science & Engineering, University of California, Berkeley
| | - Jai W. Seo
- Department of Bioengineering, University of California, Davis
| | | | | | - Ting Xu
- Department of Materials Science & Engineering, University of California, Berkeley
- Department of Bioengineering, University of California, Berkeley
- Department of Chemistry, University of California, Berkeley
- Corresponding author:
| |
Collapse
|
33
|
Shu JY, Lund R, Xu T. Solution Structural Characterization of Coiled-Coil Peptide–Polymer Side-Conjugates. Biomacromolecules 2012; 13:1945-55. [DOI: 10.1021/bm300561y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Reidar Lund
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California,
United States
| | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California,
United States
| |
Collapse
|
34
|
Barnaby SN, Fath KR, Tsiola A, Banerjee IA. Fabrication of ellagic acid incorporated self-assembled peptide microtubes and their applications. Colloids Surf B Biointerfaces 2012; 95:154-61. [PMID: 22455831 DOI: 10.1016/j.colsurfb.2012.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/27/2023]
Abstract
Ellagic acid (EA), a plant polyphenol known for its wide-range of health benefits was encapsulated within self-assembled threonine based peptide microtubes. The microtubes were assembled using the synthesized precursor bolaamphiphile bis(N-α-amido threonine)-1,5-pentane dicarboxylate. The self-assembly of the microstructures was probed at varying pH. In general, tubular formations were observed at a pH range of 4-6. The formed microtubes were then utilized for fabrication with EA. We probed the ability of the microtubes as drug release vehicles for EA as well as for antibacterial applications. It was found that the release of EA was both pH and concentration dependent. The biocompatibility as well as cytotoxicity of the EA-fabricated microtubes was examined in the presence of mammalian normal rat kidney (NRK) cells. Finally the antibacterial effects of the EA incorporated peptide microtubes was examined against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Stacey N Barnaby
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, United States
| | | | | | | |
Collapse
|
35
|
Jain A, Ashbaugh HS. Helix stabilization of poly(ethylene glycol)-peptide conjugates. Biomacromolecules 2011; 12:2729-34. [PMID: 21657254 DOI: 10.1021/bm2005017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies.
Collapse
Affiliation(s)
- Amit Jain
- Tulane University, Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Center, New Orleans, Louisiana 70118, USA
| | | |
Collapse
|
36
|
Frisman I, Shachaf Y, Seliktar D, Bianco-Peled H. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6977-6986. [PMID: 21542599 DOI: 10.1021/la104695m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.
Collapse
Affiliation(s)
- Ilya Frisman
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
37
|
Möller M, Hentschel C, Chi L, Studer A. Aggregation behaviour of peptide-polymer conjugates containing linear peptide backbones and multiple polymer side chains prepared by nitroxide-mediated radical polymerization. Org Biomol Chem 2011; 9:2403-12. [PMID: 21321771 DOI: 10.1039/c0ob01047b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of peptides with an alternating sequence of alkoxyamine conjugated lysine and glycine residues were synthesized by classical solution phase peptide coupling. The resulting peptides containing up to eight alkoxyamine moieties were used as initiators in nitroxide-mediated polymerization (NMP) to obtain peptide-polymer conjugates with well defined linear peptide backbones and a defined number of polymeric side chains. Polymerization of styrene and N-isopropylacrylamide (NIPAM) occurred in a highly controlled fashion. Molecular weight and polydispersity index (PDI) were determined by gel permeation chromatography (GPC). Aggregation behaviour of these hybrid materials was investigated by dynamic light scattering (DLS) and atomic force microscopy (AFM). Depending on composition, number and length of the polymer side chains, the conjugates aggregate to different topologies. Whereas peptide-polystyrene conjugates may aggregate to so called honeycomb structures, peptide-poly-N-isopropylacrylamide conjugates show differentiated aggregation behaviour.
Collapse
Affiliation(s)
- Michael Möller
- Organisch-Chemisches Institut and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | | | | |
Collapse
|
38
|
Dube N, Presley AD, Shu JY, Xu T. Amphiphilic Peptide-Polymer Conjugates with Side-Conjugation. Macromol Rapid Commun 2011; 32:344-53. [DOI: 10.1002/marc.201000603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Indexed: 11/08/2022]
|